Principles of AI Planning

Prof. Dr. B. Nebel, Dr. R. Mattmüller
D. Drexler

Winter Semester 2017/2018

Exercise Sheet 7

Due: Friday, December 8th, 2017

Exercise 7.1 (Abstraction heuristics, $5+5$ points)
A state of a 15 -puzzle planning task is given as a permutation $\left\langle b, t_{1}, \ldots, t_{15}\right\rangle$ of $\{1, \ldots, 16\}$, where b denotes the empty tile (blank) and all other components denote the positions of the tiles.
Let $T^{1}=\left\{t_{1}^{1}, \ldots, t_{n}^{1}\right\}, T^{2}=\left\{t_{1}^{2}, \ldots, t_{m}^{2}\right\}$ with $1 \leq n, m \leq 14$ be a partitioning of $\left\{t_{1}, \ldots, t_{15}\right\}$ (i.e., $T^{1} \cup T^{2}=\left\{t_{1}, \ldots, t_{15}\right\}$ and $\left.T^{1} \cap T^{2}=\emptyset\right)$. Consider the following abstractions:

- $\alpha_{1}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle b, t_{1}^{1}, \ldots, t_{m}^{1}\right\rangle$
- $\alpha_{2}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle b, t_{1}^{2}, \ldots, t_{n}^{2}\right\rangle$
- $\alpha_{3}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle t_{1}^{1}, \ldots, t_{m}^{1}\right\rangle$
- $\alpha_{4}\left(\left\langle b, t_{1}, \ldots, t_{15}\right\rangle\right)=\left\langle t_{1}^{2}, \ldots, t_{n}^{2}\right\rangle$

For $1 \leq i \leq 4$, the heuristic estimates of h_{i} are equal to lengths of optimal plans in the respective abstractions (e.g., $h_{i}(s)=h^{*}\left(\alpha_{i}(s)\right)$. Show that:
(a) $h_{1}+h_{2}$ is not admissible.
(b) $h_{3}+h_{4}$ is admissible.

Hint: A heuristic is admissible if it is goal-aware and consistent.

You may and should solve the exercise sheets in groups of two. Please state both names on your solution.

