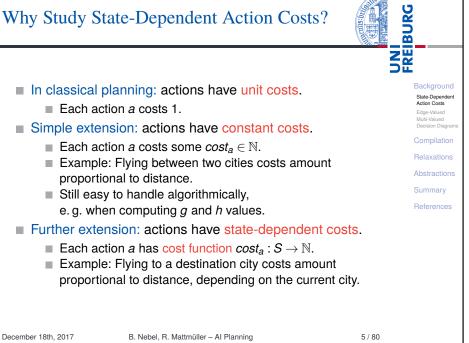
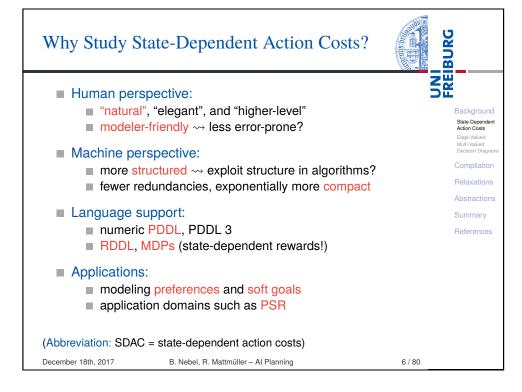
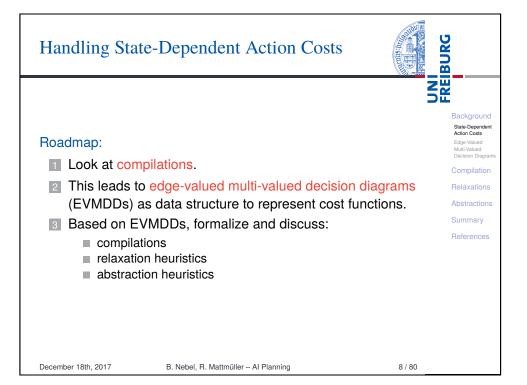


Why Study State-Dependent Action Costs?



UNI FREIBURG Handling State-Dependent Action Costs Good news: Background State-Dependen Computing *g* values in forward search still easy. Action Costs Edge-Valued Multi-Valued (When expanding state s with action a, we know $cost_a(s)$.) Relaxations Challenge: Abstractions But what about SDAC-aware h values. (relaxation heuristics, abstraction heuristics)? References Or can we simply compile SDAC away? This chapter: Proposed answers to these challenges. 7/80





State-Dependent Action Costs

9/80

Background

Edge-Valued Multi-Valued

Relaxations Abstractions

Summary

References

State-Dependent Action Costs

Definition

A SAS⁺ planning task with state-dependent action costs or SDAC planning task is a tuple $\Pi = \langle V, I, O, \gamma, (cost_a)_{a \in O} \rangle$ where $\langle V, I, O, \gamma \rangle$ is a (regular) SAS⁺ planning task with state set S and *cost_a* : $S \rightarrow \mathbb{N}$ is the cost function of *a* for all $a \in O$.

Assumption: For each $a \in O$, the set of variables occuring in the precondition of a is disjoint from the set of variables on which the cost function cost_a depends.

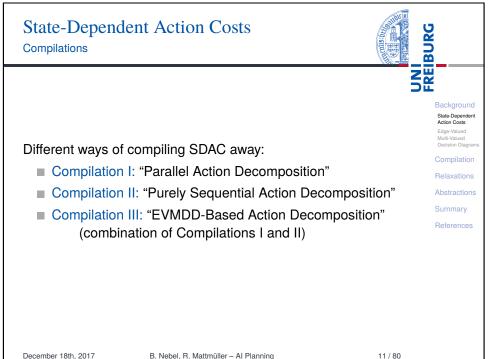
(Question: Why is this assumption unproblematic?)

Definitions of plans etc. stay as before. A plan is optimal if it minimizes the sum of action costs from start to goal.

For the rest of this chapter, we consider the following running example.

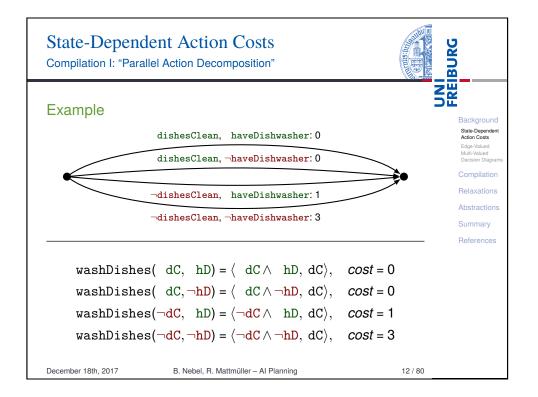
December 18th, 2017

B. Nebel, R. Mattmüller - Al Planning



State-Deper Running Example	ndent Action Costs	BURG
Example (Hou	usehold domain)	FRE
Actions:		Background State-Dependent Action Costs
vacuumF	$\texttt{Cloor} = \langle \top, \texttt{floorClean} angle$	Edge-Valued Multi-Valued Decision Diagrams
washDi	$shes = \langle op, \mathtt{dishesClean} angle$	Compilation
doHouse	work = $\langle \top, \texttt{floorClean} \land \texttt{dishes}$	sClean Abstractions
		Summary
Cost functions:		References
$cost_{vacuumFloor}$	= $[\neg floorClean] \cdot 2$	
$\mathit{cost}_{\mathtt{washDishes}}$	= $[\neg dishesClean] \cdot (1 + 2 \cdot [\neg have$	Dishwasher])
$cost_{doHousework}$	= $cost_{vacuumFloor} + cost_{washDishes}$	
(Question: Hov	v much can applying action washD	ishes cost?)
December 18th, 2017	B. Nebel, R. Mattmüller – Al Planning	10 / 80

C.C.R.



State-Dependent Action Costs Compilation I: "Parallel Action Decomposition"

13/80

Background

Action Costs

Edge-Valued

Multi-Valued

Decision Diagra

Relaxations

Abstractions

Summary

References

State-Dependen

Compilation I

Transform each action into multiple actions:

- one for each partial state relevant to cost function
- add partial state to precondition
- use cost for partial state as constant cost

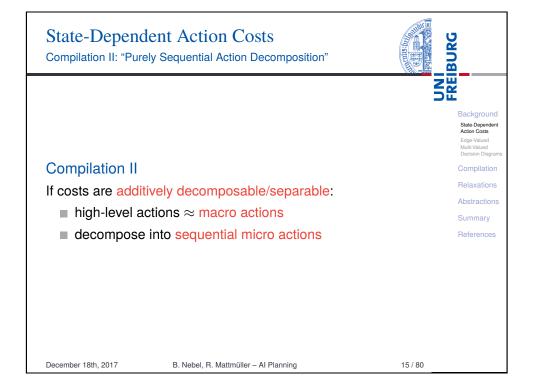
Properties:

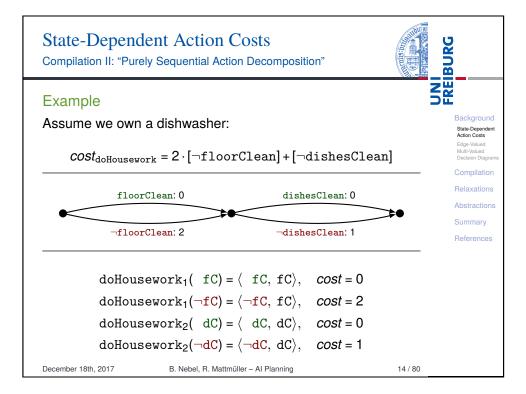
- always possible
- × exponential blow-up

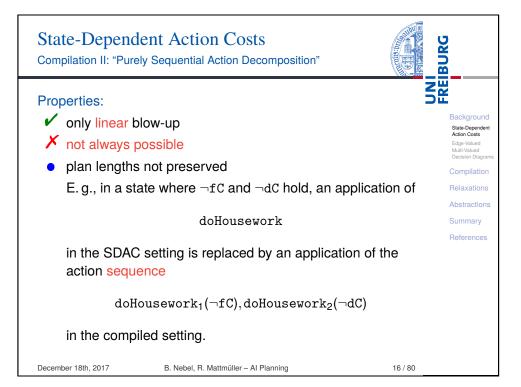
Question: Exponential blow-up avoidable? ~> Compilation II

December 18th, 2017

B. Nebel, R. Mattmüller – Al Planning







State-Dependent Action Costs Compilation II: "Purely Sequential Action Decomposition"

Properties (ctd.):

- plan costs preserved
- blow-up in search space

E.g., in a state where $\neg fC$ and $\neg dC$ hold, should we apply doHousework₁($\neg fC$) or doHousework₂($\neg dC$) first?

 \rightsquigarrow impose action ordering!

State-Dependen

Action Costs

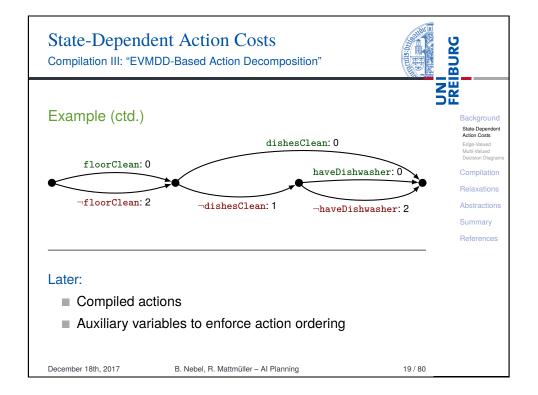
 attention: we should apply all partial effects at end!
 Otherwise, an effect of an earlier action in the compilation might affect the cost of a later action in the compilation.

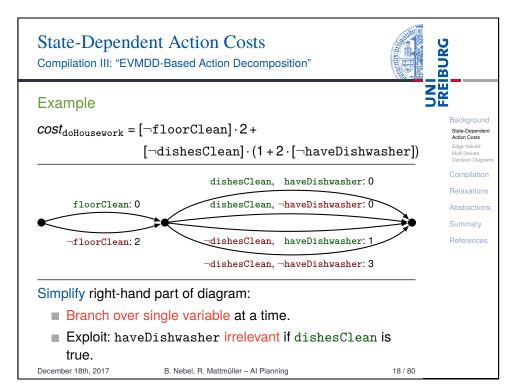
Question: Can this always work (kind of)? ~> Compilation III

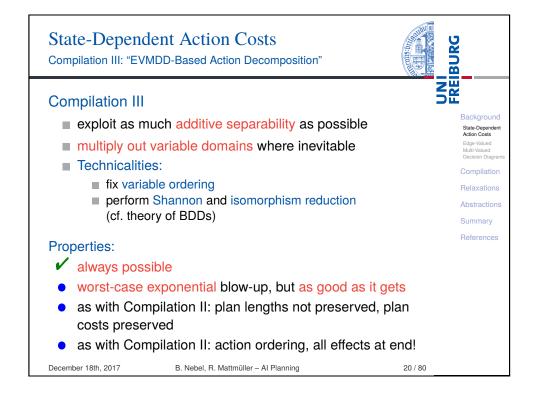
December	18th,	2017

B. Nebel, R. Mattmüller – Al Planning

17 / 80







State-Dependent Action Costs Compilation III: "EVMDD-Based Action Decomposition"

21 / 80

Background State-Dependen Action Costs

Edge-Valued Multi-Valued Decision Diagra

Relaxations

Abstractions Summary

EVMDDs

Compilation III provides optimal combination of sequential and parallel action decomposition, given fixed variable ordering.

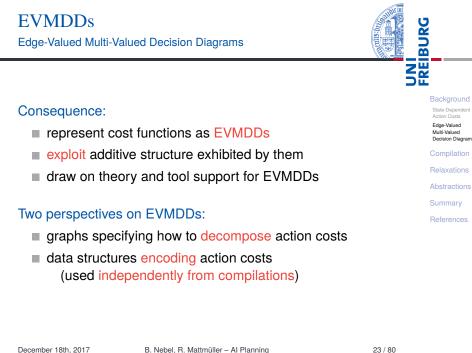
Question: How to find such decompositions automatically?

Answer: Figure for Compilation III basically a reduced ordered edge-valued multi-valued decision diagram (EVMDD)!

[Lai et al., 1996; Ciardo and Siminiceanu, 2002]

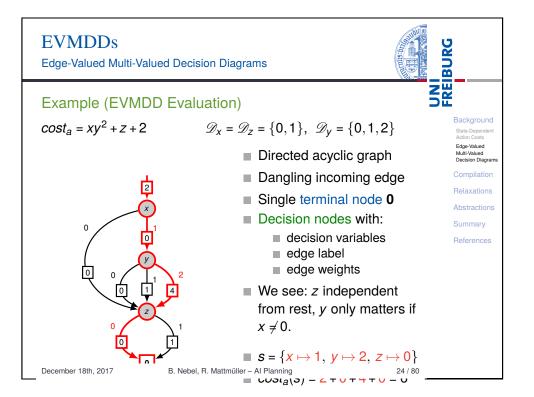
December 18th, 2017

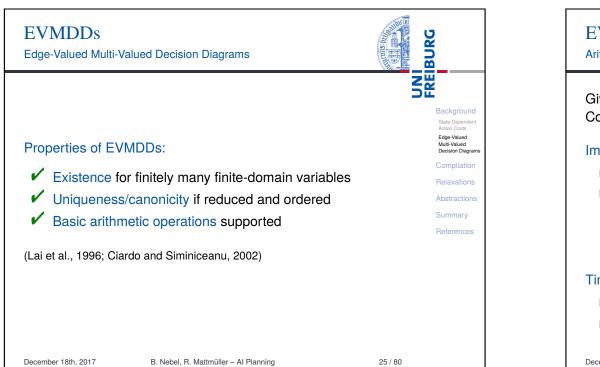
B. Nebel, R. Mattmüller - Al Planning

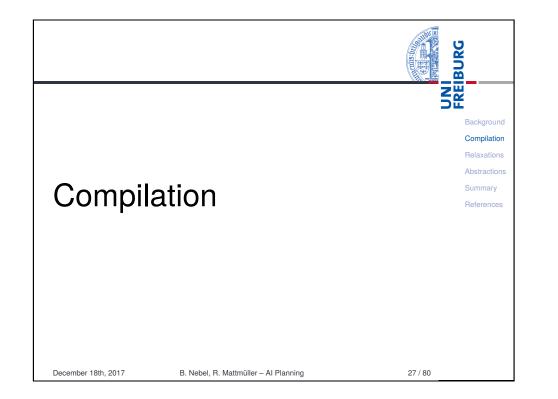


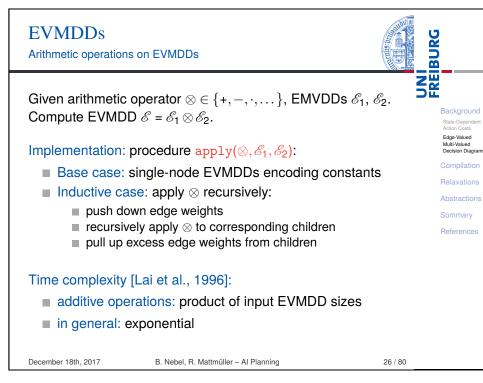
Edge-Valued Multi-Valu	ed Decision Diagrams		BÖ
		N	
EVMDDs:		_	Background
Decision diagi	rams for arithmetic functions		State-Dependent Action Costs
Decision node	es with associated decision varia	ables	Edge-Valued Multi-Valued Decision Diagrams
Edge weights:	partial costs contributed by fact	ts	Compilation
Size of EVMD	D compact in many "typical", we	ell-behaved	Relaxations
cases (Question: For example?)			Abstractions
			Summary
Properties:			References
· · · · · · · · · · · · · · · · · · ·	uirements for Compilation III, st) uniquely determined by them		
already have	well-established theory and tool	support	
 detect and ext 	nibit additive structure in arithme	tic functions	
December 18th, 2017	B. Nebel. R. Mattmüller – Al Planning	22 / 80	

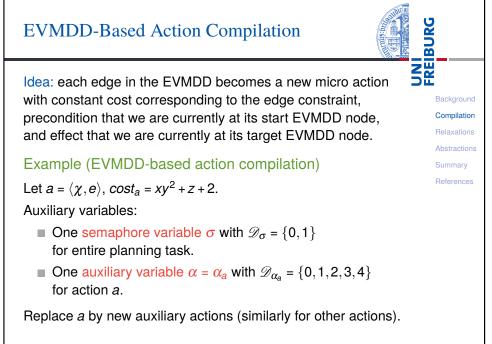
2











December 18th, 2017

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

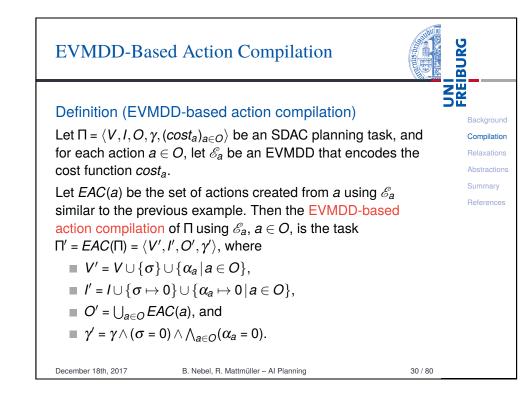
			Background
	$a^{\chi} = \langle \chi \wedge \sigma = 0 \wedge \alpha = 0,$		Compilation
α = 0	$\sigma := 1 \land \alpha := 1 \rangle,$	cost = 2	Relaxations
α=0	/ /		Abstractions
$\alpha = 1$	$a^{1,x=0} = \langle \alpha = 1 \land x = 0, \ \alpha := 3 \rangle,$	cost = 0	Summary
	$a^{1,x=1} = \langle \alpha = 1 \land x = 1, \ \alpha := 2 \rangle,$	cost = 0	References
	$a^{2,y=0} = \langle \alpha = 2 \wedge y = 0, \ \alpha := 3 \rangle,$	<i>cost</i> = 0	
$\begin{bmatrix} y \\ 0 \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ 2 \end{bmatrix} = 2$	$a^{2,y=1} = \langle \alpha = 2 \wedge y = 1, \ \alpha := 3 \rangle,$	cost = 1	
0 1 4 $\alpha = 3$	$a^{2,y=2} = \langle \alpha = 2 \wedge y = 2, \ \alpha := 3 \rangle,$	cost = 4	
	$a^{3,z=0} = \langle \alpha = 3 \wedge z = 0, \ \alpha := 4 \rangle,$	<i>cost</i> = 0	
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha = 4 \end{bmatrix}$	$a^{3,z=1} = \langle \alpha = 3 \wedge z = 1, \ \alpha := 4 \rangle,$	<i>cost</i> = 1	
υ α = 4	$a^{e} = \langle \alpha = 4, \ e \wedge \sigma := 0 \wedge \alpha := 0 \rangle,$	cost = 0	
December 18th, 2017	B. Nebel, R. Mattmüller – Al Planning	29 / 80	

BURG

FREI

EVMDD-Based Action Compilation

UNI FREIBURG Let Π be an SDAC task and $\Pi' = EAC(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathcal{E}_a). Background Compilation Proposition Relaxations Π' has only state-independent costs. Abstraction Proof. By construction. Proposition The size $\|\Pi'\|$ is in the order $O(\|\Pi\| \cdot \max_{a \in O} \|\mathcal{E}_a\|)$, i.e. polynomial in the size of Π and the largest used EVMDD. Proof. \square By construction. December 18th, 2017 B. Nebel, R. Mattmüller - Al Planning 31 / 80



EVMDD-Based Action Compilation

Let Π be an SDAC task and $\Pi' = EAC(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathcal{E}_a).

Proposition

 Π and Π' admit the same plans (up to replacement of actions by action sequences). Optimal plan costs are preserved.

Proof.

Let $\pi = a_1, \ldots, a_n$ be a plan for Π , and let s_0, \ldots, s_n be the corresponding state sequence such that a_i is applicable in s_{i-1} and leads to s_i for all $i = 1, \ldots, n$.

For each *i* = 1,...,*n*, let \mathcal{E}_{a_i} be the EVMDD used to compile a_i . State s_{i-1} determines a unique path through the EVMDD \mathcal{E}_{a_i} , which uniquely corresponds to an action sequence $a_i^0, \ldots, a_i^{k_i}$ (for some $k_i \in \mathbb{N}$; including a_i^{χ} and a_i^{e}).

B. Nebel, R. Mattmüller - Al Planning

December 18th, 2017

32 / 80

UNI FREIBURG

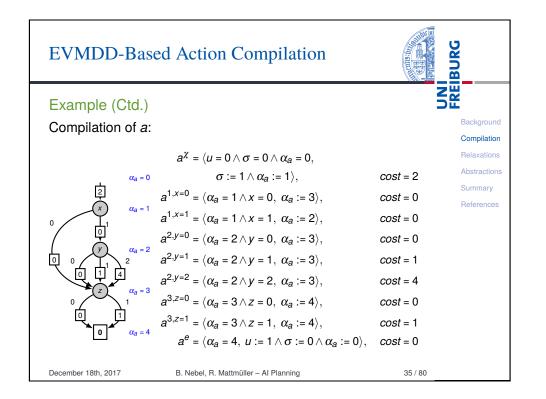
Background

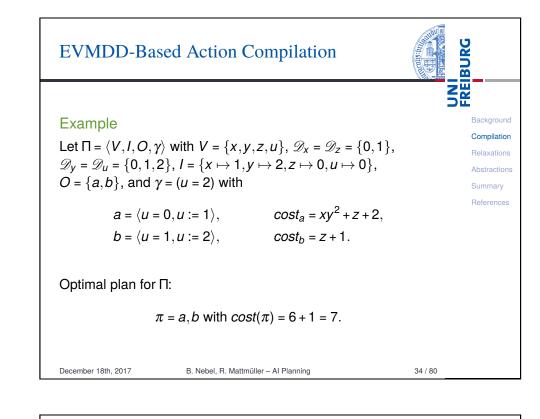
Compilation

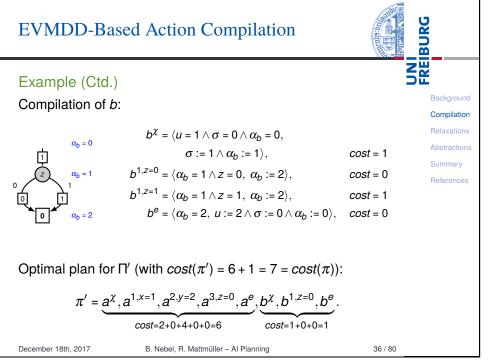
EVMDD-Based Action Compilation	
Proof (ctd.)	
By construction, $cost(a_i^0) + \cdots + cost(a_i^{k_i}) = cost_{a_i}(s_{i-1})$.	Background
Moreover, the sequence $a_i^0, \ldots, a_i^{k_i}$ is applicable in	Compilation Relaxations
$s_{i-1} \cup \{ \sigma \mapsto 0 \} \cup \{ lpha_a \mapsto 0 a \in O \}$ and leads to	Abstractions
$s_i \cup \{ \sigma \mapsto 0 \} \cup \{ lpha_a \mapsto 0 a \in O \}.$	Summary
Therefore, by induction, $\pi' = a_1^0, \ldots, a_1^{k_1}, \ldots, a_n^0, \ldots, a_n^{k_n}$ is applicable in $s_0 \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\}$ (and leads to a goal state). Moreover,	References
$cost(\pi') = cost(a_1^0) + \dots + cost(a_1^{k_1}) + \dots + cost(a_n^0) + \dots + cost(a_n^{k_n}) = cost_{a_1}(s_0) + \dots + cost_{a_n}(s_{n-1}) = cost(\pi).$	
Still to show: Π' admits no other plans. It suffices to see that	
the semaphore σ prohibits interleaving more than one EVMDD	
evaluation, and that each α_a makes sure that the EVMDD for a	
is traversed in the unique correct order.	
December 18th, 2017 B. Nebel, R. Mattmüller – Al Planning 33 / 80	

5311010 21

()



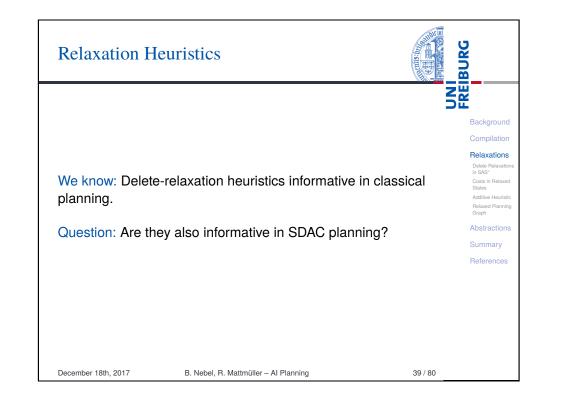


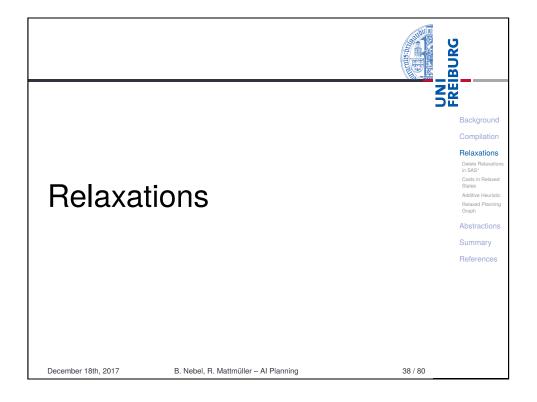


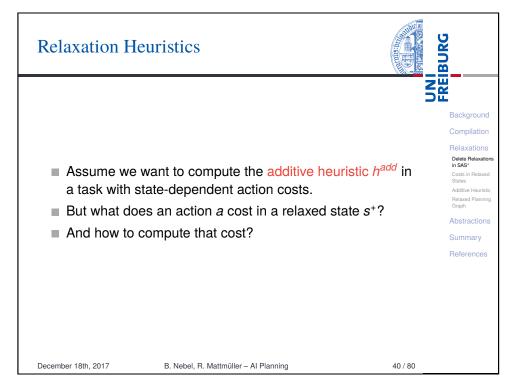
Planning with	n State-Dependent Action Co	osts	BURG
		Z	
		_	Background
Okav. We ca	an compile SDAC away comowhat	officiontly	Compilation
•		SDAC away somewhat efficiently.	
	nd of the story?		Abstractions
No! Why no	t?		Summary
be bene	s of heuristics for SDAC might improve	0	References
 Consequent uncompiled 	ce: Let's study heuristics for SDAC setting.	in	
December 18th, 2017	B. Nebel, R. Mattmüller – Al Planning	37 / 80	

531000101

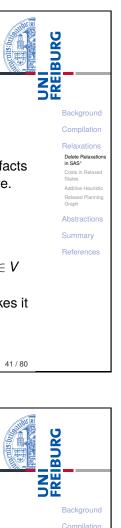
....







Relaxed SAS⁺ Tasks

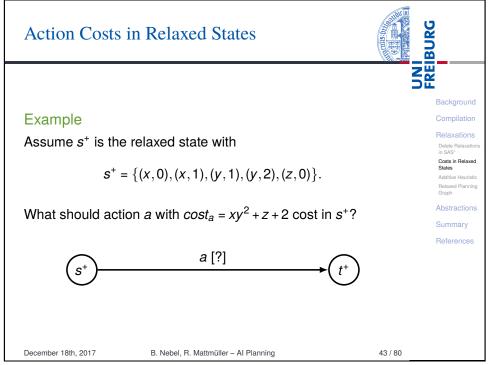


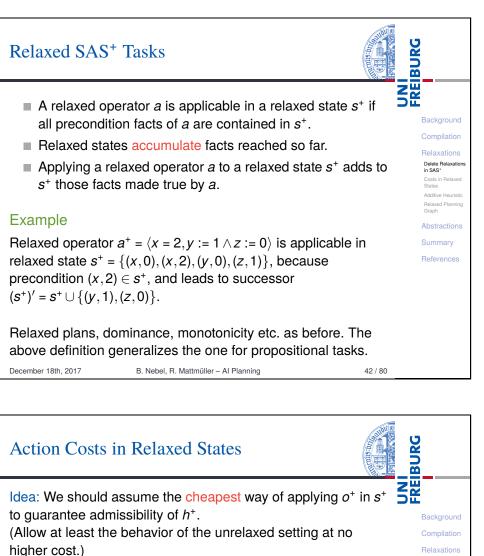
Delete relaxation in SAS⁺ tasks works as follows:

- Operators are already in effect normal form.
- We do not need to impose a positive normal form, because all conditions are conjunctions of facts, and facts are just variable-value pairs and hence always positive.
- Hence $a^+ = a$ for any operator a, and $\Pi^+ = \Pi$.
- For simplicity, we identify relaxed states *s*⁺ with their on-sets *on*(*s*⁺).
- Then, a relaxed state s⁺ is a set of facts (v, d) with v ∈ V and d ∈ D_v including at least one fact (v, d) for each v ∈ V (but possibly more than one, which is what makes it a relaxed state).

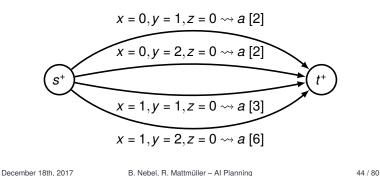
December 18th, 2017

B. Nebel, R. Mattmüller – Al Planning





Example



Relaxations Delete Relaxation in SAS⁺ Costs in Relaxed States

Additive Heuristic Relaxed Planning Graph

Abstractions

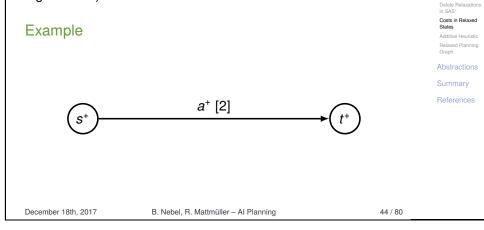
Summary

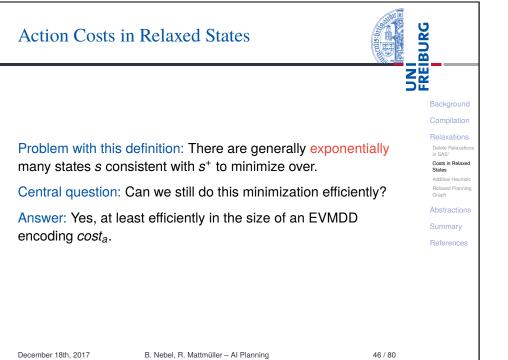
References

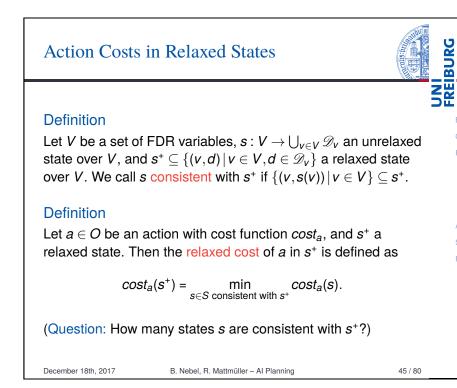
Action Costs in Relaxed States

NI Idea: We should assume the cheapest way of applying o^+ in s^+ to guarantee admissibility of h^+ .

(Allow at least the behavior of the unrelaxed setting at no higher cost.)







Background

Delete Relaxat in SAS*

States

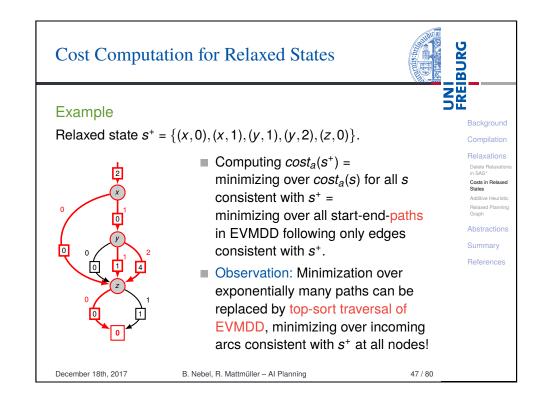
Graph

Costs in Relaxed

Additive Heuristic

Abstractions

Summary

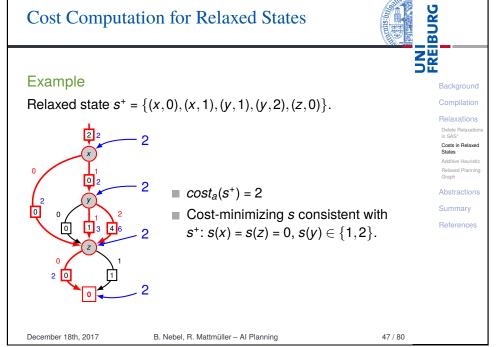


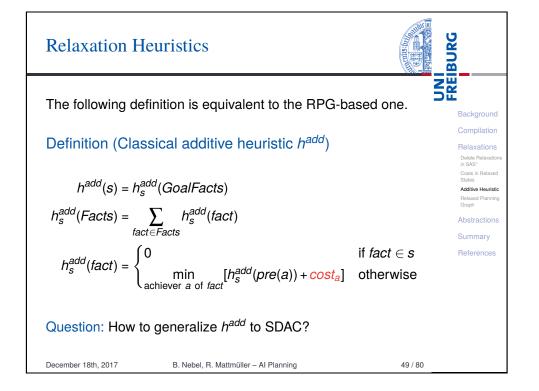
BURG

Background

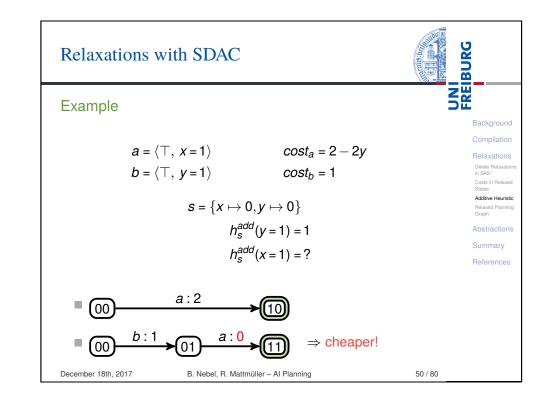
Relaxations

Cost Computation for Relaxed States

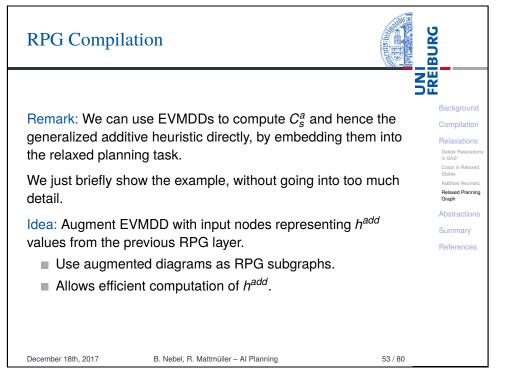


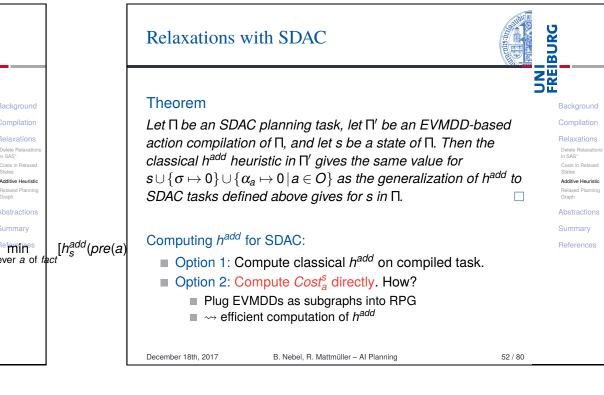


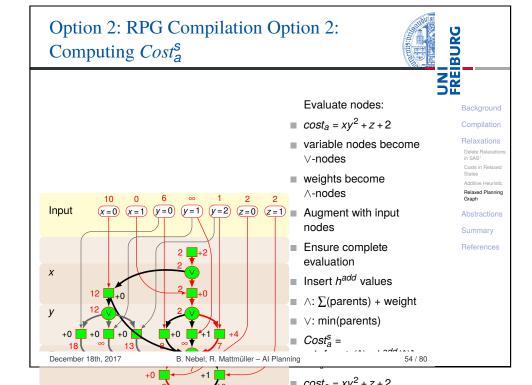
UNI FREIBURG Cost Computation for Relaxed States Background Theorem Delete Relax in SAS+ A top-sort traversal of the EVMDD for cost_a, adding edge Costs in Relaxed weights and minimizing over incoming arcs consistent with s⁺ States Additivo Houristia at all nodes, computes $cost_a(s^+)$ and takes time in the order of Graph the size of the EVMDD. Abstractions Summary Proof. Homework? December 18th, 2017 B. Nebel, R. Mattmüller - Al Planning 48 / 80



BURG **Relaxations with SDAC** NNI NI (Here, we need the assumption that no variable occurs both in the cost function and the precondition of the same action): Background Definition (Additive heuristic h^{add} for SDAC) Relaxations Delete Relaxa in SAS* Costs in Relaxe States $h_s^{add}(fact) = \begin{cases} 0 \\ 0 \end{cases}$ if *fact* ∈ *s* Additive Heuristi $\min_{v \in r} [h_s^{add}(pre(a)) + cost_a] \quad \text{otherwise}$ Relaxed Plannin Graph Abstractions h^{add}(fact) min achiever a of fact $Cost_a^s = \min_{\hat{s} \in S_a} [cost_a(\hat{s}) + h_s^{add}(\hat{s})]$ S_a : set of partial states over variables in cost function $|S_a|$ exponential in number of variables in cost function December 18th, 2017 B. Nebel, R. Mattmüller - Al Planning 51/80







Additive Heuristic

55 / 80

Relaxations

Delete Relaxati in SAS⁺

Costs in Relaxed

Additive Houris

Abstractions

Summary References

Relaxed Planning Graph

States

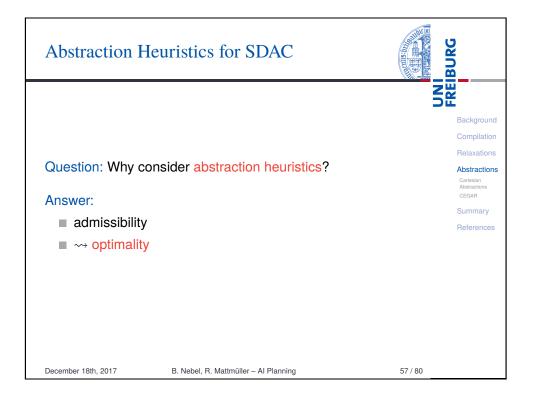
- Use above construction as subgraph of RPG in each layer, for each action (as operator subgraphs).
- Add AND nodes conjoining these subgraphs with operator precondition graphs.
- Link EVMDD outputs to next proposition layer.

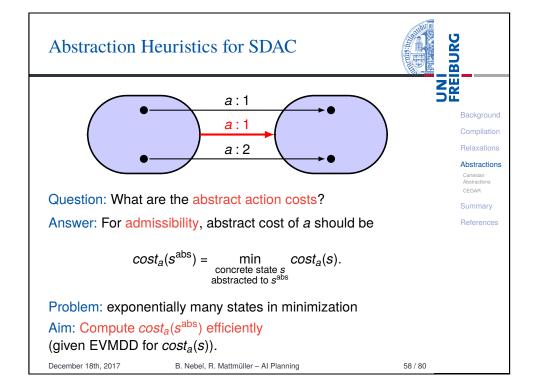
Theorem

Let Π be an SDAC planning task. Then the classical additive RPG evaluation of the RPG constructed using EVMDDs as above computes the generalized additive heuristic h^{add} defined before.

December 18th, 2017

B. Nebel, R. Mattmüller – Al Planning





Cartesian AbstractionsWe will see: possible if the abstraction is Cartesian or coarser.(Includes projections and domain abstractions.)Definition (Cartesian abstraction)A set of states s^{abs} is Cartesian if it is of the form $D_1 \times \cdots \times D_n$,where $D_i \subseteq \mathscr{D}_i$ for all $i = 1, \dots, n$.An abstraction is Cartesian if all abstract states are Cartesian sets.[Seipp and Helmert, 2013]

Background

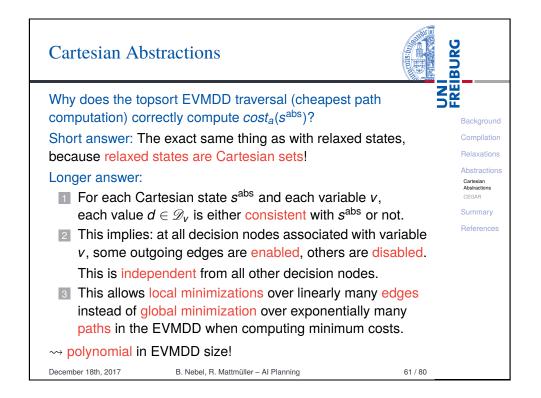
Relaxations

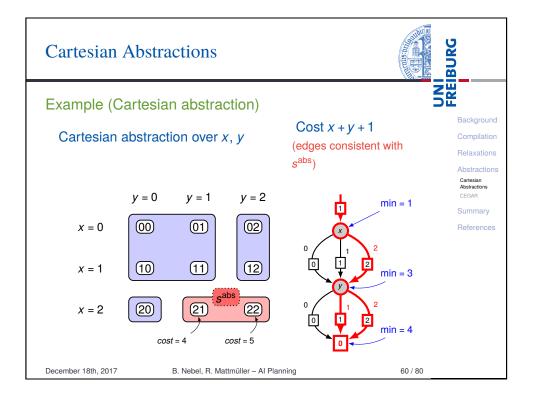
Abstractions

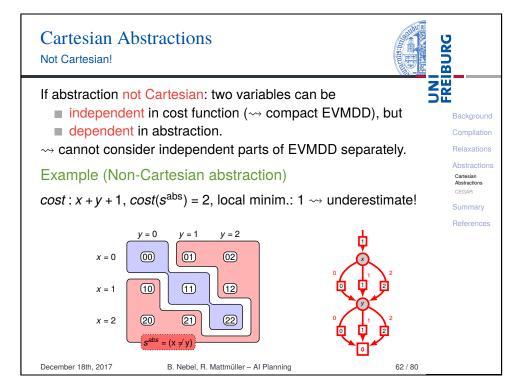
Cartesian

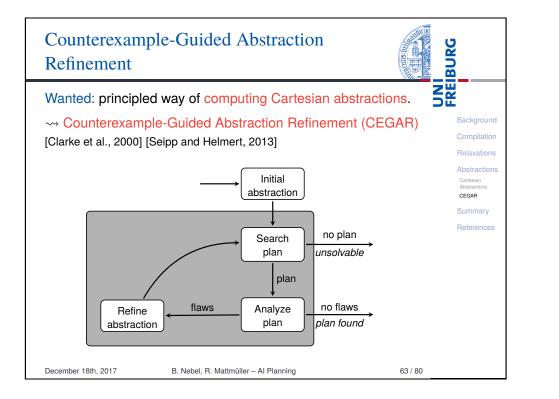
59 / 80

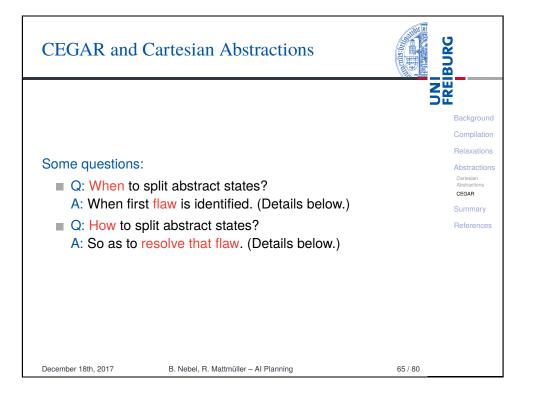
Abstractions



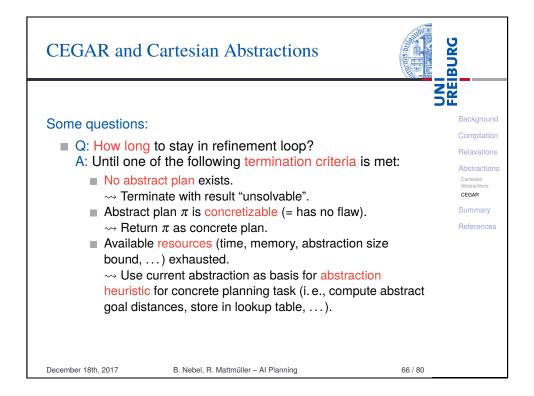


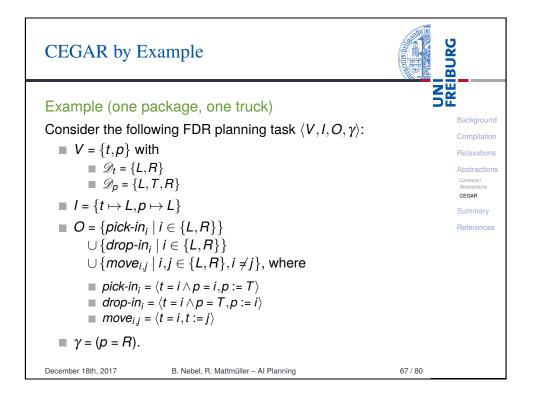


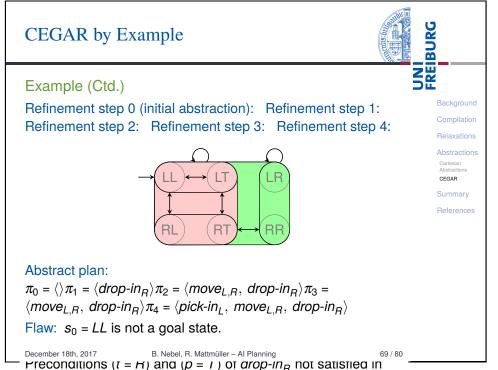


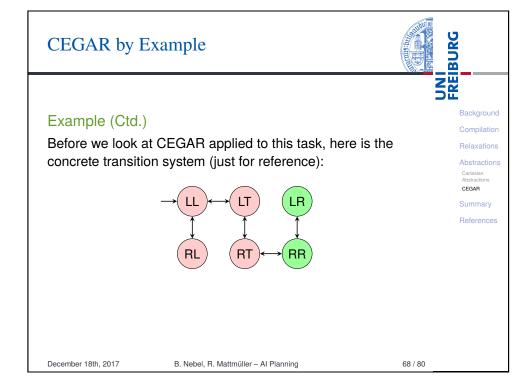


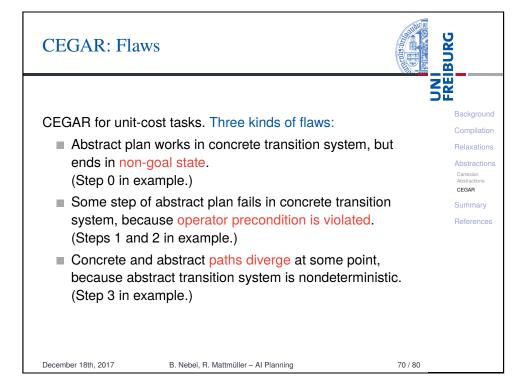
CEGAR and Cartesian Abstractions	BURG
Assume the following:	FRE
Initial abstraction is one-state abstraction with single	Background
abstract state $\mathscr{D}_1 \times \cdots \times \mathscr{D}_n$.	Compilation
→ Cartesian abstraction	Relaxations
Each refinement step takes one abstract state $s^{abs} = D_1 \times \cdots \times D_n$, one variable v_i , and splits s^{abs} into	Abstractions Cartesian Abstractions CEGAR
$\square D_1 \times \cdots \times D_{i-1} \times \frac{D'_i}{i} \times D_{i+1} \times \cdots \times D_n$	Summary
$\square D_1 \times \cdots \times D_{i-1} \times D''_i \times D_{i+1} \times \cdots \times D_n$	References
such that $D'_i \cap D''_i = \emptyset$ and $D'_i \cup D''_i = D_i$.	
→ still a Cartesian abstraction	
So, inductively:	
Initial abstraction is Cartesian.	
Each refinement step preserves being Cartesian.	
All generated abstractions are Cartesian.	
December 18th, 2017 B. Nebel, R. Mattmüller – Al Planning 64 / 8	0







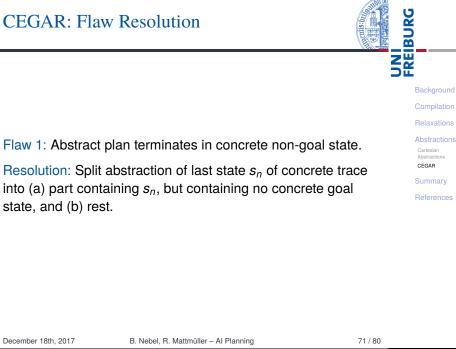




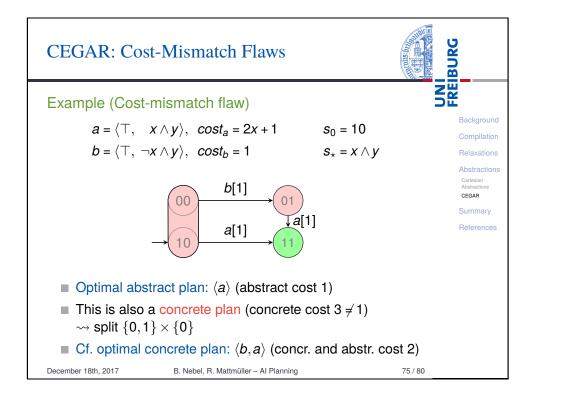
CEGAR: Flaw Resolution

state, and (b) rest.

December 18th, 2017



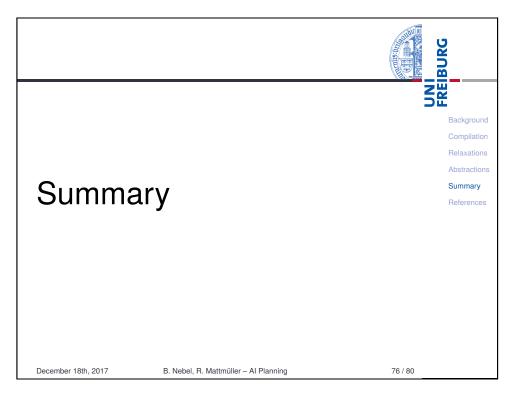
BURG **CEGAR:** Flaw Resolution **FREI** Background Flaw 2: Abstract plan fails because some operator Abstractions precondition is violated. Cartesian Abstractions CEGAR **Resolution:** Split abstraction of state s_{i-1} of concrete trace, Summary where operator precondition χ is violated, into (a) part containing s_{i-1} , but no concrete state in which precondition χ is satisfied, and (b) rest. 72/80 December 18th, 2017 B. Nebel, R. Mattmüller - Al Planning BURG **CEGAR:** Cost-Mismatch Flaws **FREI** Background Remark: In tasks with state-dependent action costs, there is a fourth type of flaws, so-called cost-mismatch flaws. Abstractions Cartesian Flaw 4: Action is more costly in concrete state than in abstract Abstractions CEGAR state. Resolution: Split abstraction of violating concrete state into two parts that differ on the value of a variable that is relevant to the cost function of the operator in question, such that we have different cost values in the two parts.

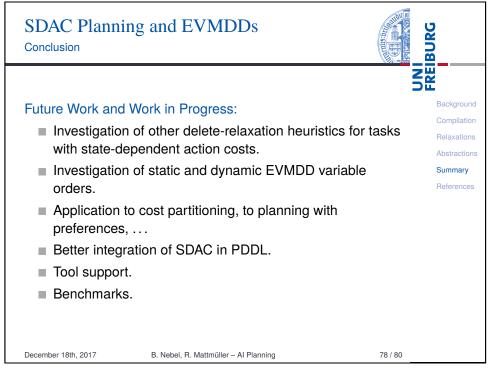


SDAC Planning and EVMDDs Conclusion

Summary:

- State-dependent actions costs practically relevant.
- EVMDDs exhibit and exploit structure in cost functions.
- Graph-based representations of arithmetic functions.
- Edge values express partial cost contributed by facts.
- Size of EVMDD is compact in many "typical" cases.
- Can be used to compile tasks with state-dependent costs to tasks with state-independent costs.
- Alternatively, can be embedded into the RPG to compute forward-cost heuristics directly.
- For h^{add} , both approaches give the same heuristic values.
- Abstraction heuristics can also be generalized to state-dependent action costs.





December 18th, 2017

UNI FREIBURG

Background

Relaxations

Abstractions

Summary

References

SDAC Planning and EVMDDs References	BURG
 Ciardo and Siminiceanu, Using edge-valued decision diagrams for symbolic generation of shortest paths, in Proc. 4th Intl. Conference on Formal Methods in Computer-Aided Design (FMCAD 2002), pp. 256–273, 2002. Geißer, Keller, and Mattmüller, Delete relaxations for planning with state-dependent action costs, in Proc. 	Background Compilation Relaxations Abstractions Summary References
24th Intl. Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1573–1579, 2015.	
Geißer, Keller, and Mattmüller, Abstractions for planning with state-dependent action costs, in Proc. 26th Intl. Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 140–148, 2016.	
December 18th, 2017 B. Nebel, R. Mattmüller – Al Planning 80 / 80	