Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
D. Drexler

Winter Semester 2017/2018

University of Freiburg
Department of Computer Science

Exercise Sheet 13

Due: Friday, February 2nd, 2018

Exercise 13.1 (Strong stubborn sets, $1+3$ points)
Consider the SAS^{+}planning task Π with variables $V=\{$ pos, left, right, hat $\}, \mathcal{D}_{\text {pos }}=\{$ home, uni $\}$ and $\mathcal{D}_{\text {left }}=\mathcal{D}_{\text {right }}=\mathcal{D}_{\text {hat }}=\{t, f\}$. The initial state is $I=\{$ pos \mapsto home, left $\mapsto f$, right $\mapsto f$, hat \mapsto $f\}$ and the goal specification is $\gamma=\{p o s \mapsto u n i\}$. There are four operators in O, namely

$$
\begin{aligned}
\text { put-on-left-shoe } & =\langle\text { pos }=\text { home } \wedge \text { left }=f, \text { left }:=t\rangle, \\
\text { put-on-right-shoe } & =\langle\text { pos }=\text { home } \wedge \text { right }=f, \text { right }:=t\rangle, \\
\text { put-on-hat } & =\langle\text { pos }=\text { home } \wedge \text { hat }=f, \text { hat }:=t\rangle, \text { and } \\
\text { go-to-university } & =\langle\text { pos }=\text { home } \wedge \text { left }=t \wedge \text { right }=t, \text { pos }:=\text { uni }\rangle .
\end{aligned}
$$

(a) Draw the breadth-first search graph (with duplicate detection) for planning task Π without any form of partial-order reduction.
(b) Draw the breadth-first search graph (with duplicate detection) for planning task Π using strong stubborn set pruning. For each expansion of a node for a state s, specify in detail how T_{s} (and thus $T_{a p p(s)}$) are computed, i.e., explain how the initial disjunctive action landmark is chosen and how operators are iteratively added to T_{s} as part of necessary enabling sets or interfering operators, respectively. Break ties in favor of put-on-left-shoe over put-on-right-shoe.
How many node expansion do you save with strong stubborn sets compared to plain breadthfirst search? What about the lengths of the resulting solutions?

You may abbreviate the operator names, state descriptions etc. appropriately.
Exercise 13.2 (Weak vs. strong stubborn sets, 6 points)
Show that weak stubborn sets admit exponentially more pruning than strong stubborn sets.
Hint: Consider the family of planning tasks $\left(\Pi_{n}\right)_{n \in \mathbb{N}}$, where $\Pi_{n}=\left\langle V_{n}, I_{n}, O_{n}, \gamma\right\rangle$ is the planning task with the following components:

- $V_{n}=\left\{a, x, y, b_{1}, \ldots, b_{n}\right\}$ with variable domains $\mathcal{D}_{a}=\mathcal{D}_{x}=\mathcal{D}_{y}=\{0,1\}$ and $\mathcal{D}_{b_{i}}=\{0,1,2\}$ for all $i \in\{1, \ldots, n\}$
- $O_{n}=\left\{o, o^{\prime}, o_{d}, \overline{o_{d}}, o_{1}, \ldots, o_{n}, \overline{o_{1}}, \ldots, \overline{o_{n}}\right\}$
- $\operatorname{pre}(o)=\{a \mapsto 0\}$, eff $(o)=\{x \mapsto 1\}$
- $\operatorname{pre}\left(o^{\prime}\right)=\{a \mapsto 0\}$, eff $\left(o^{\prime}\right)=\{y \mapsto 1\}$
- $\operatorname{pre}\left(o_{d}\right)=\{a \mapsto 0\}$, eff $\left(o_{d}\right)=\left\{a \mapsto 1, b_{1} \mapsto 1, \ldots, b_{n} \mapsto 1\right\}$
- $\operatorname{pre}\left(\overline{o_{d}}\right)=\{a \mapsto 1\}$, eff $\left(\overline{o_{d}}\right)=\left\{a \mapsto 0, b_{1} \mapsto 1, \ldots, b_{n} \mapsto 1\right\}$
- $\operatorname{pre}\left(o_{i}\right)=\left\{b_{i} \mapsto 1\right\}$, eff $\left(o_{i}\right)=\left\{b_{i} \mapsto 2\right\}$ for $1 \leq i \leq n$
- $\operatorname{pre}\left(\overline{o_{i}}\right)=\left\{b_{i} \mapsto 2\right\}$, eff $\left(\overline{O_{i}}\right)=\left\{b_{i} \mapsto 1\right\}$ for $1 \leq i \leq n$
- $I_{n}=\left\{a \mapsto 0, x \mapsto 0, y \mapsto 0, b_{1} \mapsto 0, \ldots, b_{n} \mapsto 0\right\}$
- $\gamma=\{x \mapsto 1, y \mapsto 1\}$

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.

