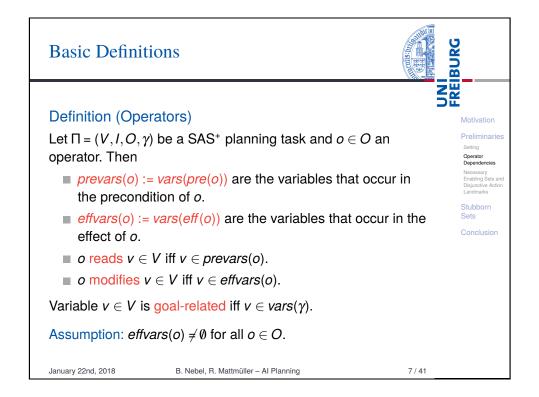


		LAND AND AND AND AND AND AND AND AND AND
		Preliminaries
		Operator Dependencies
Prelimi	narios	Necessary Enabling Sets and Disjunctive Action Landmarks
	nancs	Stubborn Sets
		Conclusion
January 22nd, 2018	B. Nebel, R. Mattmüller – Al Planning	5 / 41



Setting		

Assumption: For the rest of the chapter, we assume that all planning tasks are SAS⁺ planning tasks $\Pi = (V, I, O, \gamma)$.

BURG

FREI

Motivation

Setting

Operator

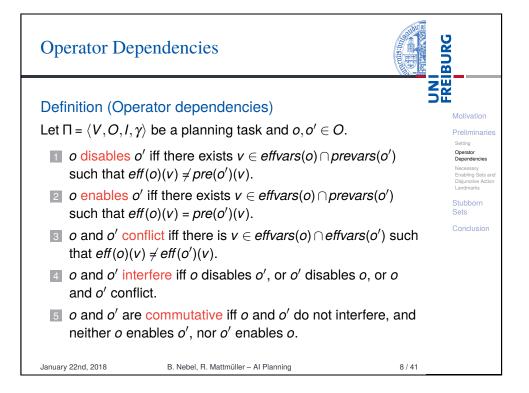
Necessary Enabling Sets a Disjunctive Act

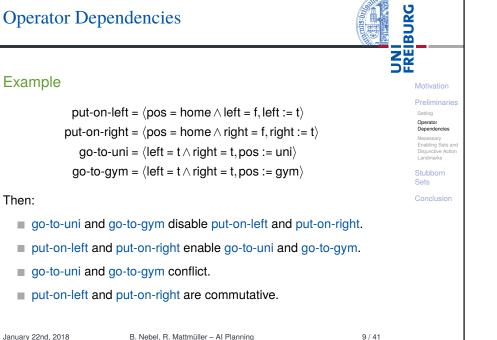
Sets

For convenience, we assume that operators have the form $o = \langle pre(o), eff(o) \rangle$, where pre(o) and eff(o) are both partial states over *V*, i.e., partial functions mapping variables *v* to values in \mathcal{D}_v . Similarly, we assume that γ is a partial state describing the goal.

Example

Operator $o = \langle pre(o), eff(o) \rangle$ with $pre(o) = \{v_1 \mapsto d_1, v_5 \mapsto d_5\}$ and $eff(o) = \{v_2 \mapsto d_2, v_3 \mapsto d_3\}$ corresponds to $o = \langle \chi, e \rangle$ with $\chi = (v_1 = d_1 \land v_5 = d_5)$ and $e = (v_2 := d_2 \land v_3 := d_3)$. January 22nd, 2018 B. Nebel, R. Mattmüller – Al Planning 6/41





Necessary Enabling Sets and Disjunctive **Action Landmarks**

Definition (Disjunctive action landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A disjunctive action landmark (DAL) L in s is a set of operators such that all operator sequences that lead from s to a goal state contain some operator in L.

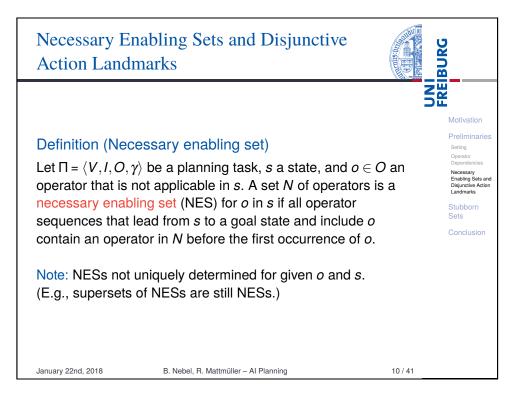
Setting
Operator Dependencies
Necessary Enabling Sets and Disjunctive Action Landmarks
Stubborn Sets

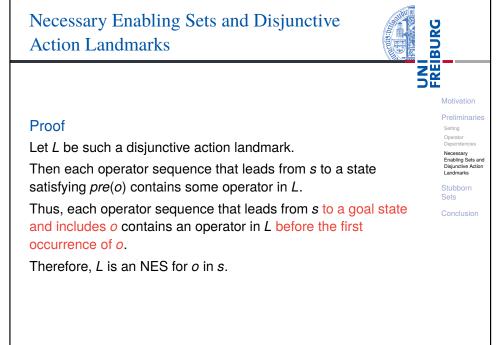
Motivation

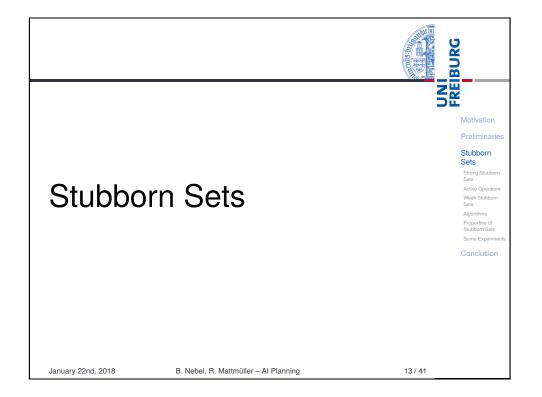
UNI FREIBURG

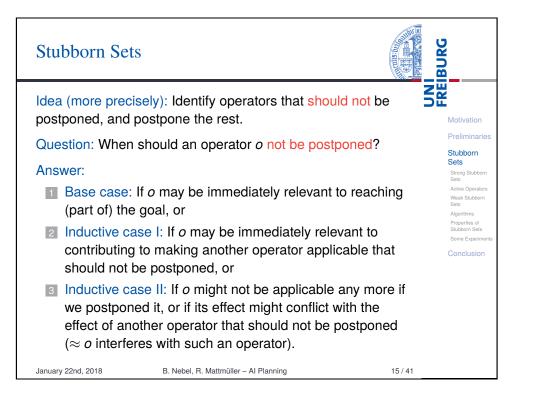
Observation

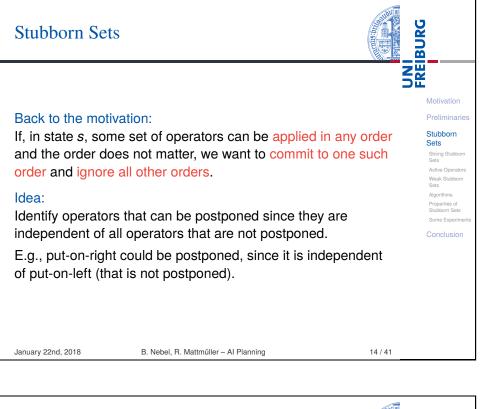
For state *s* and operator *o* that is not applicable in *s*, disjunctive action landmarks for task $\langle V, I, O, pre(o) \rangle$ are necessary enabling sets for o in s.

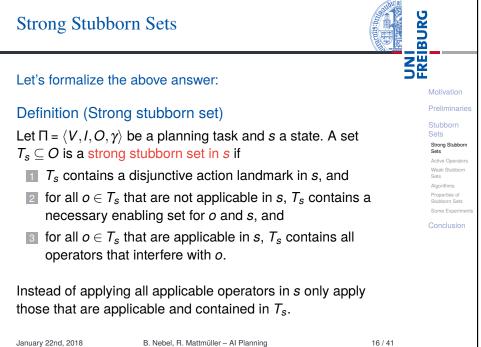












Strong Stubborn Sets

January 22nd, 2018

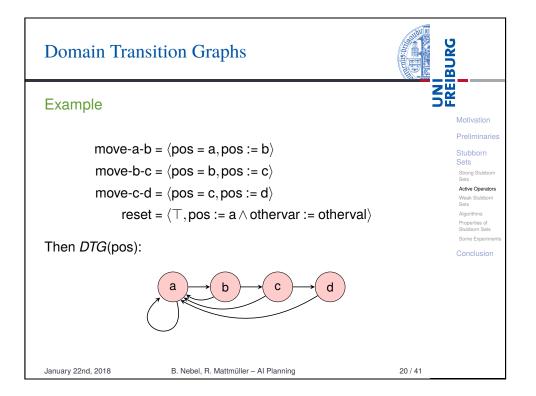
BURG Example Motivation $I = \{ pos \mapsto home, left \mapsto f, right \mapsto f \}, \gamma = \{ pos \mapsto uni \}$ put-on-left = $\langle pos = home \land left = f, left := t \rangle$ Sets put-on-right = $\langle pos = home \land right = f, right := t \rangle$ Strong Stubborn go-to-uni = $\langle \text{left} = t \land \text{right} = t, \text{pos} := \text{uni} \rangle$ Active Operator Weak Stubborn Sets Algorithms Step 1: DAL in *I* is {go-to-uni} $\rightarrow T_s := \{go-to-uni\}$. Properties of Some Experime Step 2: go-to-uni not applicable in *I*. One possible NES for go-to-uni in *I* is {put-on-left} $\rightsquigarrow T_s := T_s \cup \{\text{put-on-left}\}.$ Step 3: put-on-left is applicable in *I*. The only operator that interferes with it, go-to-uni, is already in T_s . Hence, $T_s = \{$ go-to-uni, put-on-left $\}$, and T_s restricted to the applicable operators is {put-on-left}. During search, only apply put-on-left (not put-on-right).

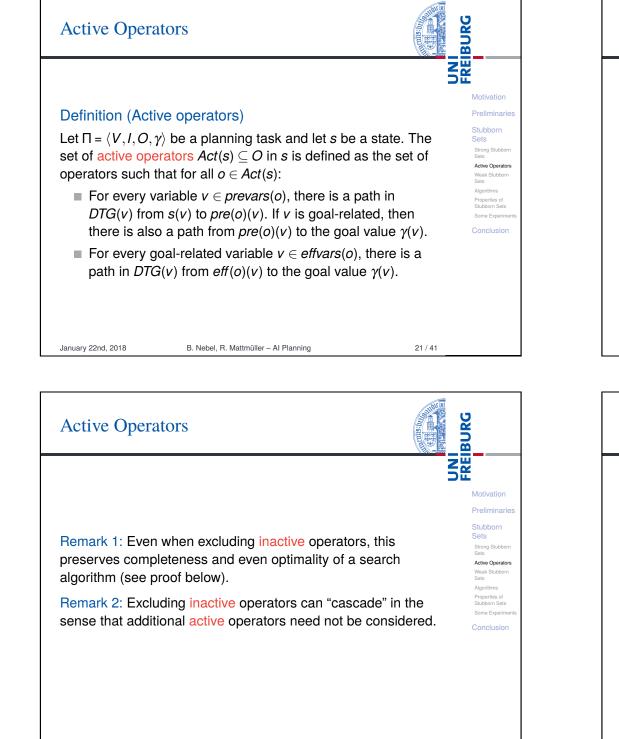
17/41

B. Nebel, R. Mattmüller - Al Planning

UNI FREIBURG **Domain Transition Graphs** Motivation Definition (Domain transition graph) Sets Let $\Pi = (V, I, O, \gamma)$ be a SAS⁺ planning task and $v \in V$. The Strong Stubborr Sets Active Operators domain transition graph for v is the directed graph Weak Stubborn Sets $DTG(v) = \langle \mathscr{D}_v, E \rangle$ where $(d, d') \in E$ iff there is an operator Algorithms Properties of $o \in O$ with Some Experime \blacksquare eff(o)(v) = d', and • $v \notin prevars(o)$ or pre(o)(v) = d. January 22nd, 2018 B. Nebel, R. Mattmüller - Al Planning 19/41

Strong Stubbor	rn Sets		
Example			
Let $V = \{u_1, u_2, v, v\}$	v , $I = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0$	→ 0}.	Motivation
(· / - / /	$, u_2 \mapsto 1$, and $O = \{o_1, o_2, o_3\}$, wh	, ·	Preliminaries
$o_1 = \langle u_1 = 0, u \rangle$	$_1 := 1 \wedge w := 2 \rangle$,		Stubborn Sets
$ O_2 = \langle u_2 = 0, u \rangle $			Strong Stubborn Sets Active Operators
= (= / /	$u_2 = 0, v := 1 \land w := 1 \rangle.$		Weak Stubborn Sets
Strong stubborn se	_ /		Algorithms Properties of Stubborn Sets Some Experiment
U U	e o_1 (or o_2) in T_s as DAL.		Conclusion
Step 2: Includ	e o_3 in T_s since it interferes with o_3	₁ (or <i>o</i> ₂).	
Step 3: Includ	e o_2 (or o_1) in T_s since it interferes	with o_3 .	
→ all applicable or	perators included in T_s , no pruning	•	
Question: Can we	do better than that in this example	?	
January 22nd, 2018	B. Nebel, R. Mattmüller – Al Planning	18 / 41	





Active Oper	ators		BURG
		2	FRE
Proposition			Motivation
	be identified efficiently for a given s g paths in the projection of Π onto v	•	Preliminaries Stubborn Sets
when reas	not in $Act(s)$ can be treated as non oning about <i>s</i> because they are no s reachable from <i>s</i> , or they lead to a	t applicable	Strong Stubborn Sets Active Operators Weak Stubborn Sets Algorithms Properties of Stubborn Sets Some Experiments
Proof			Conclusion
1 Homework <i>Act(s</i>).	: Specify efficient algorithm for ider	ntification of	
2 Obvious.			
January 22nd, 2018	B. Nebel, R. Mattmüller – Al Planning	22 / 41	
Γ			

Strong Stubborn Se	ets		
Definition (Strong stub pruning)	born set with active operator		Motivation Preliminaries
	planning task and <i>s</i> a state. A set orn set in <i>s</i> if		Stubborn Sets Strong Stubborn Sets
1 T_s contains a disjur	nctive action landmark in <i>s</i> , and		Active Operators Weak Stubborn Sets
	e not applicable in s , T_s contains set for o and s , and	а	Algorithms Properties of Stubborn Sets Some Experiments
	e applicable in s , T_s contains all active in s and interfere with o .		Conclusion
Instead of applying all a those that are applicable	oplicable operators in s only apply and contained in T_s .	/	
January 22nd, 2018 B. Ne	bel, R. Mattmüller – Al Planning	24 / 41	

Strong Stubborn Sets

Why operator activity matters

BURG **NNI** Recall the previous example where strong stubborn sets without active operator pruning were useless. Motivation Sets $\blacksquare I = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0\},\$ $\gamma = \{ v \mapsto 0, u_1 \mapsto 1, u_2 \mapsto 1 \}$ Active Operators Weak Stubborn $o_1 = \langle u_1 = 0, u_1 := 1 \land w := 2 \rangle$ Properties of $o_2 = \langle u_2 = 0, u_2 := 1 \land w := 2 \rangle$ $o_3 = \langle u_1 = 0 \land u_2 = 0, v := 1 \land w := 1 \rangle$ Now, with active operator pruning: Step 1: Include o_1 (or o_2) in T_s as DAL. Step 2: Operator o_3 is not active in any reachable state. $\rightsquigarrow o_3$ not in T_s , although it interferes with o_1 (or o_2).

January 22nd, 2018

Example

B. Nebel, R. Mattmüller - Al Planning

Weak Stubborn Sets

With weak stubborn sets, some operators that disable an operator in T_s need not be included in T_s .

Therefore, weak stubborn sets potentially allow more pruning than strong stubborn sets.

Definition (Weak stubborn set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and *s* a state. A set $T_s \subset O$ is a weak stubborn set in s if

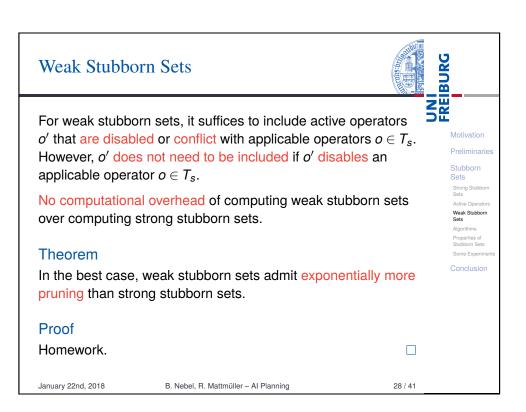
- **T**_s contains a disjunctive action landmark in s, and
- 2 for all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- **3** for all $o \in T_s$ that are applicable in *s*, T_s contains the active operators in s that have conflicting effects with o or that are disabled by o.

Strong Stubborn Sets
Why operator activity matters
Example (Example, ctd.)
Now, with active operator pruning:
Step 1: Include
$$o_1$$
 (or o_2) in T_s as DAL.
Step 2: Operator o_3 is not active in any reachable state.
 $\Rightarrow o_3$ not in T_s , although it interferes with o_1 (or o_2).
Hence, e.g., $T_s = \{o_1\}$ strong stubborn set (with active
operator pruning) in *I*.
Even active operator o_2 is not included in $T_s = \{o_1\}$.
 \Rightarrow some pruning occurs.
Motivation
B. Nebel, R. Mattmüller – Al Planning 26/41

0.11

0

ALL DICE



January 22nd, 2018

B. Nebel, R. Mattmüller - Al Planning

27 / 41

25/41

UNI FREIBURG

Motivation

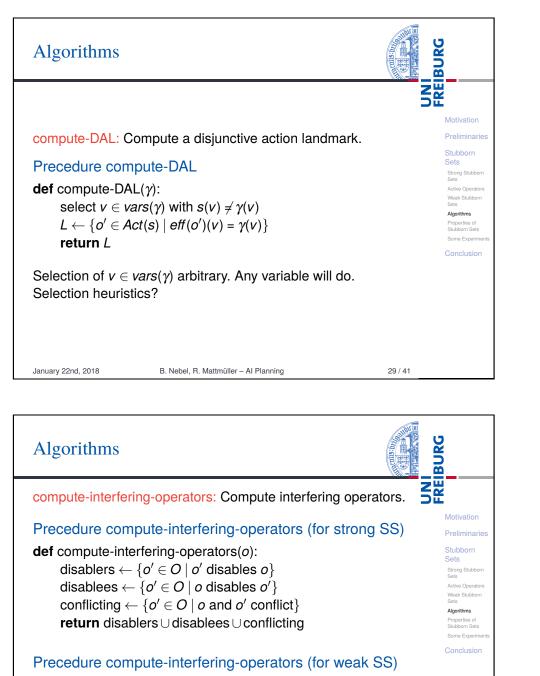
Sets

Strong Stubborn

Weak Stubborn

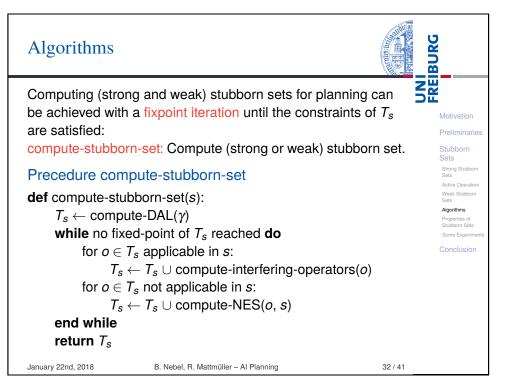
Algorithms

Properties of



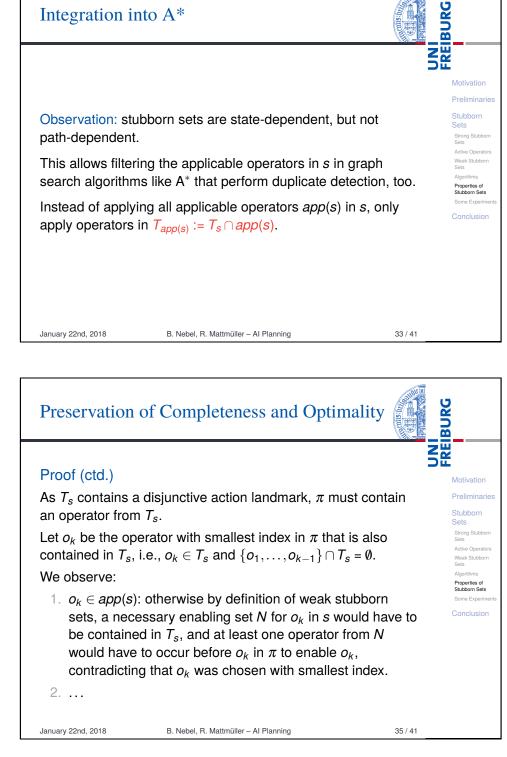
 $\begin{array}{l} \textbf{def compute-interfering-operators}(o):\\ \text{disablees} \leftarrow \{o' \in O \mid o \text{ disables } o'\}\\ \text{conflicting} \leftarrow \{o' \in O \mid o \text{ and } o' \text{ conflict}\}\\ \textbf{return } \text{disablees} \cup \text{conflicting} \end{array}$

UNI FREIBURG Algorithms Motivation compute-NES: Compute a necessary enabling set. Precedure compute-NES Sets **def** compute-NES(*o*,*s*): Active Operato Weak Stubbor select $v \in prevars(o)$ with $s(v) \neq pre(o)(v)$ Algorithms $N \leftarrow \{o' \in Act(s) \mid eff(o')(v) = pre(o)(v)\}$ return N Selection of $v \in prevars(o)$ arbitrary. Any variable will do. Selection heuristics? 30/41 January 22nd, 2018 B. Nebel, R. Mattmüller - Al Planning



31/41

Integration into A*



Preservation of Completeness and Optimality

Theorem

Weak stubborn sets are completeness and optimality preserving.

Proof

Let $T_{app(s)} := T_s \cap app(s)$ for a weak stubborn set T_s .

We show that for all states s from which an optimal plan consisting of n > 0 operators exists, $T_{app(s)}$ contains an operator that starts such a plan.

We show by induction that A* restricting successor generation to $T_{app(s)}$ is optimal.

Let T_s be a weak stubborn set and $\pi = o_1, \ldots, o_n$ be an optimal plan that starts in s.

January 22nd, 2018

B. Nebel, R. Mattmüller - Al Planning

34 / 41

Preservation of Completeness and Optimality

UNI FREIBURG

Motivation

Sets

Sets Algorithms

Strong Stubb

Weak Stubbon

Properties of

Stubborn Set

Proof (ctd.)

1. . . .

2. o_k is does not disable any of the operators o_1, \ldots, o_{k-1} , and all these operators have non-conflicting effects with o_k : otherwise, as $o_k \in app(s)$, and by definition of weak stubborn sets, at least one of o_1, \ldots, o_{k-1} would have to be contained in T_s , again contradicting the assumption.

Hence, we can move o_k to the front:

 $o_k, o_1, \ldots, o_{k-1}, o_{k+1}, \ldots, o_n$ is also a plan for Π .

It has the same cost as π and is hence optimal.

Thus, we have found an optimal plan of length *n* started by an operator $o_k \in T_{app(s)}$, completing the proof.

January 22nd, 2018

Motivation

Sets

Weak Stubbo

Properties of

Stubborn Set

Preservation of Completeness and Optimality

Motivation

Stubborn Sets

Strong Stubborn Sets

Active Operators Weak Stubborn Sets

Algorithms Properties of

37 / 41

Stubborn Sets Some Experime

Preliminaries

Remark: The argument to move o_k to the front also holds for strong stubborn sets: in this case, o_k is not even disabled by any of o_1, \ldots, o_{k-1} (and hence, o_k is independent of o_1, \ldots, o_{k-1}), which is a stronger property than needed in the proof.

Corollary

Strong stubborn sets are completeness and optimality preserving.

January 22nd, 2018

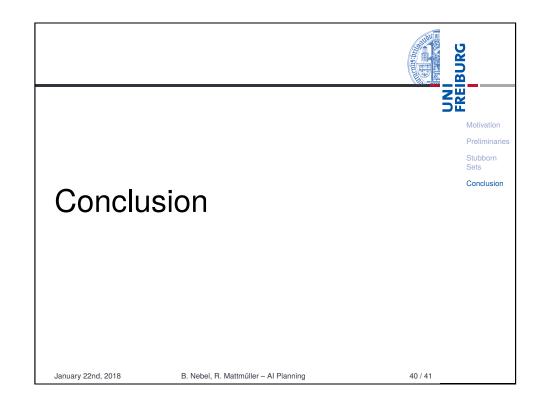
B. Nebel, R. Mattmüller – Al Planning

						Motivatio Prelimina
Domain (problems)	Cove SSS	erage WSS	Nodes ge SSS	nerated WSS	# problems w. diff. gen.	Stubborn Sets
OPENSTACKS-OPT08 (30)	21	±0	152711917	99.936%	18	Strong Stub Sets
OPENSTACKS-OPT11 (20)	16	± 0	152642101	99.936%	16	Active Open Weak Stubb
PATHWAYS-NONEG (30)	5	± 0	162347	99.702%	2	Sets Algorithms
PSR-SMALL (50)	49	± 0	18119489	99.998%	6	Properties of Stubborn Se
SATELLITE (36)	12	± 0	70299721	92.804%	12	Stubborn Se Some Exper
In practice (or, at least, ifference between weak a				lems) there i	is no significant	Conclu

Some Experiments: Overview Optimal Planning, A* with LM-cut Heuristic, Selected Domains

	Cov	erage	Nodes gen	erated	58
Domain (problems)	A*	+SSS	A *	+SSS	Motivation
PARCPRINTER-08 (30)	18	+12	2455181	<1%	
PARCPRINTER-OPT11 (20)	13	+7	2454533	<1%	Preliminarie
WOODWORKING-OPTO8 (30)	17	+10	26796212	<1%	Stubborn
WOODWORKING-OPT11 (20)	12	+7	26795517	<1%	Sets Strong Stubborn
SATELLITE (36)	7	+5	5116312	2%	Sets
ROVERS (40)	7	+2	1900691	22%	Active Operators Weak Stubborn
AIRPORT (50)	28	± 0	545072	93%	Sets
OPENSTACKS-OPT08 (30)	19	+2	56584063	51%	Algorithms Properties of
OPENSTACKS-OPT11 (20)	14	+2	56456969	51%	Stubborn Sets
DRIVERLOG (20)	13	+1	3679376	82%	Some Experime
SCANALYZER-08 (30)	15	-3	14203012	100%	Conclusion
SCANALYZER-OPT11 (20)	12	-3	14202884	100%	
PARKING-OPT11 (20)	3	-1	560914	100%	
SOKOBAN-OPTO8 (30)	30	-1	20519270	100%	
VISITALL-OPT11 (20)	11	-1	1991169	100%	
Remaining domains (980)	544	± 0	436017004	93%	
SUM (1396)	763	+39	670278179	77%	

BURG



Cond

January

nclusion	BURG				
	FRE				
Need for techniques orthogonal to heuristic search,	Motivation Preliminaries				
complementing heuristics.	Stubborn Sets				
One idea: Commit to one order of operators if they are independent. Prune other orders.					
Class of such techniques: partial-order reduction (POR	R)				
One such technique: strong/weak stubborn sets					
Can lead to substantial pruning compared to plain A*.					
Many other POR techniques exist.					
Other pruning techniques exist as well, e.g., symmetry reduction.					
v 22nd, 2018 B. Nebel, R. Mattmüller – Al Planning 4	11/41				