Strong planning

In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

Strong plans

Recall the definition of strong plans:

Definition (strong plan)
Let S be the set of states of a planning task Π. Then a strong plan for Π is a function $\pi : S_\pi \rightarrow O$ for some subset $S_\pi \subseteq S$ such that

- $\pi(s)$ is applicable in s for all $s \in S_\pi$,
- $S_\pi(s_0) \subseteq S_\pi \cup S_*$ (π is closed),
- $S_\pi(s') \cap S_* \neq \emptyset$ for all $s' \in S_\pi(s_0)$ (π is proper), and
- there is no state $s' \in S_\pi(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic).
Strong plans

Execution of a strong plan

1. Determine the current state s.
2. If s is a goal state then terminate.
3. Execute action $\pi(s)$.
4. Repeat from first step.

Images

The **image** of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

$$img_o(T) = \{ s' \in S | s \xrightarrow{o} s' \} = app_o(s)$$

Definition (image of a state)

$$img_o(s) = \{ s' \in S | s \xrightarrow{o} s' \} = app_o(s)$$

Definition (image of a set of states)

$$img_o(T) = \bigcup_{s \in T} img_o(s)$$
Weak preimages

Weak preimage

The **weak preimage** of a set \(T \) of states with respect to an operator \(o \) is the set of those states from which a state in \(T \) can be reached by executing \(o \).

\[
\text{wpreimg}_o(T) = \{ s \in S | s \xrightarrow{o} s' \}
\]

Strong preimages

Strong preimage

The **strong preimage** of a set \(T \) of states with respect to an operator \(o \) is the set of those states from which a state in \(T \) is always reached when executing \(o \).

\[
\text{spreimg}_o(T) = \{ s \in S | \exists s' \in T : s \xrightarrow{o} s' \land \text{img}_o(s) \subseteq T \}
\]
Algorithms

Dynamic programming

Planning by dynamic programming
If for all successors of state s with respect to operator o a plan exists, assign operator o to s.
- **Base case** \(i = 0 \): In goal states there is nothing to do.
- **Inductive case** \(i \geq 1 \): If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in \text{img}_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

Backward distances
If s is assigned a value on iteration $i \geq 1$, then the **backward distance** of s is i. The dynamic programming algorithm essentially computes the backward distances of states.

Algorithms for strong planning

1. **Dynamic programming** (backward)
 - Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
 - Zero actions needed for goal states.
 - If states with i actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified.
 - Automatic reuse of plan suffixes already found.

2. **Heuristic search** (forward)
 - Strong planning can be viewed as AND/OR graph search.
 - OR nodes: Choice between operators
 - AND nodes: Choice between effects
 - Heuristic AND/OR search algorithms: AO*, Proof Number Search, …
Definition (backward distance sets)
Let G be a set of states and O a set of operators. The backward distance sets D_{bwd}^i for G and O consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O:

$$D_{bwd}^0 := G$$
$$D_{bwd}^i := D_{bwd}^{i-1} \cup \bigcup_{o \in O} \text{sprimg}_o(D_{bwd}^{i-1})$$

for all $i \geq 1$.

Strong plans based on distances
Let $\Pi = (V, I, O, \gamma)$ be a nondeterministic planning task with state set S and goal states S^\ast. Extraction of a strong plan from distance sets
1. Let $S' \subseteq S$ be those states having a finite backward distance for $G = S^\ast$ and O.
2. Let $s \in S'$ be a state with distance $i = \delta_{bwd}^G(s) \geq 1$.
3. Assign to $\pi(s)$ any operator $o \in O$ such that $\text{img}_o(s) \subseteq D_{bwd}^{i-1}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for T iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?
We have considered the special case of nondeterministic planning where
- planning tasks are fully observable and
- we are interested in strong plans.

We have introduced important concepts also relevant to other variants of nondeterministic planning such as
- images and
- weak and strong preimages.

We have discussed one basic classes of algorithms:
backward induction by dynamic programming.