Principles of AI Planning

14. Planning as search: Partial-Order Reduction

NI REIBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

January 22nd, 2018

Motivation

Preliminaries

Stubborn Sets

Conclusion

Motivation

- Example: A* search in GRIPPER domain explores all permutations of ball transportations if heuristic is off only by a small constant.
- Idea: Complement heuristic search with orthogonal technique(s) to reduce size of explored state space.
- Desired properties of this technique: preservation of completeness and, if possible, optimality.

Motivation

Preliminaries

Stubborn Sets

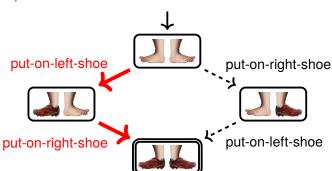
Partial-Order Reduction

FREIBL

Idea:

- Enforce particular ordering among operators.
- Ignore all other orderings.

Example



Motivation

Preliminaries

Stubborn Sets

Motivation

mouration

Preliminaries

Setting
Operator
Dependencies
Necessary

Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Conclusion

Preliminaries

Setting

UNI

Assumption: For the rest of the chapter, we assume that all planning tasks are SAS⁺ planning tasks $\Pi = (V, I, O, \gamma)$.

For convenience, we assume that operators have the form $o = \langle pre(o), eff(o) \rangle$, where pre(o) and eff(o) are both partial states over V, i.e., partial functions mapping variables v to values in \mathcal{D}_v . Similarly, we assume that γ is a partial state describing the goal.

Example

Operator $o = \langle pre(o), eff(o) \rangle$ with

■
$$pre(o) = \{v_1 \mapsto d_1, v_5 \mapsto d_5\}$$
 and

$$\blacksquare eff(o) = \{v_2 \mapsto d_2, v_3 \mapsto d_3\}$$

corresponds to $o = \langle \chi, e \rangle$ with

$$\chi = (v_1 = d_1 \wedge v_5 = d_5)$$
 and $e = (v_2 := d_2 \wedge v_3 := d_3)$.

Motivation

Preliminaries

Setting

Dependenci

Necessary Enabling Sets and Disjunction Action

Stubborn

Basic Definitions

FREIBU

Definition (Operators)

Let $\Pi = (V, I, O, \gamma)$ be a SAS⁺ planning task and $o \in O$ an operator. Then

- prevars(o) := vars(pre(o)) are the variables that occur in the precondition of o.
- effvars(o) := vars(eff(o)) are the variables that occur in the effect of o.
- lacksquare o reads $v \in V$ iff $v \in prevars(o)$.
- $o \text{ modifies } v \in V \text{ iff } v \in effvars(o).$

Variable $v \in V$ is goal-related iff $v \in vars(\gamma)$.

Assumption: *effvars*(o) $\neq \emptyset$ for all $o \in O$.

Motivation

Preliminaries

Operator Dependencies

Necessary

Stubborn

Sets

Operator Dependencies

FREIBL

Definition (Operator dependencies)

Let $\Pi = \langle V, O, I, \gamma \rangle$ be a planning task and $o, o' \in O$.

- o disables o' iff there exists $v \in effvars(o) \cap prevars(o')$ such that $eff(o)(v) \neq pre(o')(v)$.
- o enables o' iff there exists $v \in effvars(o) \cap prevars(o')$ such that eff(o)(v) = pre(o')(v).
- o and o' conflict iff there is $v \in effvars(o) \cap effvars(o')$ such that $eff(o)(v) \neq eff(o')(v)$.
- o and o' interfere iff o disables o', or o' disables o, or o and o' conflict.
- o and o' are commutative iff o and o' do not interfere, and neither o enables o', nor o' enables o.

Motivation

Preliminaries

Setting

Operator Dependencies

Necessary Enabling Sets and

Landmarks

Sets

Operator Dependencies

UNI

Example

```
\begin{aligned} & \text{put-on-left} = \langle pos = home \land left = f, left := t \rangle \\ & \text{put-on-right} = \langle pos = home \land right = f, right := t \rangle \\ & \text{go-to-uni} = \langle left = t \land right = t, pos := uni \rangle \\ & \text{go-to-gym} = \langle left = t \land right = t, pos := gym \rangle \end{aligned}
```

Then:

- go-to-uni and go-to-gym disable put-on-left and put-on-right.
- put-on-left and put-on-right enable go-to-uni and go-to-gym.
- go-to-uni and go-to-gym conflict.
- put-on-left and put-on-right are commutative.

Motivation

Preliminaries

Cotting

Operator Dependencies

Necessary Enabling Sets and

Landmarks

Necessary Enabling Sets and Disjunctive Action Landmarks

UNI FREIBURG

Definition (Necessary enabling set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task, s a state, and $o \in O$ an operator that is not applicable in s. A set N of operators is a necessary enabling set (NES) for o in s if all operator sequences that lead from s to a goal state and include o contain an operator in N before the first occurrence of o.

Note: NESs not uniquely determined for given *o* and *s*. (E.g., supersets of NESs are still NESs.)

Motivation

Preliminaries

Setting

Dependencies

Necessary

Enabling Sets and

Disjunctive Action

Stubborn

Sets

Necessary Enabling Sets and Disjunctive Action Landmarks

UNI FREIBURG

Definition (Disjunctive action landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and s a state. A disjunctive action landmark (DAL) L in s is a set of operators such that all operator sequences that lead from s to a goal state contain some operator in L.

Observation

For state s and operator o that is not applicable in s, disjunctive action landmarks for task $\langle V, I, O, pre(o) \rangle$ are necessary enabling sets for o in s.

Motivation

Preliminaries

Sotting

Dependencies Necessary

Enabling Sets and Disjunctive Action Landmarks

Stubborn Sets

Necessary Enabling Sets and Disjunctive Action Landmarks

JNI REIBURG

Proof

Let L be such a disjunctive action landmark.

Then each operator sequence that leads from s to a state satisfying pre(o) contains some operator in L.

Thus, each operator sequence that leads from *s* to a goal state and includes *o* contains an operator in *L* before the first occurrence of *o*.

Therefore, L is an NES for o in s.

Motivation

Preliminaries

0-44--

Operator
Dependencies
Necessary
Enabling Sets and

Disjunctive Action Landmarks

Stubborn Sets

ZE ZE

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn Sets

Active Operators Weak Stubborn Sets

Algorithms Properties of

Properties of Stubborn Sets Some Experiments

Conclusion

Stubborn Sets

Stubborn Sets

FREIBU

Back to the motivation:

If, in state *s*, some set of operators can be applied in any order and the order does not matter, we want to commit to one such order and ignore all other orders.

Idea:

Identify operators that can be postponed since they are independent of all operators that are not postponed.

E.g., put-on-right could be postponed, since it is independent of put-on-left (that is not postponed).

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn

Active Operators Weak Stubborn Sets

Algorithms
Properties of

Stubborn Sets
Some Experime

como Exponino

Stubborn Sets

UNI FREIBUR

Idea (more precisely): Identify operators that should not be postponed, and postpone the rest.

Question: When should an operator o not be postponed?

Answer:

- Base case: If o may be immediately relevant to reaching (part of) the goal, or
- Inductive case I: If o may be immediately relevant to contributing to making another operator applicable that should not be postponed, or
- Inductive case II: If o might not be applicable any more if we postponed it, or if its effect might conflict with the effect of another operator that should not be postponed ($\approx o$ interferes with such an operator).

Motivation

Preliminaries

Stubborn Sets

Strong Stubborn

Active Operators Weak Stubborn

Algorithms Properties of Stubborn Sets

Stubborn Sets Some Experimen

Strong Stubborn Sets

UNI

Let's formalize the above answer:

Definition (Strong stubborn set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and s a state. A set $T_s \subseteq O$ is a strong stubborn set in s if

- T_s contains a disjunctive action landmark in s, and
- of or all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- for all $o \in T_s$ that are applicable in s, T_s contains all operators that interfere with o.

Instead of applying all applicable operators in s only apply those that are applicable and contained in T_s .

Motivation

Preliminaries

Sets

Strong Stubborn

Active Operators Weak Stubborn Sets

Algorithms
Properties of

Properties of Stubborn Sets Some Experime

Strong Stubborn Sets

Example

$$\begin{split} \textit{I} &= \{ pos \mapsto home, left \mapsto f, right \mapsto f \}, \quad \gamma = \{ pos \mapsto uni \} \\ put-on-left &= \langle pos = home \land left = f, left := t \rangle \\ put-on-right &= \langle pos = home \land right = f, right := t \rangle \\ go-to-uni &= \langle left = t \land right = t, pos := uni \rangle \end{split}$$

- Step 1: DAL in I is $\{go-to-uni\} \rightsquigarrow T_s := \{go-to-uni\}$.
- Step 2: go-to-uni not applicable in *I*. One possible NES for go-to-uni in *I* is {put-on-left} $\rightsquigarrow T_s := T_s \cup \{\text{put-on-left}\}.$
- Step 3: put-on-left is applicable in I. The only operator that interferes with it, go-to-uni, is already in T_s .
- Hence, $T_s = \{\text{go-to-uni,put-on-left}\}$, and T_s restricted to the applicable operators is $\{\text{put-on-left}\}$. During search, only apply put-on-left (not put-on-right).

Motivation

Preliminaries

Sets

Strong Stubborn Sets

Active Operators Weak Stubborn Sets

Algorithms
Properties of

Some Experimen

Conclucion

CONCIUSION

Strong Stubborn Sets

JNI

Example

Let
$$V = \{u_1, u_2, v, w\}$$
, $I = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0\}$, $\gamma = \{v \mapsto 0, u_1 \mapsto 1, u_2 \mapsto 1\}$, and $O = \{o_1, o_2, o_3\}$, where:

$$o_1 = \langle u_1 = 0, u_1 := 1 \wedge w := 2 \rangle,$$

$$o_2 = \langle u_2 = 0, u_2 := 1 \land w := 2 \rangle,$$

$$o_3 = \langle u_1 = 0 \land u_2 = 0, v := 1 \land w := 1 \rangle.$$

Strong stubborn set:

- Step 1: Include o_1 (or o_2) in T_s as DAL.
- Step 2: Include o_3 in T_s since it interferes with o_1 (or o_2).
- Step 3: Include o_2 (or o_1) in T_s since it interferes with o_3 .

 \rightsquigarrow all applicable operators included in T_s , no pruning.

Question: Can we do better than that in this example?

Motivation

Preliminaries

Stubborn

Strong Stubborn

Sets

Active Operators
Weak Stubborn

Algorithms
Properties of

Properties of Stubborn Sets Some Experime

Conclusion

Jonelasion

Domain Transition Graphs

Definition (Domain transition graph)

Let $\Pi = (V, I, O, \gamma)$ be a SAS⁺ planning task and $v \in V$. The domain transition graph for v is the directed graph $DTG(v) = \langle \mathcal{D}_v, E \rangle$ where $(d, d') \in E$ iff there is an operator $o \in O$ with

- \blacksquare eff(o)(v) = d', and
- $\vee \notin prevars(o) \text{ or } pre(o)(v) = d.$

Preliminaries

Active Operators

Properties of

Domain Transition Graphs

Example

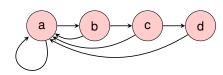
move-a-b =
$$\langle pos = a, pos := b \rangle$$

move-b-c =
$$\langle pos = b, pos := c \rangle$$

$$move-c-d = \langle pos = c, pos := d \rangle$$

reset =
$$\langle \top$$
, pos := a \wedge othervar := otherval \rangle

Then *DTG*(pos):



Motivation

Preliminaries

Stubborn

Sets Strong Stubborn

Sets Active Operators

Weak Stubborn

Sets Algorithms

Properties of Stubborn Sets

Stubborn Sets Some Experiments

Definition (Active operators)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and let s be a state. The set of active operators $Act(s) \subseteq O$ in s is defined as the set of operators such that for all $o \in Act(s)$:

- For every variable $v \in prevars(o)$, there is a path in DTG(v) from s(v) to pre(o)(v). If v is goal-related, then there is also a path from pre(o)(v) to the goal value $\gamma(v)$.
- For every goal-related variable $v \in effvars(o)$, there is a path in DTG(v) from eff(o)(v) to the goal value $\gamma(v)$.

Motivation

Preliminaries

Sets

Strong Stubbor

Active Operators Weak Stubborn

Algorithms
Properties of

Stubborn Sets Some Experimen

Active Operators

FREIBL

Proposition

- **11** Act(s) can be identified efficiently for a given state s by considering paths in the projection of Π onto v.
- Operators not in Act(s) can be treated as nonexistent when reasoning about s because they are not applicable in all states reachable from s, or they lead to a dead-end from s.

Proof

- Homework: Specify efficient algorithm for identification of Act(s).
- Obvious.

Motivation

Preliminaries

Charle le aura

Sets Strong Stubbor

Strong Stubbor Sets

Active Operators Weak Stubborn

Sets

Algorithms Properties of

Properties of Stubborn Sets Some Experime

Conclusion

Active Operators

algorithm (see proof below).

Motivation

Preliminaries

Stubborn Sets

Active Operators Weak Stubborn

Properties of

January 22nd, 2018

Remark 1: Even when excluding inactive operators, this preserves completeness and even optimality of a search

Remark 2: Excluding inactive operators can "cascade" in the sense that additional active operators need not be considered.

Definition (Strong stubborn set with active operator pruning)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and s a state. A set $T_s \subseteq O$ is a strong stubborn set in s if

- T_s contains a disjunctive action landmark in s, and
- of or all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- for all $o \in T_s$ that are applicable in s, T_s contains all operators that are active in s and interfere with o.

Instead of applying all applicable operators in s only apply those that are applicable and contained in T_s .

Motivation

Preliminaries

Stubborn

Strong Stubbon

Sets Active Operators

Weak Stubborn

Sets Algorithms

Properties of Stubborn Sets Some Experime

. .

Example

$$\mathbf{I} = \{u_1 \mapsto 0, u_2 \mapsto 0, v \mapsto 0, w \mapsto 0\},
\gamma = \{v \mapsto 0, u_1 \mapsto 1, u_2 \mapsto 1\}$$

$$o_1 = \langle u_1 = 0, u_1 := 1 \land w := 2 \rangle$$

$$o_2 = \langle u_2 = 0, u_2 := 1 \land w := 2 \rangle$$

$$o_3 = \langle u_1 = 0 \land u_2 = 0, v := 1 \land w := 1 \rangle$$

Now, with active operator pruning:

- Step 1: Include o_1 (or o_2) in T_s as DAL.
- Step 2: Operator o_3 is not active in any reachable state.

 \rightsquigarrow o_3 not in T_s , although it interferes with o_1 (or o_2).

Motivation

Preliminaries

. . . .

Ottos Outline

Sets

Active Operators Weak Stubborn

Neak Stubborn Sets

Algorithms Properties of

Properties of Stubborn Sets

ome Experimen

Example (Example, ctd.)

Now, with active operator pruning:

- Step 1: Include o_1 (or o_2) in T_s as DAL.
- Step 2: Operator o_3 is not active in any reachable state. $\rightarrow o_3$ not in T_s , although it interferes with o_1 (or o_2).
- Hence, e.g., $T_s = \{o_1\}$ strong stubborn set (with active operator pruning) in I.
- Even active operator o_2 is not included in $T_s = \{o_1\}$.
- → some pruning occurs.

Motivation

Preliminaries

Stubborn

Sets

Strong Stubbor Sets

Active Operators Weak Stubborn

Weak Stubborn Sets

Properties of Stubborn Sets

Some Expenimen

Weak Stubborn Sets

UNI FREIBURG

With weak stubborn sets, some operators that disable an operator in T_s need not be included in T_s .

Therefore, weak stubborn sets potentially allow more pruning than strong stubborn sets.

Definition (Weak stubborn set)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a planning task and s a state. A set $T_s \subseteq O$ is a weak stubborn set in s if

- T_s contains a disjunctive action landmark in s, and
- of or all $o \in T_s$ that are not applicable in s, T_s contains a necessary enabling set for o and s, and
- for all $o \in T_s$ that are applicable in s, T_s contains the active operators in s that have conflicting effects with o or that are disabled by o.

Motivation

Preliminaries

Stubborn

Strong Stubborn

Active Operators

Weak Stubborn Sets

Properties of Stubborn Sets

Stubborn Sets Some Experime

Weak Stubborn Sets

For weak stubborn sets, it suffices to include active operators o' that are disabled or conflict with applicable operators $o \in T_s$. However, o' does not need to be included if o' disables an applicable operator $o \in T_s$.

No computational overhead of computing weak stubborn sets over computing strong stubborn sets.

Theorem

In the best case, weak stubborn sets admit exponentially more pruning than strong stubborn sets.

Proof

Homework.

Weak Stubborn

Soto

Properties of

FRE BC

compute-DAL: Compute a disjunctive action landmark.

Precedure compute-DAL

def compute-DAL(γ): select $v \in vars(\gamma)$ with $s(v) \neq \gamma(v)$

 $L \leftarrow \{o' \in Act(s) \mid eff(o')(v) = \gamma(v)\}$

return L

Selection of $v \in vars(\gamma)$ arbitrary. Any variable will do. Selection heuristics?

Motivatio

Preliminaries

Stubbo Sets

Strong Stubbor

Active Operators Weak Stubborn

Weak Stubborn Sets Algorithms

Properties of

Stubborn Sets Some Experim

. . .

R ____

compute-NES: Compute a necessary enabling set.

Precedure compute-NES

return N

def compute-NES(o,s): select $v \in prevars(o)$ with $s(v) \neq pre(o)(v)$ $N \leftarrow \{o' \in Act(s) \mid eff(o')(v) = pre(o)(v)\}$

Selection of $v \in prevars(o)$ arbitrary. Any variable will do. Selection heuristics?

Motivation

Preliminaries

Stubbo Sets

Strong Stubbor

Active Operators Weak Stubborn

Weak Stubborn Sets Algorithms

Properties of Stubborn Sets

Some Experimen

compute-interfering-operators: Compute interfering operators.

Precedure compute-interfering-operators (for strong SS)

```
def compute-interfering-operators(o):
```

```
disablers \leftarrow \{o' \in O \mid o' \text{ disables } o\}
```

disablees $\leftarrow \{o' \in O \mid o \text{ disables } o'\}$ conflicting $\leftarrow \{o' \in O \mid o \text{ and } o' \text{ conflict}\}\$

return disablers ∪ disablees ∪ conflicting

Precedure compute-interfering-operators (for weak SS)

```
def compute-interfering-operators(o):
```

```
disablees \leftarrow \{o' \in O \mid o \text{ disables } o'\}
```

conflicting $\leftarrow \{o' \in O \mid o \text{ and } o' \text{ conflict}\}\$

return disablees ∪ conflicting

Algorithms

Properties of

Computing (strong and weak) stubborn sets for planning can be achieved with a fixpoint iteration until the constraints of T_s are satisfied:

compute-stubborn-set: Compute (strong or weak) stubborn set.

```
Precedure compute-stubborn-set
```

```
def compute-stubborn-set(s):
     T_s \leftarrow \text{compute-DAL}(\gamma)
     while no fixed-point of T_s reached do
           for o \in T_s applicable in s:
                 T_s \leftarrow T_s \cup \text{compute-interfering-operators}(o)
           for o \in T_s not applicable in s:
                 T_s \leftarrow T_s \cup \text{compute-NES}(o, s)
     end while
     return T_s
```

Algorithms

Properties of

Integration into A*

FEB -

Observation: stubborn sets are state-dependent, but not path-dependent.

This allows filtering the applicable operators in *s* in graph search algorithms like A* that perform duplicate detection, too. Instead of applying all applicable operators *app(s)* in *s*, only

Instead of applying all applicable operators app(s) in s, only apply operators in $T_{app(s)} := T_s \cap app(s)$.

Motivation

Preliminaries

Stubborn

Strong Stubborn

Strong Stubbor Sets

> Active Operator Weak Stubborn

Sets Algorithms

Properties of Stubborn Sets

Some Experiment

Preservation of Completeness and Optimality

UNI

Theorem

Weak stubborn sets are completeness and optimality preserving.

Proof

Let $T_{app(s)} := T_s \cap app(s)$ for a weak stubborn set T_s .

We show that for all states s from which an optimal plan consisting of n > 0 operators exists, $T_{app(s)}$ contains an operator that starts such a plan.

We show by induction that A^* restricting successor generation to $T_{app(s)}$ is optimal.

Let T_s be a weak stubborn set and $\pi = o_1, \dots, o_n$ be an optimal plan that starts in s.

. . .

January 22nd, 2018

Motivatio

Preliminaries

0. . .

Strong Stubbon

Sets Active Operator

Weak Stubborn Sets

Algorithms
Properties of
Stubborn Sets

Some Experime

Outre Experime

Preservation of Completeness and Optimality

Proof (ctd.)

As T_s contains a disjunctive action landmark, π must contain an operator from T_s .

Let o_k be the operator with smallest index in π that is also contained in T_s , i.e., $o_k \in T_s$ and $\{o_1, \ldots, o_{k-1}\} \cap T_s = \emptyset$.

We observe:

1. $o_k \in app(s)$: otherwise by definition of weak stubborn sets, a necessary enabling set N for o_k in s would have to be contained in T_s , and at least one operator from N would have to occur before o_k in π to enable o_k , contradicting that o_k was chosen with smallest index.

2. . . .

Properties of Stubborn Sets

Proof (ctd.)

- 1. ...
- 2. o_k is does not disable any of the operators o_1, \ldots, o_{k-1} , and all these operators have non-conflicting effects with o_k : otherwise, as $o_k \in app(s)$, and by definition of weak stubborn sets, at least one of o_1, \ldots, o_{k-1} would have to be contained in T_s , again contradicting the assumption.

Hence, we can move o_k to the front:

 $o_k, o_1, \dots, o_{k-1}, o_{k+1}, \dots, o_n$ is also a plan for Π .

It has the same cost as π and is hence optimal.

Thus, we have found an optimal plan of length n started by an operator $o_k \in T_{app(s)}$, completing the proof.

Motivation

Preliminaries

Sets

Strong Stubborn Sets

Active Operators Weak Stubborn Sets

Properties of Stubborn Sets

ome Experime

Conclusion

Preservation of Completeness and Optimality

Remark: The argument to move o_k to the front also holds for strong stubborn sets: in this case, o_k is not even disabled by any of o_1, \ldots, o_{k-1} (and hence, o_k is independent of o_1, \ldots, o_{k-1}), which is a stronger property than needed in the proof.

Corollary

Strong stubborn sets are completeness and optimality preserving.

Properties of

Stubborn Sets

Some Experiments: Overview

Optimal Planning, A* with LM-cut Heuristic, Selected Domains

Coverage

Modes generated

Motivation

Preliminaries

Sets

Strong Stubborn

Weak Stubborn

Sets Algorithms

Properties of Some Experiments

١.	-1.	IS	

	Coverage		Nodes generated	
Domain (problems)	A^*	+SSS	A*	+SSS
PARCPRINTER-08 (30)	18	+12	2455181	<1%
PARCPRINTER-OPT11 (20)	13	+7	2454533	<1%
WOODWORKING-OPT08 (30)	17	+10	26796212	<1%
WOODWORKING-OPT11 (20)	12	+7	26795517	<1%
SATELLITE (36)	7	+5	5116312	2%
ROVERS (40)	7	+2	1900691	22%
AIRPORT (50)	28	± 0	545072	93%
OPENSTACKS-OPT08 (30)	19	+2	56584063	51%
OPENSTACKS-OPT11 (20)	14	+2	56456969	51%
DRIVERLOG (20)	13	+1	3679376	82%
SCANALYZER-08 (30)	15	-3	14203012	100%
SCANALYZER-OPT11 (20)	12	-3	14202884	100%
PARKING-OPT11 (20)	3	-1	560914	100%
SOKOBAN-OPTO8 (30)	30	-1	20519270	100%
VISITALL-OPT11 (20)	11	-1	1991169	100%
REMAINING DOMAINS (980)	544	± 0	436017004	93%
SUM (1396)	763	+39	670278179	77%
·			•	•

Some Experiments

Weak compared to strong stubborn sets

Domain (problems)	Cove SSS	erage WSS	Nodes ge SSS	nerated WSS	# problems w. diff. gen.
OPENSTACKS-OPT08 (30)	21	±0	152711917	99.936%	18
OPENSTACKS-OPT11 (20)	16	± 0	152642101	99.936%	16
PATHWAYS-NONEG (30)	5	± 0	162347	99.702%	2
PSR-SMALL (50)	49	± 0	18119489	99.998%	6
SATELLITE (36)	12	+0	70299721	92.804%	12

 \Rightarrow In practice (or, at least, in the standard benchmark problems) there is no significant difference between weak and strong stubborn sets.

Motivation

Preliminaries

Stubborn

Sets Strong Stubborn

Active Operators Weak Stubborn Sets

Algorithms
Properties of
Stubborn Sets

Some Experiments

Motivation

Preliminaries

Stubborr Sets

Conclusion

- Need for techniques orthogonal to heuristic search, complementing heuristics.
- One idea: Commit to one order of operators if they are independent. Prune other orders.
- Class of such techniques: partial-order reduction (POR)
- One such technique: strong/weak stubborn sets
- Can lead to substantial pruning compared to plain A*.
- Many other POR techniques exist.
- Other pruning techniques exist as well, e.g., symmetry reduction.

Motivation

Preliminaries

Stubborn Sets