

Nondetermin	nistic planning		BURG
changes ta and that we Other ager formalized Implication 1 The fur 2 We ca sequer 3 In som certain	histic planning we have assume king place in the world are those e can exactly predict the results ats and processes, beyond our as nondeterminism. s: ture state of the world cannot be p not reliably plan ahead: no single noce achieves the goals. e cases it is not possible to achieve ty no matter which outcomes the noder certain fairness assumptions	se caused by us s of our actions. control, are predicted. e operator ve the goals with actions have, but	Motivation Transition systems and planning tasks Plans
January 29th, 2018	B. Nebel, R. Mattmüller – Al Planning	6 / 23	

Nondeterministic operators

9/23

Motivation

systems and

tasks

Operators

Definition (nondeterministic operator)

Let V be a set of finite-domain state variables. A nondeterministic operator in unary nondeterminism normal form with conjunctive precondition and unconditional effects, or nondeterministic operator for short, is a pair $o = \langle \chi, E \rangle$, where

- \mathbf{z} is a conjunction of atoms over V (the precondition), and
- $E = \{e_1, \dots, e_n\}$ is a finite set of possible effects of o, each *e*_i being a conjunction of atomic finite-domain effects over V.

January 29th, 2018

B. Nebel, R. Mattmüller - Al Planning

Nondeterministic operators

Definition (nondeterministic operator application) Let $o = \langle \chi, E \rangle$ be a nondeterministic operator and *s* a state.

Applicability of *o* in *s* is definied as in the deterministic case, i.e., *o* is applicable in *s* iff $s \models \chi$ and the change set of each effect $e \in E$ is consistent.

If *o* is applicable in *s*, then the application of *o* in *s* leads to one of the states in the set $app_o(s) := \{app_{(\gamma, e)}(s) | e \in E\}$ nondeterministically.

January 29th, 2018

B. Nebel, R. Mattmüller - Al Planning

10/23

BURG

FREI

Mapping planning tasks to transition systems

January 29th, 2018

Nondeterministic plans: formal definition

systems and

tasks

Plans

Motivation

Definition

- Strategies in nondeterministic planning correspond to applicable operator sequences in deterministic planning.
- In deterministic planning, a plan is an applicable operator sequence that results in a goal state.
- In nondeterministic planning, we define different notions of "resulting in a goal state".

January 29th, 2018

B. Nebel, R. Mattmüller – Al Planning

21 / 23

UNI FREIBURG

Motivation

systems and

planning tasks

Plans

Motivation Definition

Summary and outlook

We extended the deterministic (classical) planning formalism:

operators can be nondeterministic

Remark: We could also introduce nondeterminism in the initial situation by allowing more than one initial state, but this can be easily compiled into our formalism. (How?)

As a consequence, plans can contain

- branches and
- loops.

In the following chapter, we consider the strong planning problem and the strong cyclic planning problem and discuss some algorithms.

Nondeterministic plans: formal definition

Motivation

systems and

tasks

Plans

Motivation

Definition

Definition

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set *S* and goal states S_* .

- A strategy for Π is called a weak plan for Π iff it is weak.
- A strategy for Π is called a strong cyclic plan for Π iff it is closed and proper.
- A strong cyclic plan for Π is called a strong plan for Π iff it is acyclic.
- January 29th, 2018
- B. Nebel, R. Mattmüller Al Planning

22/23