Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
University of Freiburg
D. Drexler

Winter Semester 2017/2018

Exercise Sheet 12

Due: Friday, January 26th, 2018

Exercise 12.1 (BDDs, $2+2+2$ points)

Let φ be the formula $\left(v_{1} \wedge v_{2}\right) \vee\left(v_{3} \wedge \neg v_{4}\right)$ over the variables $A=\left\{v_{1}, \ldots, v_{4}\right\}$, and let S be the set of states 0010, 0011, 0100, 0110, 1000, 1010, 1011, 1100, 1110 and 1111 over A, where $x y z u$ is a shorthand for $\left\{v_{1} \mapsto x, v_{2} \mapsto y, v_{3} \mapsto\right.$ $\left.z, v_{4} \mapsto u\right\}$. Moreover, let B be the BDD over the variables v_{1}, \ldots, v_{5} depicted on the right.

(a) Reduce B as much as possible. Give intermediate results after each reduction step. Give representations of B as a formula in conjunctive normal form and as a set of states.
(b) Represent φ as a reduced ordered BDD and as a set of states.
(c) Represent S as a reduced ordered BDD and as a formula in conjunctive normal form.

Exercise 12.2 (Operators as BDDs, 4 points)
Let $A=\{a, b, c\}$ and let $o=\langle\top, c\rangle$ be an operator over A. Specify the reduced ordered BDDs corresponding to the (sequential) encoding $\tau_{A}(o)$ for the variable orderings $a \prec b \prec c \prec a^{\prime} \prec b^{\prime} \prec c^{\prime}$ and $a \prec a^{\prime} \prec b \prec b^{\prime} \prec c \prec c^{\prime}$ on $A \cup A^{\prime}$.

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.

