

January 15th, 2018

Formulae to represent state sets

Motivation

BDD

Planning

Operations

- We have previously considered boolean formulae as a means of representing set of states.
- Compared to explicit representations of state sets, boolean formulae have very nice performance characteristics.

Note: In the following, we assume that formulae are implemented as trees, not strings, so that we can e.g. compute $\chi \wedge \psi$ from χ and ψ in constant time.

January 15th, 2018

B. Nebel, R. Mattmüller - Al Planning

5 / 55

BDDs

BDD

Planning

Motivation

Which operations are important?

UNI FREIBURG Explicit representations such as hash tables are not suitable because their size grows linearly with the number of represented states.

Formulae are very efficient for some operations, but not very well suited for other important operations needed by the progression algorithm.

Examples: $S \neq \emptyset$?, S = S'?

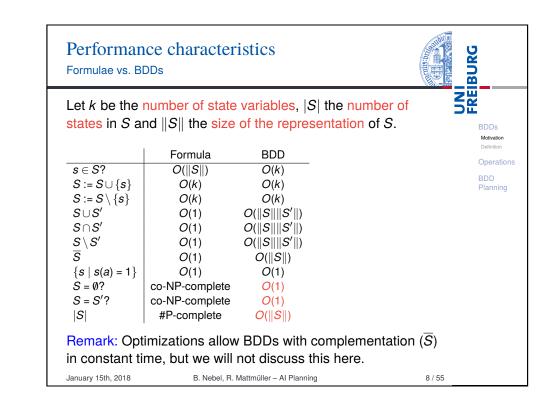
- One of the sources of difficulty is that formulae allow many different representations for a given set.
 - For example, all unsatisfiable formulae represent Ø.

This makes equality tests expensive.

→ We are interested in canonical representations, i.e. representations for which there is only one possible representation for every state set. Binary decision diagrams (BDDs) are an example of an efficient canonical representation. B. Nebel, R. Mattmüller - Al Planning 7 / 55

January 15th, 2018

Definition Operations Sorted vector Hash table Formula *s* ∈ *S*? $O(k \log |S|)$ O(k)O(||S||)Planning $O(k \log |S| + |S|)$ O(k) $S := S \cup \{s\}$ O(k) $O(k \log |S| + |S|)$ $S := S \setminus \{s\}$ O(k)O(k) $S \cup S'$ O(k|S|+k|S'|)O(k|S|+k|S'|)O(1) $S \cap S'$ O(k|S|+k|S'|)O(k|S|+k|S'|)O(1) $S \setminus S'$ O(k|S|+k|S'|)O(k|S|+k|S'|)O(1) \overline{S} $O(k2^k)$ $O(k2^k)$ O(1) $O(k2^k)$ $O(k2^k)$ O(1) ${s \mid s(a) = 1}$ $S = \emptyset$? *O*(1) *O*(1) co-NP-complete S = S'?co-NP-complete O(k|S|)O(k|S|)*O*(1) *O*(1) **#P-complete** |S|B. Nebel, R. Mattmüller - Al Planning 6 / 55 January 15th, 2018



BDDs

Motivation

Let k be the number of state variables, |S| the number of states in S and ||S|| the size of the representation of S.

Binary decision diagrams Definition

Definition (BDD)

Let *A* be a set of propositional variables.

A binary decision diagram (BDD) over *A* is a directed acyclic graph with labeled arcs and labeled vertices satisfying the following conditions:

- There is exactly one node without incoming arcs.
- All sinks (nodes without outgoing arcs) are labeled 0 or 1.
- All other nodes are labeled with a variable *a* ∈ *A* and have exactly two outgoing arcs, labeled 0 and 1.

January 15th, 2018

B. Nebel, R. Mattmüller - Al Planning

9 / 55

BURG

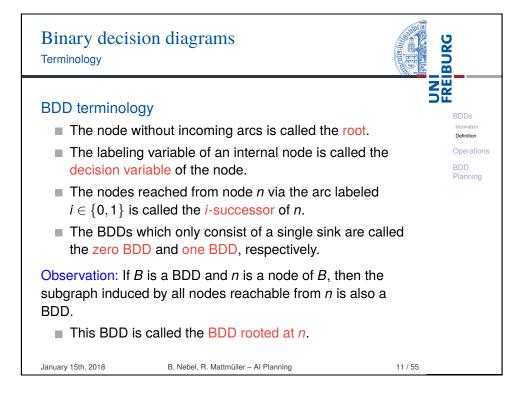
BDDs Motivation

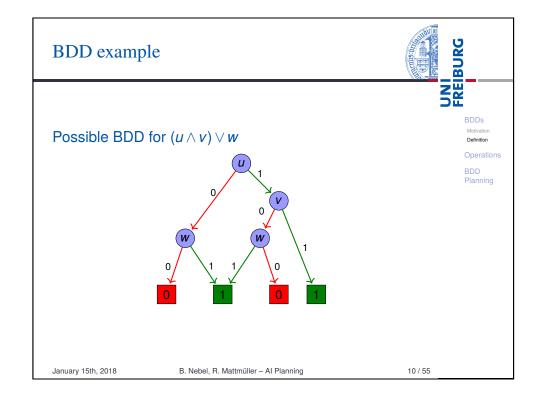
Definition

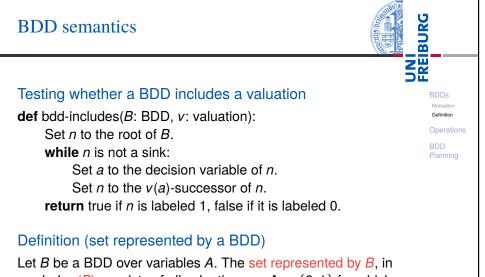
BDD

Planning

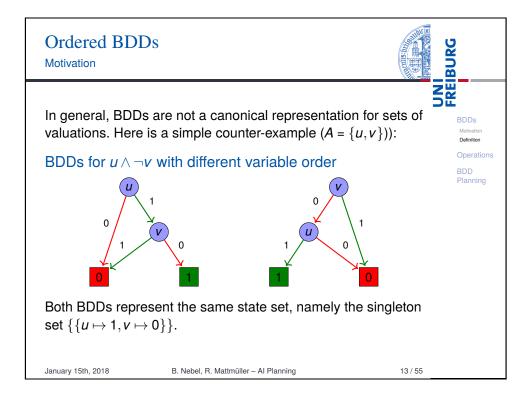
Operations

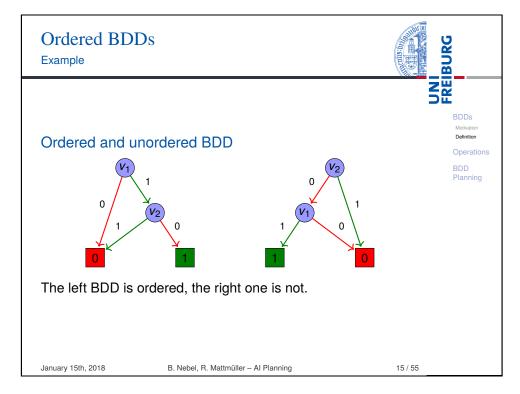






Let *B* be a BDD over variables *A*. The set represented by *B*, in symbols r(B) consists of all valuations $v : A \rightarrow \{0, 1\}$ for which *bdd-includes*(*B*, *v*) returns true.

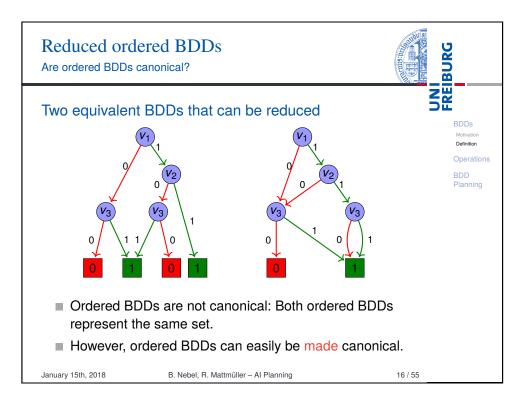




Ordered BDDs Definition	BURG
	FRE
As a first step towards a canonical representation, we will in the following assume that the set of variables A is	BDDs Motivation Definition
 totally ordered by some ordering ≺. In particular, we will only use variables v₁, v₂, v₃, and assume the ordering v_i ≺ v_j iff i < j. 	BDD Planning
Definition (ordered BDD)	
A BDD is ordered iff for each arc from an internal node with decision variable u to an internal node with decision variable v , we have $u \prec v$.	

- January 15th, 2018
- B. Nebel, R. Mattmüller Al Planning

14 / 55



Reduced ordered BDDs Reductions

BDD

Planning

There are two important operations on BDDs that do not change the set represented by it:

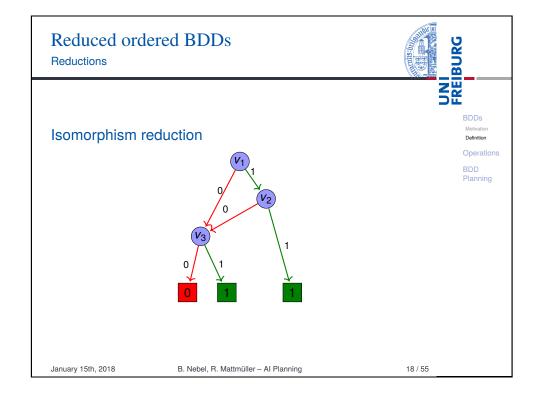
Definition (Isomorphism reduction)

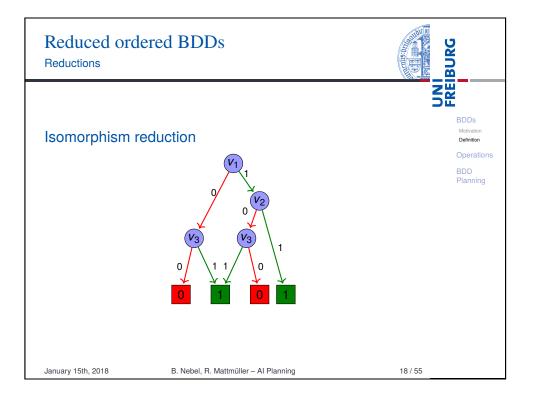
If the BDDs rooted at two different nodes n and n' are isomorphic, then all incoming arcs of n' can be redirected to n, and all parts of the BDD no longer reachable from the root removed.

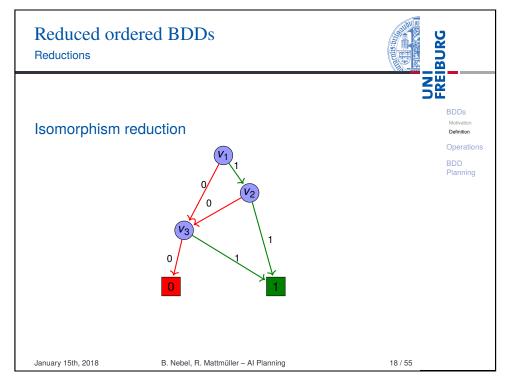
January 15th, 2018

B. Nebel, R. Mattmüller - Al Planning

17 / 55







Reduced ordered BDDs Reductions

There are two important operations on BDDs that do not change the set represented by it:

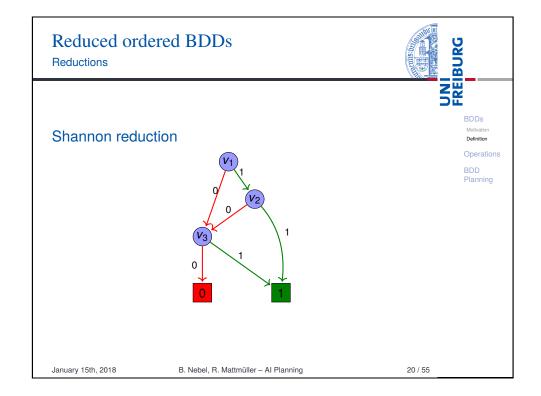
Definition (Shannon reduction)

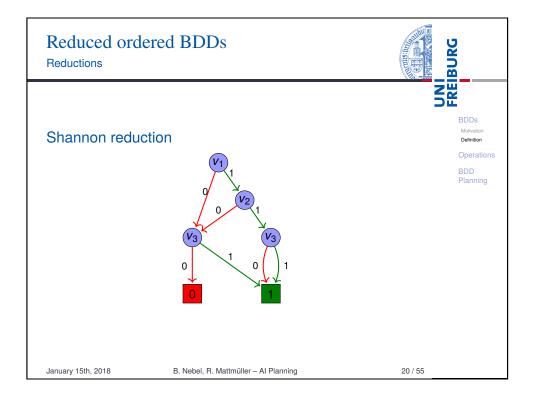
If both outgoing arcs of an internal node n of a BDD lead to the same node m, then n can be removed from the BDD, with all incoming arcs of n going to m instead.

January 15th, 2018

B. Nebel, R. Mattmüller – Al Planning

19 / 55



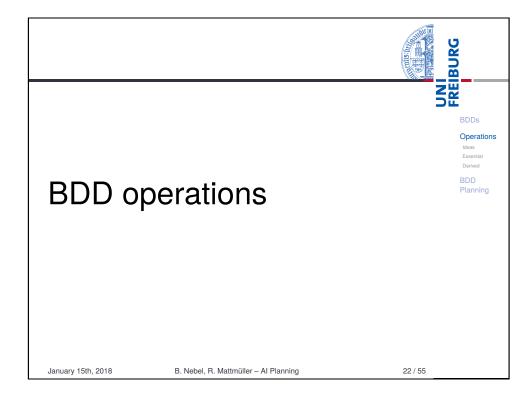


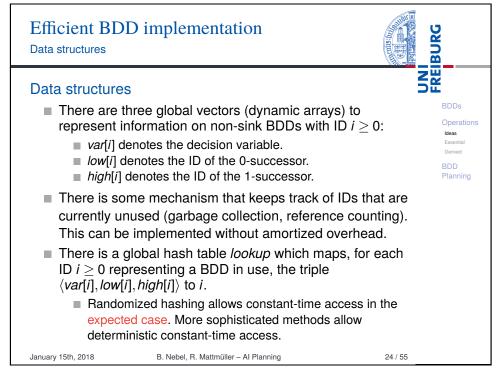
Definition	BURG
Definition (reduced ordered BDD) An ordered BDD is reduced iff it does not admit any	BDDs Metivation Definition
isomorphism reduction or Shannon reduction.	Operations BDD Planning
For every state set <i>S</i> and a fixed variable ordering, there exists exactly one reduced ordered BDD representing <i>S</i> .	
Moreover, given any ordered BDD B, the equivalent reduced ordered BDD can be computed in linear time in the size of B.	
 → Reduced ordered BDDs are the canonical representation we were looking for. From now on, we simply say BDD for reduced ordered BDD. 	

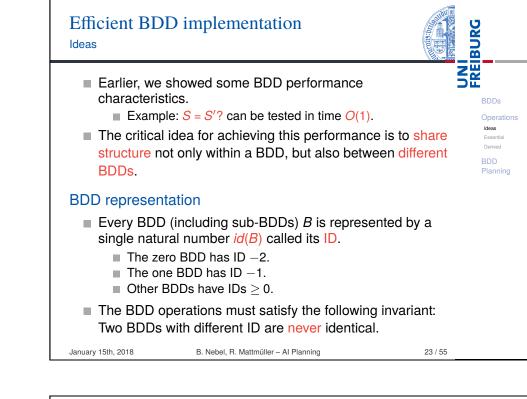
21 / 55

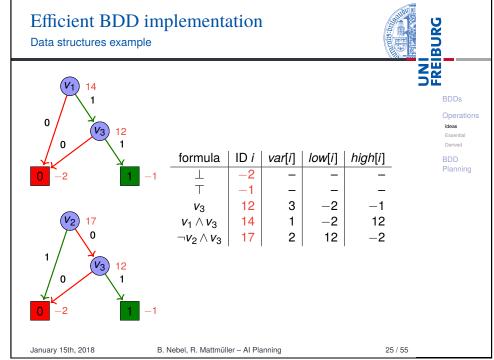
B. Nebel, R. Mattmüller - Al Planning

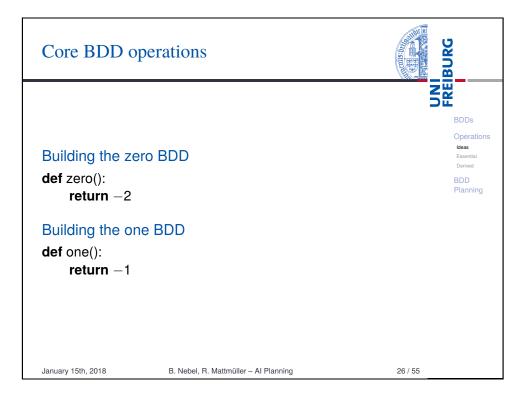
January 15th, 2018

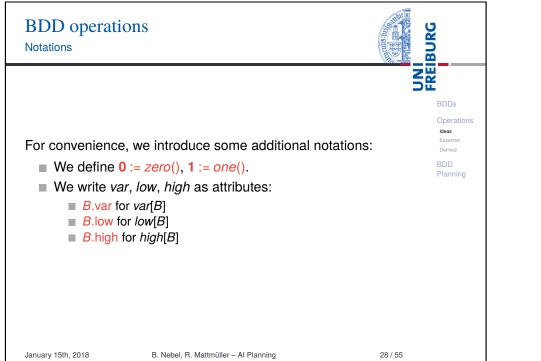


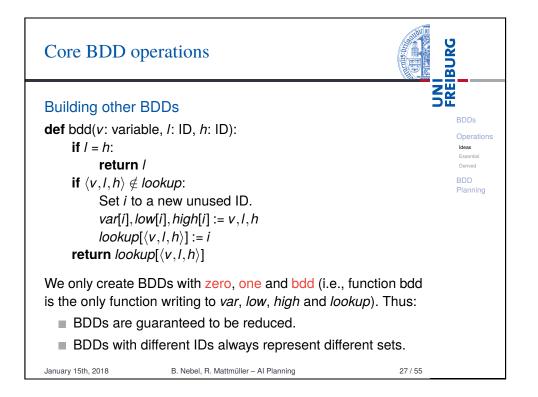


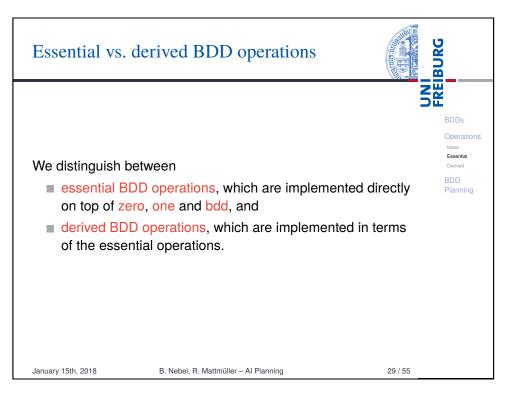




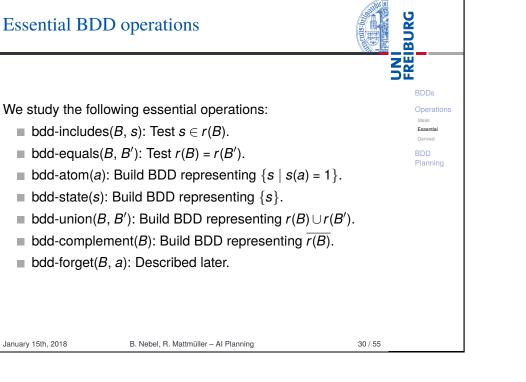


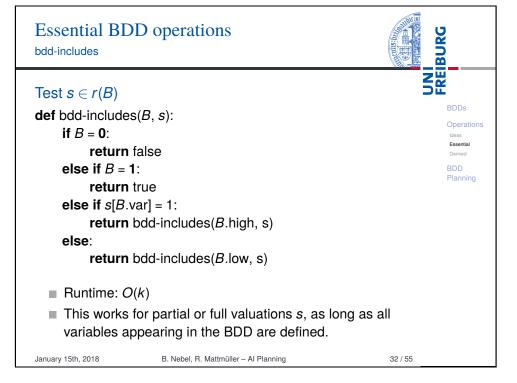




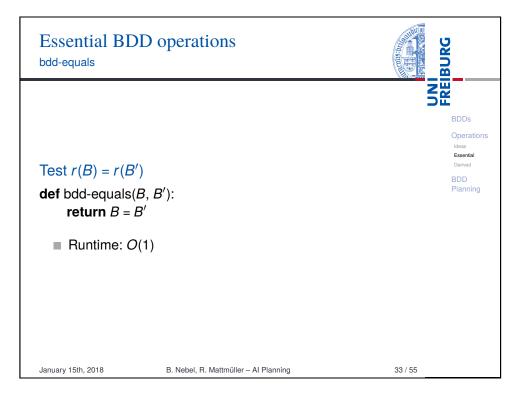


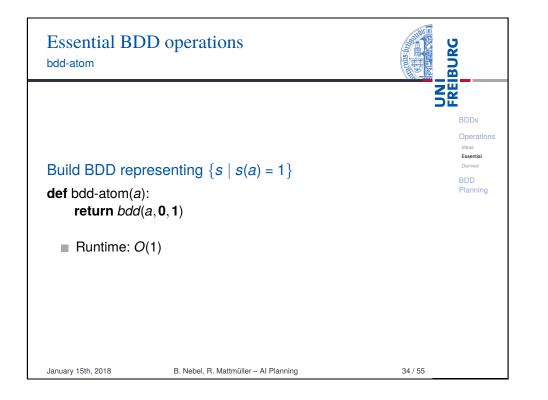
Essential BDD operations

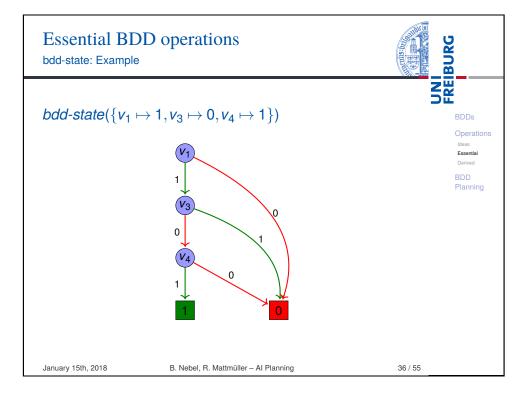


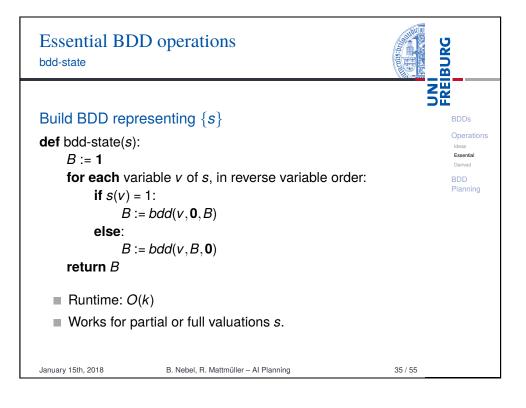


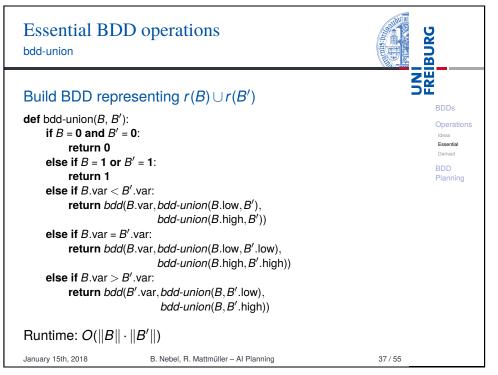
Essential operation	18		
free of side effects We assume (without that they all use dy Every return s a memo hash t Whenever a fu the same call w the memo is ta The memo may be recursive call term The bdd-forget internally. In this be cleared onc bdd-union invo	out explicit mention in the p (namic programming (mention) tatement stores the argument table. Inction is invoked, the memo in vas made previously. If so, the ken to avoid recomputations. The cleared when the "outerm inates. function calls the bdd-union is case, the memo for bdd-union e bdd-forget finishes, not after	seudo-code) noization): ts and result in is checked if e result from nost" function ion may only er each	BDDs Ideas Essential Derived BDD Planning
January 15th, 2018 B. N	lebel, R. Mattmüller – Al Planning	31 / 55	

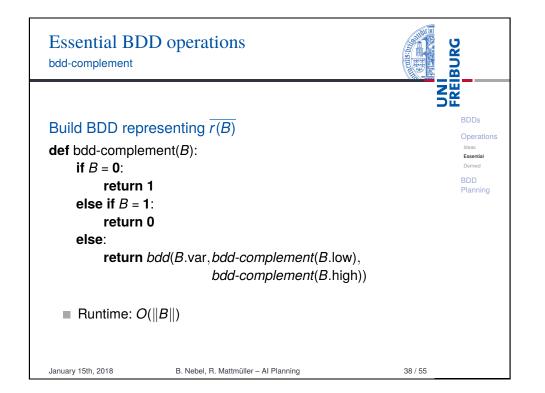


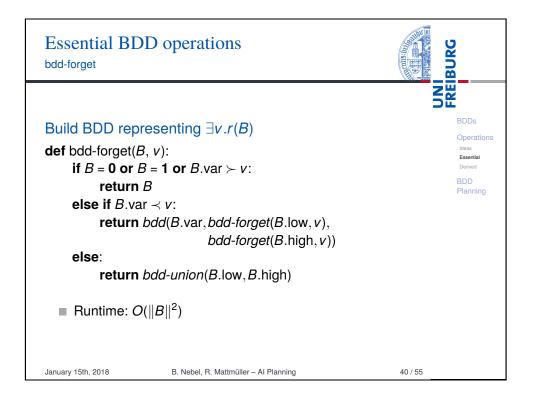












BDDs

Ideas

Essential

Planning

Derived

Operations

The last essential BDD operation is a bit more unusual, but we will need it for defining the semantics of operator application.

Definition (Existential abstraction)

Let *A* be a set of propositional variables, let *S* be a set of valuations over *A*, and let $v \in A$.

The existential abstraction of v in S, in symbols $\exists v.S$, is the set of valuations

$$\{ s' : (A \setminus \{v\}) \rightarrow \{0,1\} \mid \exists s \in S : s' \subset s \}$$

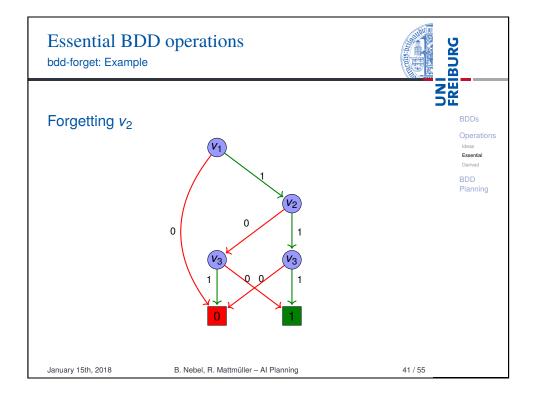
over $A \setminus \{v\}$.

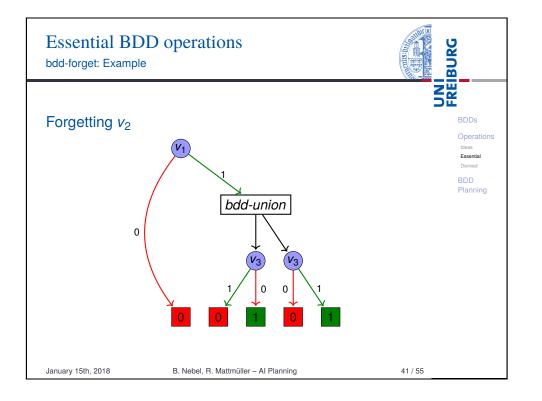
Existential abstraction is also called forgetting.

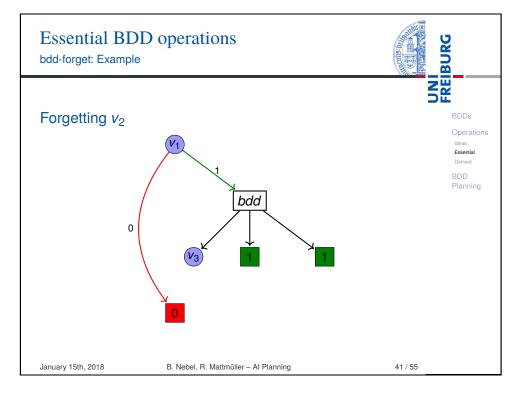
January 15th, 2018

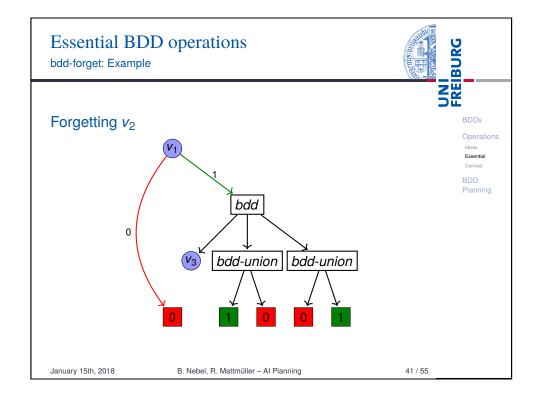
B. Nebel, R. Mattmüller – Al Planning

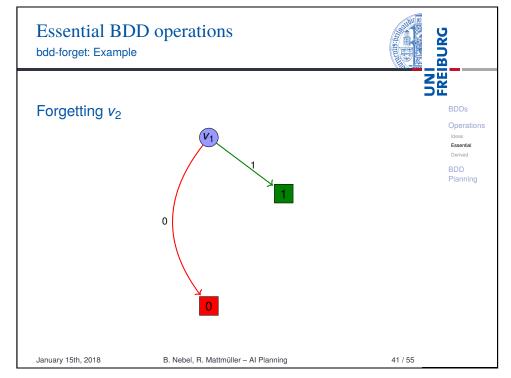
39 / 55



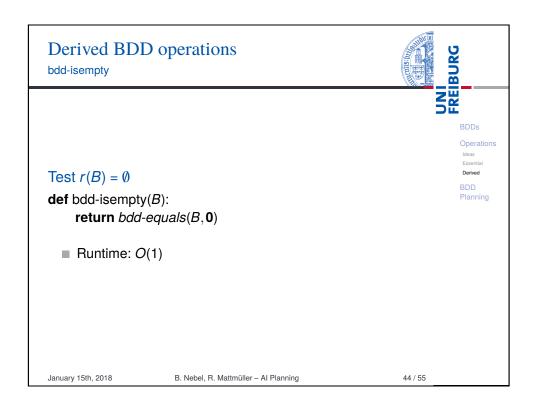




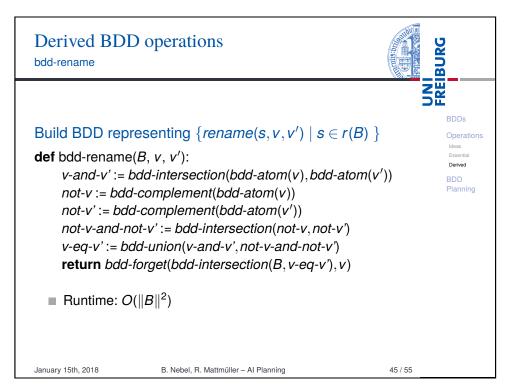




BURG **Derived BDD operations** L N N N N N We study the following derived operations: BDDs ■ bdd-intersection(B, B'): Operations Ideas Build BDD representing $r(B) \cap r(B')$. Derived ■ bdd-setdifference(B, B'): BDD Planning Build BDD representing $r(B) \setminus r(B')$. \blacksquare bdd-isempty(*B*): Test $r(B) = \emptyset$. ■ bdd-rename(B, v, v'): Build BDD representing {rename(s, v, v') | $s \in r(B)$ }, where rename(s, v, v') is the valuation s with variable v renamed to v'. If variable v' occurs in *B* already, the result is undefined. B. Nebel, R. Mattmüller - Al Planning 42 / 55 January 15th, 2018



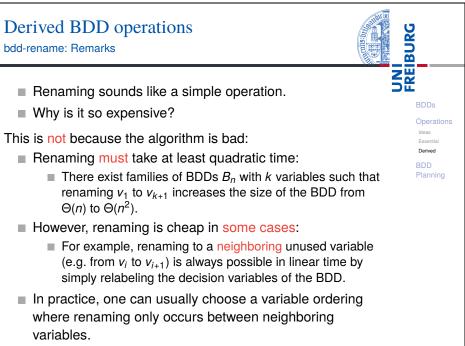
Derived BDD of bdd-intersection, bdd-sr	1	BURG
		L N N
Build BDD repres	enting $r(B) \cap r(B')$	BDDs
def bdd-intersection	n(<i>B</i> , <i>B</i> ′):	Operations
not-B := bdd-co	omplement(B)	Ideas Essential
not-B' := bdd-c	omplement(B')	Derived
return bdd-cor	mplement(bdd-union(not-B, no	<i>t-B'</i>)) BDD Planning
Build BDD repres def bdd-setdifferen return bdd-inte		<i>B</i> ′))
■ Runtime: <i>O</i> (∥ <i>E</i>	$B\ \cdot\ B'\)$	
	ns can also be easily implement tructure of <i>bdd-union</i> .	nted directly,
January 15th, 2018	B. Nebel, R. Mattmüller – Al Planning	43 / 55



Derived BDD operations

 $\Theta(n)$ to $\Theta(n^2)$.

bdd-rename: Remarks

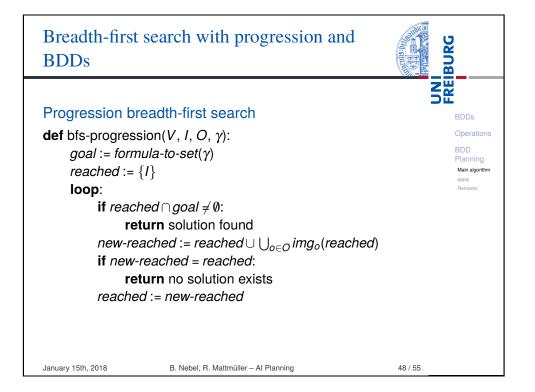


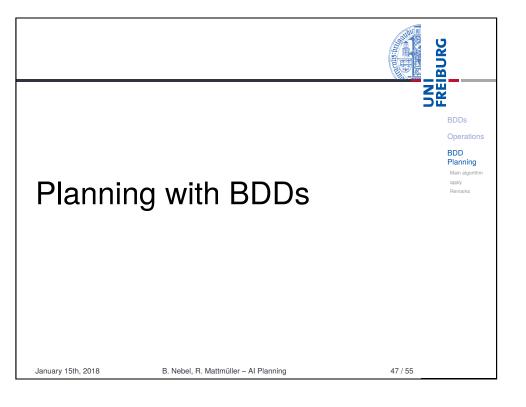
46 / 55

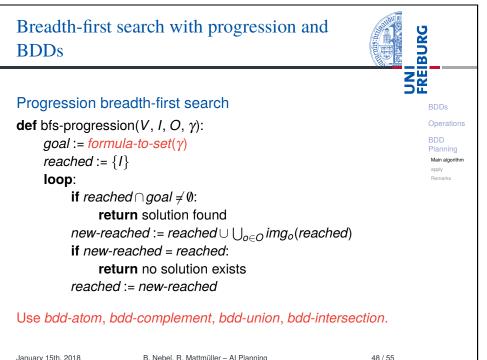
January 15th, 2018

variables.

B. Nebel, R. Mattmüller - Al Planning

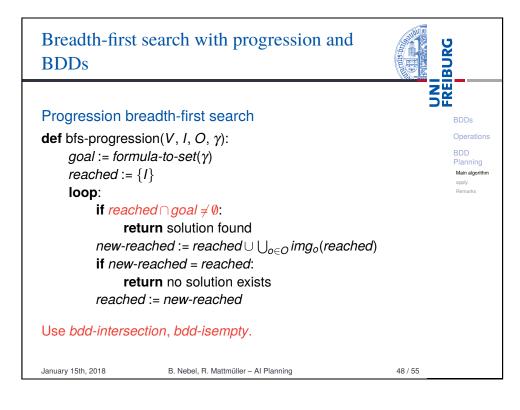


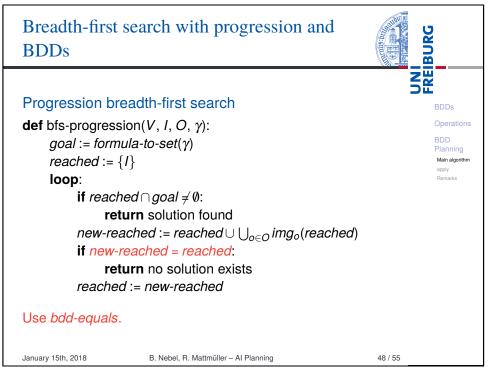


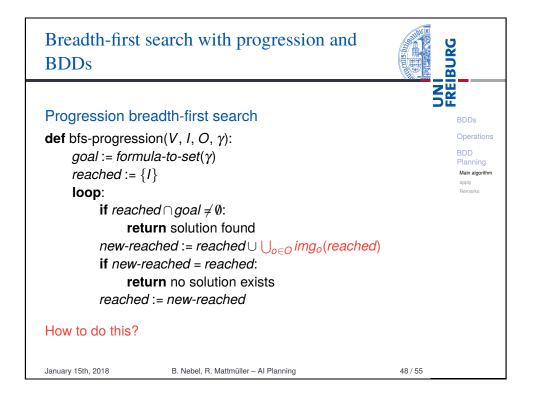


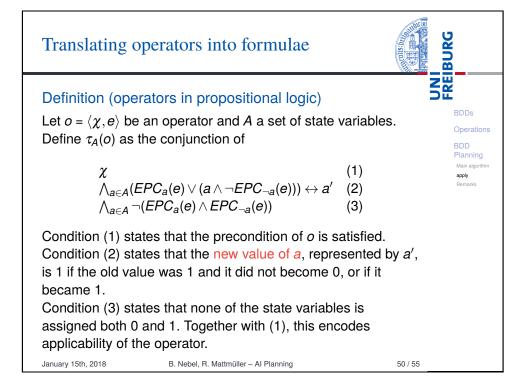
January 15th, 2018

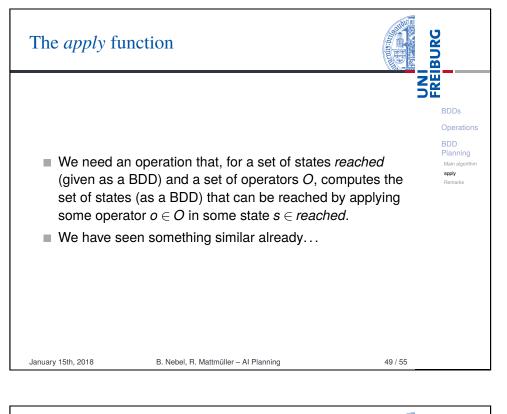
BDDs	search with progression and	BURG
		L L L L L L L L L L L L L L L L L L L
Progression br	eadth-first search	BDDs
def bfs-progress	sion(V, I, O, γ):	Operations
goal := form	nula-to-set(γ)	BDD Planning
reached :=	{ <i>I</i> }	Main algorithm apply
loop:		Remarks
	hed \cap goal \neq Ø:	
	turn solution found	
	$ached := reached \cup \bigcup_{o \in O} img_o(read)$	ched)
	reached = reached:	
	turn no solution exists d := new-reached	
Use bdd-state.		
January 15th, 2018	B. Nebel, R. Mattmüller – Al Planning	48 / 55

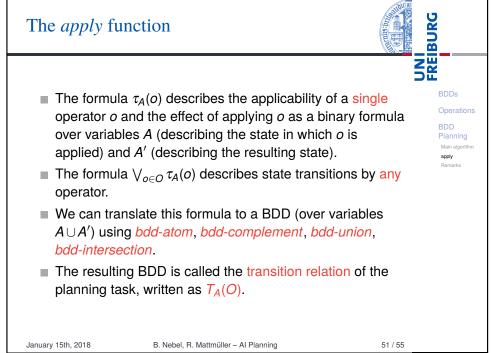






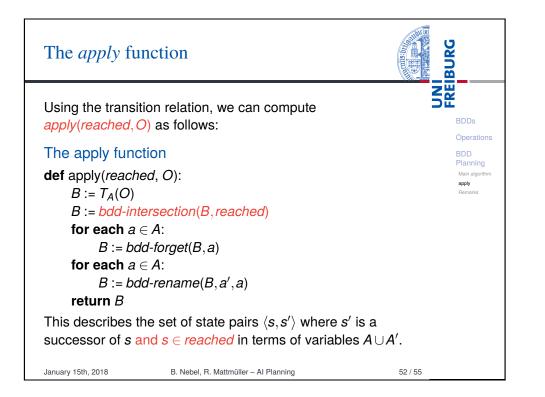


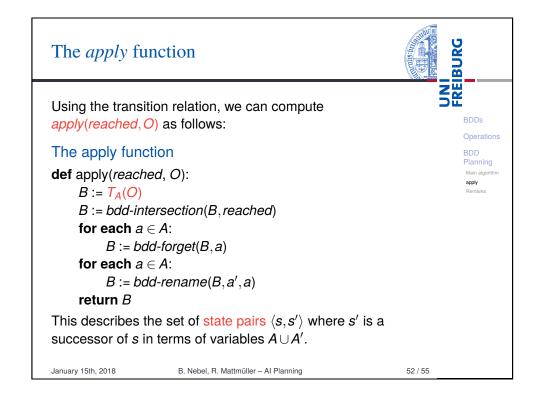


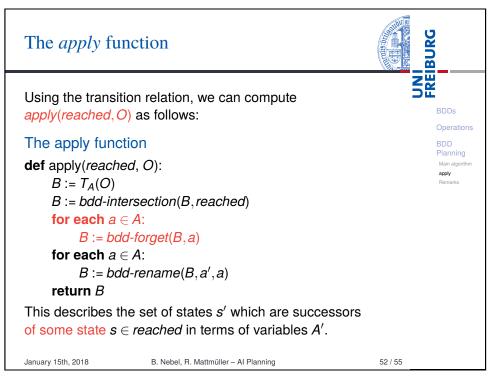


The *apply* function

BURG UNI REI Using the transition relation, we can compute BDDs apply(reached, O) as follows: Operations The apply function BDD Planning **def** apply(*reached*, *O*): Main algorithm apply $B := T_A(O)$ B := bdd-intersection(B, reached) for each $a \in A$: B := bdd-forget(B, a)for each $a \in A$: B := bdd-rename(B, a', a)return B B. Nebel, R. Mattmüller - Al Planning 52 / 55 January 15th, 2018







The *apply* function

Using the transition relation, we can compute apply(reached, O) as follows:

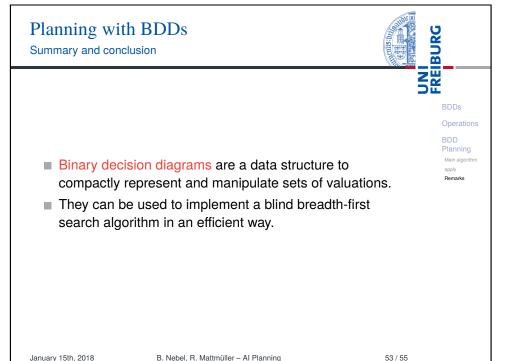
The apply function

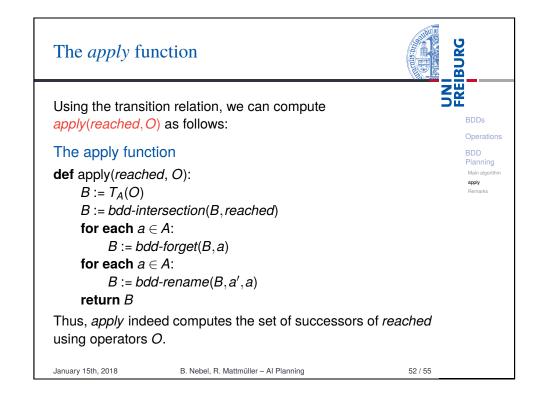
def apply(*reached*, *O*): $B := T_A(O)$ B := bdd-intersection(B, reached) for each $a \in A$: B := bdd-forget(B, a)for each $a \in A$: B := bdd-rename(B, a', a)return B

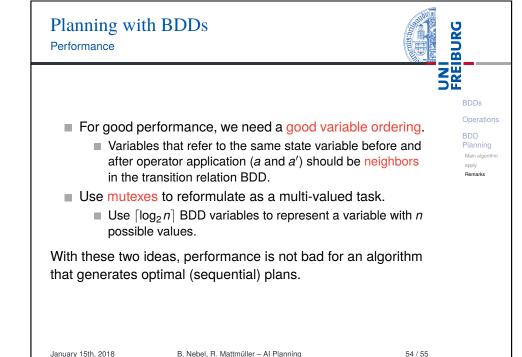
This describes the set of states s' which are successors of some state $s \in reached$ in terms of variables A.

January 15th, 2018

B. Nebel, R. Mattmüller - Al Planning







BURG

UNI REI

52 / 55

BDDs

BDD

apply

Planning

Main algorithm

Operations

