16. Strong nondeterministic planning
In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.
Concepts
Recall the definition of strong plans:

Definition (strong plan)

Let S be the set of states of a planning task Π. Then a strong plan for Π is a function $\pi : S_\pi \rightarrow O$ for some subset $S_\pi \subseteq S$ such that

- $\pi(s)$ is applicable in s for all $s \in S_\pi$,
- $S_\pi(s_0) \subseteq S_\pi \cup S_*$ (π is closed),
- $S_\pi(s') \cap S_* \neq \emptyset$ for all $s' \in S_\pi(s_0)$ (π is proper), and
- there is no state $s' \in S_\pi(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic).
Execution of a strong plan

1. Determine the current state s.
2. If s is a goal state then terminate.
3. Execute action $\pi(s)$.
4. Repeat from first step.
Strong plans

- **Concepts**
- **Strong plans**
- **Images**
- **Weak preimages**
- **Strong preimages**
- **Algorithms**
- **Summary**

January 29th, 2018 B. Nebel, R. Mattmüller – AI Planning

(put-on A C)

(pick-up-from-table A)

(pick-up A B)

An example of strong plans is shown in the diagram. The process starts with an initial state, and each action results in a new state. The goal is to reach a final state that satisfies the objectives.

- **(pick-up A B)**: This action involves picking up objects A and B.
- **(pick-up-from-table A)**: This action involves picking up object A from a table.
- **(put-on A C)**: This action involves putting object A on object C.

The diagram illustrates the sequence of actions and their outcomes, moving towards the final state.
Image

The **image** of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.
Images

Definition (image of a state)

\[\text{img}_o(s) = \{ s' \in S | s \xrightarrow{0} s' \} = \text{app}_o(s) \]

Definition (image of a set of states)

\[\text{img}_o(T) = \bigcup_{s \in T} \text{img}_o(s) \]
Weak preimage

The **weak preimage** of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

$$wpreimg_o(T)$$
Weak preimages

Definition (weak preimage of a state)
\[\text{wpreimg}_o(s') = \{s \in S | s \xrightarrow{0} s'\} \]

Definition (weak preimage of a set of states)
\[\text{wpreimg}_o(T) = \bigcup_{s \in T} \text{wpreimg}_o(s). \]
Strong preimage

The **strong preimage** of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

$$\text{spreimg}_o(T)$$
Strong preimages

Definition (strong preimage of a set of states)

\[
s\text{preimg}_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land \text{img}_o(s) \subseteq T \}
\]
Algorithms
Algorithms for strong planning

1. **Dynamic programming** (backward)
 Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
 1. Zero actions needed for goal states.
 2. If states with \(i \) actions to goals are known, states with \(\leq i + 1 \) actions to goals can be easily identified.

 Automatic reuse of plan suffixes already found.

2. **Heuristic search** (forward)
 Strong planning can be viewed as AND/OR graph search.
 - **OR nodes:** Choice between operators
 - **AND nodes:** Choice between effects

 Heuristic AND/OR search algorithms:
 AO*, Proof Number Search, ...

January 29th, 2018 B. Nebel, R. Mattmüller – AI Planning
Dynamic programming

Planning by dynamic programming

If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

- **Base case $i = 0$:** In goal states there is nothing to do.
- **Inductive case $i \geq 1$:** If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in \text{img}_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

Backward distances

If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i. The dynamic programming algorithm essentially computes the backward distances of states.
Backward distances

Example

distance to G

∞ 3 2 1 0

G
Backward distances

Definition (backward distance sets)

Let \(G \) be a set of states and \(O \) a set of operators. The **backward distance sets** \(D^{bw}_i \) for \(G \) and \(O \) consist of those states for which there is a guarantee of reaching a state in \(G \) with at most \(i \) operator applications using operators in \(O \):

\[
D^{bw}_0 := G
\]

\[
D^{bw}_i := D^{bw}_{i-1} \cup \bigcup_{o \in O} spreimg_o(D^{bw}_{i-1}) \text{ for all } i \geq 1
\]
Definition (backward distance)

Let G be a set of states and O a set of operators, and let $D_{bwd}^0, D_{bwd}^1, \ldots$ be the backward distance sets for G and O. Then the backward distance of a state s for G and O is

$$
\delta_{G}^{bwd}(s) = \min\{i \in \mathbb{N} \mid s \in D_{i}^{bwd}\}
$$

(where $\min \emptyset = \infty$).
Strong plans based on distances

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set S and goal states $S\star$.

Extraction of a strong plan from distance sets

1. Let $S' \subseteq S$ be those states having a finite backward distance for $G = S\star$ and O.

2. Let $s \in S'$ be a state with distance $i = \delta_{gbwd}^G(s) \geq 1$.

3. Assign to $\pi(s)$ any operator $o \in O$ such that $\text{img}_o(s) \subseteq D_{i-1}^{bwd}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathcal{T} iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?

Question: What is the best-case runtime of the algorithm if most states have a finite backward distance?
Making the algorithm a logic-based algorithm

- An algorithm that represents the states explicitly stops being feasible at about 10^8 or 10^9 states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- As before, representing state sets as propositional formulae (or BDDs) often allows taking advantage of the structural properties: a formula (or BDD) that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.
- In the following, we will present an algorithm using a boolean-formula representation (without going into the details of how to implement it using BDDs).
Remark: The following algorithm assumes a propositional representation of the state space as opposed to a finite-domain representation. We have already seen how to translate an FDR encoding into a propositional encoding in Chapter 9 (cf. definition of the “induced propositional planning task”).

Therefore, for the rest of the present section, we will assume without loss of generality that all $v \in V$ are propositional variables with domain $\mathcal{D}_v = \{0, 1\}$.
Breadth-first search with progression and state sets (deterministic case)

Progression breadth-first search

```python
def bfs-progression(V, I, O, γ):
    goal := formula-to-set(γ)
    reached := {I}
    loop:
        if reached ∩ goal ≠ Ø:
            return solution found
        new-reached := reached ∪ ∪_{o ∈ O} img_o(reached)
        if new-reached = reached:
            return no solution exists
        reached := new-reached
```

This can easily be transformed into a regression algorithm.
Breadth-first search with regression and state sets (deterministic case)

Regression breadth-first search

```python
def bfs-regression(V, I, O, γ):
    init := I
    reached := formula-to-set(γ)
    loop:
        if init ∈ reached:
            return solution found
        new-reached := reached ∪ ∪_o∈O wpreimg_o(reached)
        if new-reached = reached:
            return no solution exists
        reached := new-reached
```

This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case!
Breadth-first search with regression and state sets (strong nondeterministic case)

Regression breadth-first search

```python
def bfs-regression(V, I, O, γ):
    init := I
    reached := formula-to-set(γ)
    loop:
        if init ∈ reached:
            return solution found
        new-reached := reached ∪ ∪ o ∈ O spreimg_o(reached)
        if new-reached = reached:
            return no solution exists
        reached := new-reached
```

Remark: Do you recognize the assignments $D_0^{bwd} := G$ and $D_i^{bwd} := D_{i-1}^{bwd} ∪ ∪ o ∈ O spreimg_o(D_{i-1}^{bwd})$ for $i \geq 1$?
Breadth-first search with regression and state sets (strong nondeterministic case, symbolic)

Regression breadth-first search

```python
def bfs-regression(V, I, O, γ):
    init := I
    reached := γ
    loop:
        if init |= reached:
            return solution found
        new-reached := reached ∨
            ∨_{o∈O} spreimgsymbo(reached)
        if new-reached ⊑ reached:
            return no solution exists
        reached := new-reached
```

How do we define `spreimgsymb` with logic (or BDD) operations?
Symbolic strong preimage computation

Let φ be a logic formula and $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}$.

We want: a symbolic preimage operation spreimgsymb such that if $\psi = \text{spreimgsymb}_o(\varphi)$, then $\llbracket \psi \rrbracket = \{ s \in S \mid s \models \psi \} = \text{spreimg}_o(\llbracket \varphi \rrbracket)$.

In other words, we want the following diagram to commute:

\[
\begin{array}{c}
\psi \\
\downarrow \\
\llbracket \psi \rrbracket
\end{array} \xleftarrow{\text{spreimgsymb}_o(\cdot)} \begin{array}{c}
\varphi \\
\downarrow \\
\llbracket \varphi \rrbracket
\end{array}
\]
Transition formula for nondeterministic operators

Let V be the set of state variables and $V' := \{v' \mid v \in V\}$ a set of primed copies of the variables in V. Intuition:

- Variables in V describe the current state s.
- Variables in V' describe the next state s'.

We would like to define a formula $\tau_V(o)$ that describes the transitions labeled with o between states s (over V) and s' (over V') in terms of V and V'.
Transition formula for nondeterministic operators

The formula $\tau_V(o)$ must express

- the conditions for applicability of o,
- how o changes state variables, and
- which state variables o does not change.

A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices.
Transition formula for nondeterministic operators

$\tau_V(o)$ for deterministic operators $o = \langle \chi, e \rangle$

$$
\tau_V(o) = \chi \wedge \bigwedge_{v \in V} ((EPC_v(e) \lor (v \land \neg EPC_{\neg v}(e))) \leftrightarrow v') \\
\wedge \bigwedge_{v \in V} \neg (EPC_v(e) \land EPC_{\neg v}(e))
$$

Assume that $e = \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d$ for $A = \{a_1, \ldots, a_k\}$ and $D = \{d_1, \ldots, d_l\}$ with $A \cap D = \emptyset$. Then this becomes simpler.

$\tau_V(o)$ for STRIPS operators $o = \langle \chi, \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d \rangle$

$$
\tau_V(o) = \chi \wedge \bigwedge_{a \in A} a' \land \bigwedge_{d \in D} \neg d' \wedge \bigwedge_{v \in V \setminus (A \cup D)} (v \leftrightarrow v')
$$
Transition formula for nondeterministic operators

For nondeterministic operators \(o = \langle \chi, \{e_1, \ldots, e_n\} \rangle \) with corresponding add and delete lists \(A_i \) and \(D_i \) of \(e_i \) such that \(A_i \cap D_i = \emptyset \), \(i = 1, \ldots, n \), we get:

\[
\tau_V(o) = \chi \land \bigvee_{i=1}^{n} \left(\bigwedge_{a \in A_i} a' \land \bigwedge_{d \in D_i} \neg d' \land \bigwedge_{v \in V \setminus (A_i \cup D_i)} (v \leftrightarrow v') \right)
\]

Example

Let \(V = \{a, b\}, \ V' = \{a', b'\} \), and \(o = \langle \neg a, \{a, a \land \neg b\} \rangle \). Then

\[
\tau_V(o) = \neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b') \right).
\]
Computing strong preimages

Definition (substitution)
Let $\varphi, t_1, \ldots, t_n$ be propositional formulas and ν_1, \ldots, ν_n atomic propositions.

We denote the formula obtained from φ by simultaneous replacement of all variables ν_i by the corresponding formulas t_i, $i = 1, \ldots, n$, by $\varphi[t_1, \ldots, t_n/\nu_1, \ldots, \nu_n]$.
Computing strong preimages

Definition (existential abstraction)

Let \(\varphi \) be a propositional formula and \(v_1, \ldots, v_n \) be atomic propositions. Then the existential abstraction of \(\varphi \) wrt. \(v_1, \ldots, v_n \) is recursively defined as follows:

\[
\exists v. \varphi := \varphi[\top/v] \lor \varphi[\bot/v]
\]

For a set of variables \(V = \{v_1, \ldots, v_n\} \) we use the abbreviation

\[
\exists V. \varphi := \exists v_1 \ldots \exists v_n. \varphi.
\]

Note: Even with intermediate formula simplifications this can lead to an exponential blowup. BDDs can be useful here.
Computing strong preimages

Strong preimages

\[\text{spreimg}_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land \text{img}_o(s) \subseteq T \} \]
= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\
\{ s' \in S \mid s \xrightarrow{o} s' \} \subseteq T \}
= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\
(\forall s' \in S : s \xrightarrow{o} s' \Rightarrow s' \in T) \}
= \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\
(\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg (s' \in T)) \} \]
Computing strong preimages with boolean function operations

\[\text{spreimg}_o(T) = \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\
(\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg(s' \in T)) \} \]

Strong preimages with boolean functions

For formula \(\varphi \) characterizing set \(T \) of strongly backward-reached states:

\[\text{spreimsymb}_o(\varphi) = (\exists V'.(\tau_V(o) \land \varphi[v'_1, \ldots, v'_n/v_1, \ldots, v_n])) \land \\
(\neg \exists V'.(\tau_V(o) \land \neg \varphi[v'_1, \ldots, v'_n/v_1, \ldots, v_n])) \]

We can use this regression formula for efficient **symbolic** regression search. BDDs support all necessary operations (atomic propositions, \(\neg \), \(\land \), \(\lor \), substitution, \(\exists \), \ldots).
Example

Let $V = \{a, b\}$, $V' = \{a', b'\}$, and

$$o = \langle \neg a, \{a, a \land \neg b\} \rangle,$$

i.e.,

$$\tau_V(o) = \neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b')\right).$$

Moreover, let $\varphi = a$. Then

$$\text{spreimgsym}_o(\varphi) = \exists a' \exists b'. \left(\neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b')\right) \land a' \right) \land$$

$$\neg \exists a' \exists b'. \left(\neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b')\right) \land \neg a' \right)$$

$$\equiv \neg a$$
Computing strong preimages with boolean function operations

Theorem

The previous definition of the symbolic preimage operator makes the following diagram commute:

\[\psi \circ \text{spreimg}_{\circ}(\cdot) \quad \text{commutes} \quad \varphi \circ \text{spreimg}_{\circ}(\cdot) \]

Proof.

Homework
Progression Search

- We saw a generalization of regression search to strong planning.
- However, this search is uninformed (breadth-first search).
- Is there an analogue to A* search for strong planning?
- Yes: AO* search
 - Progression search (like A*)
 - Guided by a heuristic (like A*)
 - Guaranteed optimality (under certain conditions, like A*)
AND/OR search
AND/OR search
We describe AO* on a graph representation without intermediate nodes, i.e., as in the first figure.

There are different variants of AO*, depending on whether the graph that is being searched is an AND/OR tree, an AND/OR DAG, or a general, possibly cyclic, AND/OR graph.

The graphs we want to search, $\mathcal{T}(\Pi)$, are in general cyclic.

However, AO* becomes a bit more involved when dealing with cycles, so we only discuss AO* under the assumption of acyclicity and leave the generalization to cyclic state spaces as an exercise.
The search is over $\mathcal{I}(\Pi)$.

For ease of presentation, we do not distinguish between states of $\mathcal{I}(\Pi)$ and search nodes.

Also, for ease of presentation, we do not handle the case that no strong plan exists.
AO* Search

Definition (solution graph)

A solution graph for a nondeterministic transition system \(\mathcal{T} = \langle S, L, T, s_0, S_\ast \rangle \) is an acyclic subgraph of \(\mathcal{T} \) (viewed as a graph), \(\mathcal{T}' = \langle S', L, T' \rangle \), such that

- \(s_0 \in S' \),
- for each \(s' \in S' \setminus S_\ast \), there is exactly one label \(l \in L \) s.t.
 - \(T' \) contains at least one outgoing transition from \(s' \) labeled with \(l \),
 - \(T' \) contains all outgoing transitions from \(s' \) labeled with \(l \) (and \(S' \) contains the states reached via such transitions),
 - \(T' \) contains no outgoing transitions from \(s' \) labeled with any \(\tilde{l} \neq l \), and
- every directed path in \(\mathcal{T}' \) terminates at a goal state.
AO* Search

Conceptually, there are three graphs/transition systems:

- The induced transitions system $T = T(\Pi)$, which only exists as a mathematical object, but is in general not made explicit completely during AO* search,
- The current portion of T explicitly represented by the search algorithm, T_e, and
- The current portion of T_e considered by the algorithm as the cheapest/best current partial solution graph, T_p.
AO* Search

Definition (partial solution graph)

A partial solution graph for a nondeterministic transition system $\mathcal{T} = \langle S, \mathcal{L}, T, s_0, S_\ast \rangle$ is an acyclic subgraph of \mathcal{T} (viewed as a graph), $\mathcal{T}_p = \langle S_p, \mathcal{L}, T_p \rangle$, s.t.

- $s_0 \in S_p$,
- for each $s' \in S_p$ that is not an unexpanded leaf node in \mathcal{T}_p there is exactly one label $l \in \mathcal{L}$ such that
 - T_p contains at least one outgoing transition from s' labeled with l,
 - T_p contains all outgoing transitions from s' labeled with l (and S_p contains the states reached via such transitions),
 - T_p contains no outgoing transitions from s' labeled with any $\tilde{l} \neq l$, and
- every directed path in \mathcal{T}_p terminates at a goal state or an unexpanded leaf node in \mathcal{T}_p.
AO* Search

Definition (cost of a partial solution graph)

Let \(h : S \rightarrow \mathbb{N} \cup \{\infty\} \) be a heuristic function for the state space \(S \) of \(\mathcal{T} \), and let \(\mathcal{T}_p = \langle S_p, L, T_p \rangle \) be a partial solution graph. The cost labeling of \(\mathcal{T}_p \) is the solution to the following system of equations over the states \(S_p \) of \(\mathcal{T}_p \):

\[
f(s) = \begin{cases}
0 & \text{if } s \text{ is a goal state} \\
h(s) & \text{if } s \text{ is an unexpanded non-goal} \\
1 + \max_{s \rightarrow s'} f(s') & \text{for the unique outgoing action } o \text{ of } s \text{ in } \mathcal{T}_p, \text{ otherwise.}
\end{cases}
\]

The cost of \(\mathcal{T}_p \) is the cost labeling of its root.

AO* search keeps track of a cheapest partial solution graph by marking for each expanded state \(s \) an outgoing action \(o \) minimizing \(1 + \max_{s \rightarrow s'} f(s') \).
AO* Search

Procedure ao-star

```python
def ao-star(T):
    let T_e and T_p initially consist of the initial state s_0.
    while T_p has unexpanded non-goal node:
        expand an unexpanded non-goal node s of T_p
        add new successor states to T_e
    for all new states s' added to T_e:
        f(s') ← h(s')
    Z ← s and its ancestors in T_e along marked actions.
    while Z is not empty:
        remove from Z a state s w/o descendant in Z.
        f(s) ← min_o applicable in s (1 + max \overset{o}{\longrightarrow}s' f(s')).
        mark the best outgoing action for s
        (this may implicitly change T_p).
    return an optimal solution graph.
```
Correctness (proof sketch)

- Solution graphs directly correspond to strong plans.
- Algorithm eventually terminates (finite number of possible node expansions).
- Acyclicity guarantees that extraction of T_p and dynamic programming back-propagation of f values always terminates.
- Marking makes sure that existing solutions are eventually marked.
AO* Search

Details

■ Pseudocode omits bookkeeping of solved states (can improve performance).

■ Choice of unexpanded non-goal node of best partial solution graph is unspecified.
 ■ Correctness/optimality not affected.
 ■ One possibility: choose node with lowest cost estimate.
 ■ Alternative: expand several nodes simultaneously.

■ Algorithm can be extended to deal with cycles in the AND/OR graph.
AO* Search

Example
Heuristic Evaluation Function

- **Desirable:** informative, domain-independent heuristic to initialize cost estimates.
- Heuristic should estimate (strong) goal distances.
- Heuristic does not necessarily have to be admissible (unless we seek optimal solutions).
- We can adapt many heuristics we already know from classical planning (details omitted).
Summary
We have considered the special case of nondeterministic planning where
- planning tasks are fully observable and
- we are interested in strong plans.

We have introduced important concepts also relevant to other variants of nondeterministic planning such as
- images and
- weak and strong preimages.

We have discussed some basic classes of algorithms:
- backward induction by dynamic programming, and
- forward search in AND/OR graphs.