Principles of AI Planning

12. Planning with State-Dependent Action Costs

NI REIBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

December 18th, 2017

Background

Background

State-Dependent Action Costs Edge-Valued Multi-Valued Decision Diagrams

Relaxations

Abstractions

Summary

Motivation

FREIBU

- We now know the basics of classical planning.
- Where to go from here? Possible routes:
 - Algorithms: techniques orthogonal to heuristic search (partial-order reduction, symmetry reduction, decompositions, ...)
 - √ later
 - Algorithms: techniques other than heuristic search (SAT/SMT planning, BDD-based symbolic planning, ...)

 → beyond the scope of this course
 - Settings beyond classical planning (nondeterminism, partial observability, numeric planning, ...)

 >>> later
 - A slight extension to the expressiveness of classical planning tasks

Backgroun

State-Dependent Action Costs

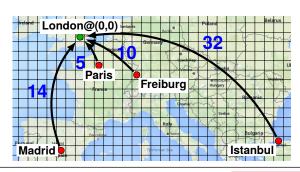
Edge-Valued Multi-Valued Decision Diagran

neiaxalions

Abstractions

Summary

What are State-Dependent Action Costs?



Background

State-Dependent Action Costs

Multi-Valued Decision Diagrar

Compilation

Relaxations

Abstractions

Summary

References

Action costs: unit constant state-dependent

 $cost(fly(Madrid, London)) = 1, \quad cost(fly(Paris, London)) = 1, \\ cost(fly(Freiburg, London)) = 1, \quad cost(fly(Istanbul, London)) = 1.$

Why Study State-Dependent Action Costs?

- In classical planning: actions have unit costs.
 - Each action a costs 1.
- Simple extension: actions have constant costs.
 - Each action *a* costs some $cost_a \in \mathbb{N}$.
 - Example: Flying between two cities costs amount proportional to distance.
 - Still easy to handle algorithmically,
 e. g. when computing g and h values.
- Further extension: actions have state-dependent costs.
 - Each action *a* has cost function $cost_a : S \rightarrow \mathbb{N}$.
 - Example: Flying to a destination city costs amount proportional to distance, depending on the current city.

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagrar

- ----

Abstractions

Summary

Why Study State-Dependent Action Costs?

UNI FREIBUR

Human perspective:

- "natural", "elegant", and "higher-level"
 - modeler-friendly \(\times \) less error-prone?

■ Machine perspective:

- more structured \(\to \) exploit structure in algorithms?
- fewer redundancies, exponentially more compact

■ Language support:

- numeric PDDL, PDDL 3
- RDDL, MDPs (state-dependent rewards!)

Applications:

- modeling preferences and soft goals
- application domains such as PSR

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

Compilation

Abstractions

Summary

tererence.

(Abbreviation: SDAC = state-dependent action costs)

Handling State-Dependent Action Costs

FREE BU

Good news:

Computing g values in forward search still easy. (When expanding state s with action a, we know $cost_a(s)$.)

Challenge:

- But what about SDAC-aware h values (relaxation heuristics, abstraction heuristics)?
- Or can we simply compile SDAC away?

This chapter:

Proposed answers to these challenges.

Background

State-Dependent Action Costs Edge-Valued

Edge-Valued Multi-Valued Decision Diagram

Abstractions

Summary

Handling State-Dependent Action Costs

UNI FREIBURG

Roadmap:

- Look at compilations.
- This leads to edge-valued multi-valued decision diagrams (EVMDDs) as data structure to represent cost functions.
- Based on EVMDDs, formalize and discuss:
 - compilations
 - relaxation heuristics
 - abstraction heuristics

Backgroun

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

Compliatio

Relaxations

Abstractions

Summary

Definition

A SAS⁺ planning task with state-dependent action costs or SDAC planning task is a tuple $\Pi = \langle V, I, O, \gamma, (cost_a)_{a \in O} \rangle$ where $\langle V, I, O, \gamma \rangle$ is a (regular) SAS⁺ planning task with state set S and $cost_a : S \to \mathbb{N}$ is the cost function of a for all $a \in O$.

Assumption: For each $a \in O$, the set of variables occurring in the precondition of a is disjoint from the set of variables on which the cost function $cost_a$ depends.

(Question: Why is this assumption unproblematic?)

Definitions of plans etc. stay as before. A plan is optimal if it minimizes the sum of action costs from start to goal.

For the rest of this chapter, we consider the following running example.

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

.

riciaxations

Abstractions

Summary

Abstractions Summary

Example (Household domain)

Actions:

```
\label{eq:vacuumFloor} \begin{split} & \text{vacuumFloor} = \langle \top, \text{ floorClean} \rangle \\ & \text{washDishes} = \langle \top, \text{ dishesClean} \rangle \\ & \text{doHousework} = \langle \top, \text{ floorClean} \wedge \text{dishesClean} \rangle \end{split}
```

Cost functions:

```
cost_{vacuumFloor} = [\neg floorClean] \cdot 2
cost_{washDishes} = [\neg dishesClean] \cdot (1 + 2 \cdot [\neg haveDishwasher])
cost_{doHousework} = cost_{vacuumFloor} + cost_{washDishes}
```

(Question: How much can applying action washDishes cost?)

State-Dependent Action Costs Compilations

UNI FREIBURG

Different ways of compiling SDAC away:

- Compilation I: "Parallel Action Decomposition"
- Compilation II: "Purely Sequential Action Decomposition"
- Compilation III: "EVMDD-Based Action Decomposition" (combination of Compilations I and II)

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagrar

Compilati

Relaxations

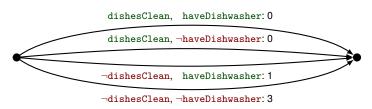
Abstractions

Summary

Compilation I: "Parallel Action Decomposition"

UNI FREIBURG

Example



washDishes(dC, hD) = \langle dC \wedge hD, dC \rangle , cost = 0 washDishes(dC, ¬hD) = \langle dC \wedge ¬hD, dC \rangle , cost = 0 washDishes(¬dC, hD) = \langle ¬dC \wedge hD, dC \rangle , cost = 1 washDishes(¬dC, ¬hD) = \langle ¬dC \wedge ¬hD, dC \rangle , cost = 3

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

Compilatio

Relaxations

Abstractions

Summary

Compilation I: "Parallel Action Decomposition"

FREIBUR

Compilation I

Transform each action into multiple actions:

- one for each partial state relevant to cost function
- add partial state to precondition
- use cost for partial state as constant cost

Properties:

always possible

exponential blow-up

Question: Exponential blow-up avoidable? --> Compilation II

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagrar

Compilatio

Relaxations

Abstractions

Summary

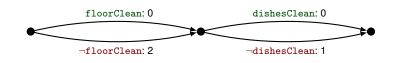
Compilation II: "Purely Sequential Action Decomposition"

UNI FREIBUR

Example

Assume we own a dishwasher:

$$cost_{\texttt{doHousework}} = 2 \cdot [\neg \texttt{floorClean}] + [\neg \texttt{dishesClean}]$$



$$\begin{array}{ll} \mbox{doHousework}_1(\ \ \mbox{fC}) = \langle \ \ \mbox{fC}, \ \ \mbox{fC}\rangle, & \mbox{cost} = 0 \\ \mbox{doHousework}_1(\neg\mbox{fC}) = \langle \neg\mbox{fC}, \ \mbox{fC}\rangle, & \mbox{cost} = 2 \\ \mbox{doHousework}_2(\ \mbox{dC}) = \langle \ \mbox{dC}, \ \mbox{dC}\rangle, & \mbox{cost} = 0 \\ \mbox{doHousework}_2(\neg\mbox{dC}) = \langle \neg\mbox{dC}, \ \mbox{dC}\rangle, & \mbox{cost} = 1 \\ \end{array}$$

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

Compilation

Relaxations

Abstractions

Summary

Compilation II: "Purely Sequential Action Decomposition"

FREBU

Compilation II

If costs are additively decomposable/separable:

- high-level actions ≈ macro actions
- decompose into sequential micro actions

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagrar

Complianc

Relaxations

Abstractions

Summary

Compilation II: "Purely Sequential Action Decomposition"

Properties:

- only linear blow-up
- not always possible
- plan lengths not preserved E. g., in a state where $\neg fC$ and $\neg dC$ hold, an application of

doHousework

in the SDAC setting is replaced by an application of the action sequence

 $doHousework_1(\neg fC), doHousework_2(\neg dC)$

in the compiled setting.

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagran

Joinpliation

TOTALACTIONS

Abstractions

Summary

Compilation II: "Purely Sequential Action Decomposition"

UNI

Properties (ctd.):

- plan costs preserved
- blow-up in search space
 - E. g., in a state where $\neg fC$ and $\neg dC$ hold, should we apply doHousework₁($\neg fC$) or doHousework₂($\neg dC$) first?
 - → impose action ordering!
- attention: we should apply all partial effects at end!
 Otherwise, an effect of an earlier action in the compilation might affect the cost of a later action in the compilation.

Question: Can this always work (kind of)? \(\structure{\text{op}} \) Compilation III

Background

State-Dependent Action Costs Edge-Valued

O

Dolovations

Abstractions

Summary

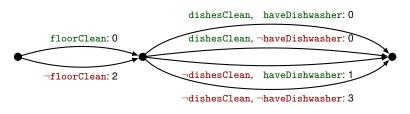
,

Compilation III: "EVMDD-Based Action Decomposition"

UNI FREIBURG

Example

 $cost_{doHousework} = [\neg floorClean] \cdot 2 + [\neg dishesClean] \cdot (1 + 2 \cdot [\neg haveDishwasher])$



Simplify right-hand part of diagram:

- Branch over single variable at a time.
- Exploit: haveDishwasher irrelevant if dishesClean is true.

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

Compilatio

Relaxations

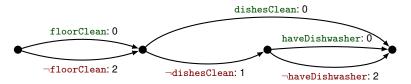
Abstractions

Summary

Compilation III: "EVMDD-Based Action Decomposition"

UNI FREIBURG

Example (ctd.)



Background

State-Dependent Action Costs

Edge-Valued Multi-Valued

Compilatio

Relaxations

Abstractions

Summary

References

Later:

- Compiled actions
- Auxiliary variables to enforce action ordering

Compilation III: "EVMDD-Based Action Decomposition"

UNI

Compilation III

- exploit as much additive separability as possible
- multiply out variable domains where inevitable
- Technicalities:
 - fix variable ordering
 - perform Shannon and isomorphism reduction (cf. theory of BDDs)

Properties:

- always possible
- worst-case exponential blow-up, but as good as it gets
- as with Compilation II: plan lengths not preserved, plan costs preserved
- as with Compilation II: action ordering, all effects at end!

Background

State-Dependent Action Costs

Edge-Valued Multi-Valued Decision Diagram

ompliation

Relaxations

Abstractions

Summary

Compilation III: "EVMDD-Based Action Decomposition"

UNI

Compilation III provides optimal combination of sequential and parallel action decomposition, given fixed variable ordering.

Question: How to find such decompositions automatically?

Answer: Figure for Compilation III basically a reduced ordered edge-valued multi-valued decision diagram (EVMDD)!

[Lai et al., 1996; Ciardo and Siminiceanu, 2002]

Background

State-Dependent Action Costs Edge-Valued

Multi-Valued Decision Diagram

Compliation

Relaxations

Abstractions

Summary

EVMDDs:

- Decision diagrams for arithmetic functions
- Decision nodes with associated decision variables
- Edge weights: partial costs contributed by facts
- Size of EVMDD compact in many "typical", well-behaved cases (Question: For example?)

Properties:

- satisfy all requirements for Compilation III. even (almost) uniquely determined by them
- already have well-established theory and tool support
- detect and exhibit additive structure in arithmetic functions

Edge-Valued Decision Diagrams

Abstractions

Summary

E E E

Consequence:

- represent cost functions as EVMDDs
- exploit additive structure exhibited by them
- draw on theory and tool support for EVMDDs

Two perspectives on EVMDDs:

- graphs specifying how to decompose action costs
- data structures encoding action costs (used independently from compilations)

Background

State-Depend Action Costs Edge-Valued

Multi-Valued Decision Diagrams

Compilation

Relaxations

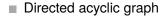
Abstractions

Summary

Example (EVMDD Evaluation)

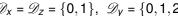
$$cost_a = xy^2 + z + 2$$

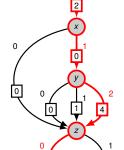
$$\mathcal{D}_X = \mathcal{D}_Z = \{0, 1\}, \ \mathcal{D}_Y = \{0, 1, 2\}$$



- Dangling incoming edge
- Single terminal node 0
- Decision nodes with:
 - decision variables
 - edge label
 - edge weights
- We see: z independent from rest, y only matters if $x \neq 0$.

$$\blacksquare s = \{x \mapsto 1, y \mapsto 2, z \mapsto 0\}$$





Edge-Valued

Multi-Valued Decision Diagrams

Relaxations

Abstractions

Summary

FRE B

Properties of EVMDDs:

- ✓ Existence for finitely many finite-domain variables
- Uniqueness/canonicity if reduced and ordered
- Basic arithmetic operations supported

(Lai et al., 1996; Ciardo and Siminiceanu, 2002)

Backgroun

State-Dependent

Edge-Valued Multi-Valued Decision Diagrams

Compilation

Relaxations

Abstractions

Summarv

Cummary

EVMDDs

Arithmetic operations on EVMDDs

UNI FREIBURG

Given arithmetic operator $\otimes \in \{+,-,\cdot,\dots\}$, EMVDDs $\mathscr{E}_1,\,\mathscr{E}_2$. Compute EVMDD $\mathscr{E} = \mathscr{E}_1 \otimes \mathscr{E}_2$.

Implementation: procedure apply(\otimes , \mathscr{E}_1 , \mathscr{E}_2):

- Base case: single-node EVMDDs encoding constants
- Inductive case: apply ⊗ recursively:
 - push down edge weights
 - recursively apply ⊗ to corresponding children
 - pull up excess edge weights from children

Time complexity [Lai et al., 1996]:

- additive operations: product of input EVMDD sizes
- in general: exponential

Background

State-Dependen

Edge-Valued Multi-Valued Decision Diagrams

Compilation

Relaxations

Abstractions

Summary

Compilation

Background

Compilation

Relaxations

Abstractions

Summary

JNI

Idea: each edge in the EVMDD becomes a new micro action with constant cost corresponding to the edge constraint, precondition that we are currently at its start EVMDD node, and effect that we are currently at its target EVMDD node.

Example (EVMDD-based action compilation)

Let
$$a = \langle \chi, e \rangle$$
, $cost_a = xy^2 + z + 2$.

Auxiliary variables:

- One semaphore variable σ with $\mathcal{D}_{\sigma} = \{0,1\}$ for entire planning task.
- One auxiliary variable $\alpha = \alpha_a$ with $\mathcal{D}_{\alpha_a} = \{0, 1, 2, 3, 4\}$ for action a.

Replace a by new auxiliary actions (similarly for other actions).

Background

Compilation

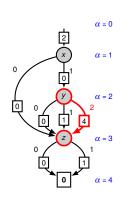
Relaxations

Abstractions

Summary

JNI REIBURG

Example (EVMDD-based action compilation, ctd.)



$a^{\chi} = \langle \chi \wedge \sigma = 0 \wedge \alpha = 0,$	
$\sigma := 1 \wedge \alpha := 1 \rangle,$	cost = 2
$a^{1,x=0} = \langle \alpha = 1 \wedge x = 0, \ \alpha := 3 \rangle,$	cost = 0
$a^{1,x=1} = \langle \alpha = 1 \wedge x = 1, \ \alpha := 2 \rangle,$	cost = 0
$a^{2,y=0} = \langle \alpha = 2 \wedge y = 0, \ \alpha := 3 \rangle,$	cost = 0
$a^{2,y=1} = \langle \alpha = 2 \wedge y = 1, \ \alpha := 3 \rangle,$	cost = 1
$a^{2,y=2} = \langle \alpha = 2 \wedge y = 2, \ \alpha := 3 \rangle,$	cost = 4
$a^{3,z=0} = \langle \alpha = 3 \wedge z = 0, \ \alpha := 4 \rangle,$	cost = 0
$a^{3,z=1} = \langle \alpha = 3 \wedge z = 1, \ \alpha := 4 \rangle,$	cost = 1
$a^e = \langle \alpha = 4, e \wedge \sigma := 0 \wedge \alpha := 0 \rangle,$	cost = 0

Background

Compilation

Relaxations
Abstractions

Summary

FREIBUR

Definition (EVMDD-based action compilation)

Let $\Pi = \langle V, I, O, \gamma, (cost_a)_{a \in O} \rangle$ be an SDAC planning task, and for each action $a \in O$, let \mathscr{E}_a be an EVMDD that encodes the cost function $cost_a$.

Let EAC(a) be the set of actions created from a using \mathcal{E}_a similar to the previous example. Then the EVMDD-based action compilation of Π using \mathcal{E}_a , $a \in O$, is the task

$$\Pi' = EAC(\Pi) = \langle V', I', O', \gamma' \rangle$$
, where

$$V' = V \cup \{\sigma\} \cup \{\alpha_a \mid a \in O\},$$

$$\blacksquare I' = I \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\},\$$

$$\bigcirc$$
 O' = $\bigcup_{a \in O} EAC(a)$, and

Backgroun

Compilation

Relaxations

Abstractions

Summary

UNI FREIBURG

Let Π be an SDAC task and $\Pi' = EAC(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathcal{E}_a).

Proposition

 Π' has only state-independent costs.

Proof.

By construction.

Proposition

The size $\|\Pi'\|$ is in the order $O(\|\Pi\| \cdot \max_{a \in O} \|\mathcal{E}_a\|)$, i. e. polynomial in the size of Π and the largest used EVMDD.

Proof.

By construction.

Backgroup

Compilation

Relaxations

Abstractions

Summary

Let Π be an SDAC task and $\Pi' = EAC(\Pi)$ its EVMDD-based action compilation (for appropriate EVMDDs \mathcal{E}_a).

Proposition

 Π and Π' admit the same plans (up to replacement of actions by action sequences). Optimal plan costs are preserved.

Proof.

Let $\pi = a_1, ..., a_n$ be a plan for Π , and let $s_0, ..., s_n$ be the corresponding state sequence such that a_i is applicable in s_{i-1} and leads to s_i for all i = 1, ..., n.

For each $i=1,\ldots,n$, let \mathscr{E}_{a_i} be the EVMDD used to compile a_i . State s_{i-1} determines a unique path through the EVMDD \mathscr{E}_{a_i} , which uniquely corresponds to an action sequence $a_i^0,\ldots,a_i^{k_i}$ (for some $k_i \in \mathbb{N}$; including a_i^{χ} and a_i^e).

Backgroun

Compilation

Relaxations

Abstractions

Summary

Proof (ctd.)

By construction, $cost(a_i^0) + \cdots + cost(a_i^{k_i}) = cost_{a_i}(s_{i-1})$. Moreover, the sequence $a_i^0, \dots, a_i^{k_i}$ is applicable in $s_{i-1} \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\}$ and leads to $s_i \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\}$.

Therefore, by induction, $\pi' = a_1^0, \dots, a_1^{k_1}, \dots, a_n^0, \dots, a_n^{k_n}$ is applicable in $s_0 \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\}$ (and leads to a goal state). Moreover,

$$cost(\pi') = cost(a_1^0) + \dots + cost(a_n^{k_1}) + \dots + cost(a_n^0) + \dots + cost(a_n^{k_n}) = cost_{a_1}(s_0) + \dots + cost_{a_n}(s_{n-1}) = cost(\pi).$$

Still to show: Π' admits no other plans. It suffices to see that the semaphore σ prohibits interleaving more than one EVMDD evaluation, and that each α_a makes sure that the EVMDD for a is traversed in the unique correct order.

Backgroun

Compilation Belayations

Abstractions

Summary

References

December 18th, 2017

UNI FREIBURG

Example

Let
$$\Pi = \langle V, I, O, \gamma \rangle$$
 with $V = \{x, y, z, u\}$, $\mathcal{D}_X = \mathcal{D}_Z = \{0, 1\}$, $\mathcal{D}_Y = \mathcal{D}_U = \{0, 1, 2\}$, $I = \{x \mapsto 1, y \mapsto 2, z \mapsto 0, u \mapsto 0\}$, $O = \{a, b\}$, and $\gamma = (u = 2)$ with

$$a = \langle u = 0, u := 1 \rangle,$$
 $cost_a = xy^2 + z + 2,$
 $b = \langle u = 1, u := 2 \rangle,$ $cost_b = z + 1.$

Optimal plan for Π :

$$\pi = a, b \text{ with } cost(\pi) = 6 + 1 = 7.$$

Relaxations

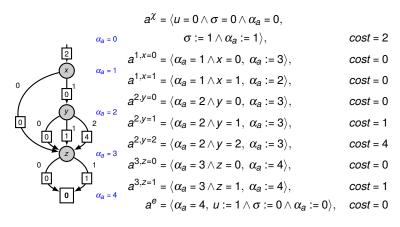
Abstractions

Summary

JNI PEIRIPO

Example (Ctd.)

Compilation of *a*:



Background

Compilation

Relaxations
Abstractions

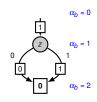
Summary

Deference

JNI

Example (Ctd.)

Compilation of *b*:



$$b^{\chi} = \langle u = 1 \land \sigma = 0 \land \alpha_b = 0,$$

$$\sigma := 1 \land \alpha_b := 1 \rangle, \qquad cost = 1$$

$$b^{1,z=0} = \langle \alpha_b = 1 \land z = 0, \ \alpha_b := 2 \rangle, \qquad cost = 0$$

$$b^{1,z=1} = \langle \alpha_b = 1 \land z = 1, \ \alpha_b := 2 \rangle, \qquad cost = 1$$

$$b^e = \langle \alpha_b = 2, \ u := 2 \land \sigma := 0 \land \alpha_b := 0 \rangle, \qquad cost = 0$$

Backgroun

Compilation

Relaxations
Abstractions

Summary

D-f----

Optimal plan for Π' (with $cost(\pi') = 6 + 1 = 7 = cost(\pi)$):

$$\pi' = \underbrace{a^{\chi}, a^{1,x=1}, a^{2,y=2}, a^{3,z=0}, a^e}_{cost=2+0+4+0+0=6}, \underbrace{b^{\chi}, b^{1,z=0}, b^e}_{cost=1+0+0=1}.$$

Planning with State-Dependent Action Costs

FREIBU

Okay. We can compile SDAC away somewhat efficiently. Is this the end of the story?

■ No! Why not?

- Tighter integration of SDAC into planning process might be beneficial.
- Analysis of heuristics for SDAC might improve our understanding.
- Consequence: Let's study heuristics for SDAC in uncompiled setting.

Backgroun

Compilation

Relaxations

Abstractions Summary

Deferences

5₩

Background

Compilation

Relaxations

Delete Relaxations in SAS+ Costs in Relaxed

States Additive Heuristic

Relaxed Planning Graph

Abstractions

Summary

References

Relaxations

Relaxation Heuristics

EREB

Background

Compilation

Relaxations

Delete Relaxations in SAS⁺

> States Additive Heurist

Relaxed Planning Graph

Abstraction

Summary

References

We know: Delete-relaxation heuristics informative in classical planning.

Question: Are they also informative in SDAC planning?

Relaxation Heuristics

- Assume we want to compute the additive heuristic h^{add} in a task with state-dependent action costs.
- But what does an action a cost in a relaxed state s^+ ?
- And how to compute that cost?

Backgroun

Compilation

Relaxations

Delete Relaxations in SAS⁺

Costs in Relaxed

Relaxed Planning

Graph

Abstractions

Summary

Relaxed SAS⁺ Tasks

Delete relaxation in SAS+ tasks works as follows:

- Operators are already in effect normal form.
- We do not need to impose a positive normal form, because all conditions are conjunctions of facts, and facts are just variable-value pairs and hence always positive.
- Hence $a^+ = a$ for any operator a, and $\Pi^+ = \Pi$.
- For simplicity, we identify relaxed states s^+ with their on-sets $on(s^+)$.
- Then, a relaxed state s^+ is a set of facts (v,d) with $v \in V$ and $d \in \mathcal{D}_v$ including at least one fact (v,d) for each $v \in V$ (but possibly more than one, which is what makes it a relaxed state).

Backgroun

Compilation

Delete Relaxations

in SAS* Costs in Belaxed

> Additive Heuristic Relaxed Planning

Citapii

Abstractions

Janimary

Relaxed SAS⁺ Tasks

- AH T
- A relaxed operator a is applicable in a relaxed state s^+ if all precondition facts of a are contained in s^+ .
- Relaxed states accumulate facts reached so far.
- Applying a relaxed operator a to a relaxed state s^+ adds to s^+ those facts made true by a.

Example

Relaxed operator $a^+ = \langle x = 2, y := 1 \land z := 0 \rangle$ is applicable in relaxed state $s^+ = \{(x,0),(x,2),(y,0),(z,1)\}$, because precondition $(x,2) \in s^+$, and leads to successor $(s^+)' = s^+ \cup \{(y,1),(z,0)\}$.

Relaxed plans, dominance, monotonicity etc. as before. The above definition generalizes the one for propositional tasks.

Backgroun

Compilation

Relaxations

Delete Relaxations in SAS⁺

Additive Heuristic Relaxed Planning

Relaxed Plannir Graph

Abstractions

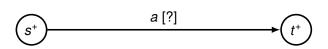
Summary

Example

Assume s⁺ is the relaxed state with

$$s^+ = \{(x,0),(x,1),(y,1),(y,2),(z,0)\}.$$

What should action a with $cost_a = xy^2 + z + 2 \cos t$ in s^+ ?



Background

Compilation

Relaxations

Delete Relaxations in SAS⁺

Costs in Relaxed States

Relaxed Planning Graph

Abstractions

Summary

II EIBURG

Idea: We should assume the cheapest way of applying o^+ in s^+ to guarantee admissibility of h^+ .

(Allow at least the behavior of the unrelaxed setting at no higher cost.)

Example



Backgroun

Compilation

.

Delete Relaxation in SAS+

States Additive Heuristi

Relaxed Planning Graph

Abstractions

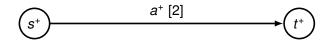
Summary

REIBU

Idea: We should assume the cheapest way of applying o^+ in s^+ to guarantee admissibility of h^+ .

(Allow at least the behavior of the unrelaxed setting at no higher cost.)

Example



Backgroun

Compilation

.

Delete Relaxations

Costs in Relaxed

Additive Heuristic Relaxed Planning

Grapn

Abstractions

Summary

UNI

Definition

Let V be a set of FDR variables, $s: V \to \bigcup_{v \in V} \mathscr{D}_v$ an unrelaxed state over V, and $s^+ \subseteq \{(v,d) | v \in V, d \in \mathscr{D}_v\}$ a relaxed state over V. We call s consistent with s^+ if $\{(v,s(v)) | v \in V\} \subseteq s^+$.

Definition

Let $a \in O$ be an action with cost function $cost_a$, and s^+ a relaxed state. Then the relaxed cost of a in s^+ is defined as

$$cost_a(s^+) = \min_{s \in S \text{ consistent with } s^+} cost_a(s)$$

(Question: How many states s are consistent with s⁺?)

Backgrour

Compilation

Relaxations

Delete Relaxations in SAS+

States
Additive Heuristic
Relaxed Planning

Graph

Abstraction

Janimary

FREIBU

Problem with this definition: There are generally exponentially many states s consistent with s⁺ to minimize over.

Central question: Can we still do this minimization efficiently?

Answer: Yes, at least efficiently in the size of an EVMDD encoding $cost_a$.

Backgroun

Compilation

Compliation

Delete Relaxation

Costs in Relaxed

States Additive Heuris

Relaxed Planni Graph

Abstractions

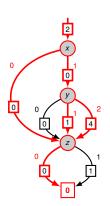
Summary

Cost Computation for Relaxed States

JNI

Example

Relaxed state $s^+ = \{(x,0), (x,1), (y,1), (y,2), (z,0)\}.$



- Computing $cost_a(s^+) = minimizing$ over $cost_a(s)$ for all s consistent with $s^+ = minimizing$ over all start-end-paths in EVMDD following only edges consistent with s^+ .
 - Observation: Minimization over exponentially many paths can be replaced by top-sort traversal of EVMDD, minimizing over incoming arcs consistent with s⁺ at all nodes!

Backgroun

Compilation

Delete Relaxations in SAS*

States
Additive Heurist

Relaxed Plannir Graph

Abstractions

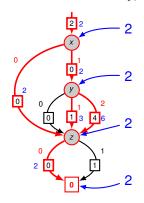
Summary

Cost Computation for Relaxed States

UNI

Example

Relaxed state $s^+ = \{(x,0),(x,1),(y,1),(y,2),(z,0)\}.$



- $cost_a(s^+) = 2$
- Cost-minimizing s consistent with s^+ : s(x) = s(z) = 0, $s(y) \in \{1,2\}$.

Background

Compilation

Delete Relaxations in SAS*

States Additive Heurist

Relaxed Planning Graph

Abstractions

Summary

Cost Computation for Relaxed States

FREIB

Theorem

A top-sort traversal of the EVMDD for $cost_a$, adding edge weights and minimizing over incoming arcs consistent with s^+ at all nodes, computes $cost_a(s^+)$ and takes time in the order of the size of the EVMDD.

Proof.

Homework?

Backgroun

Compilation

Delete Relaxation

in SAS+

States Additive Heurist

Relaxed Planni Graph

Abstractions

Summary

Relaxation Heuristics

FREIBUR

The following definition is equivalent to the RPG-based one.

Definition (Classical additive heuristic hadd)

$$h^{add}(s) = h_s^{add}(GoalFacts)$$
 $h_s^{add}(Facts) = \sum_{fact \in Facts} h_s^{add}(fact)$

$$h_s^{add}(fact) = \begin{cases} 0 & \text{if } fact \in s \\ \min_{\text{achiever } a \text{ of } fact} [h_s^{add}(pre(a)) + cost_a] & \text{otherwise} \end{cases}$$

Question: How to generalize *h*^{add} to SDAC?

Backgroun

Compilation

Delete Relaxation

in SAS+ Costs in Relaxed

States

Additive Houristic

Relaxed Planning

Graph

Abstraction

Summary

Relaxations with SDAC

Example

$$a = \langle \top, x = 1 \rangle$$
 $cost_a = 2 - 2y$
 $b = \langle \top, y = 1 \rangle$ $cost_b = 1$

$$s = \{x \mapsto 0, y \mapsto 0\}$$

$$h_s^{add}(y = 1) = 1$$

$$h_s^{add}(y = 1) = 2$$

$s = \{x \mapsto 0, y \mapsto 0\}$ $h_{s}^{add}(v=1)=1$ $h_{s}^{add}(x=1)=?$

Background

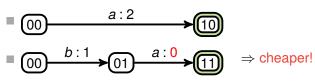
Delete Relaxations

Additive Houristic

Relaxed Planning

Graph

Abstractions



Relaxations with SDAC

(Here, we need the assumption that no variable occurs both in the cost function and the precondition of the same action):

Definition (Additive heuristic *h*^{add} for SDAC)

$$h_s^{add}(fact) = \begin{cases} 0 & \text{if } fact \in s \\ \min_{\text{achiever } a \text{ of } fact} [h_s^{add}(pre(a)) + cost_a] & \text{otherwise} \end{cases}$$

$$Cost_a^s = \min_{\hat{s} \in S_a} [cost_a(\hat{s}) + h_s^{add}(\hat{s})]$$

 S_a : set of partial states over variables in cost function

 $|S_a|$ exponential in number of variables in cost function

Additive Houristic

Abstractions

Relaxations with SDAC

UNI

Theorem

Let Π be an SDAC planning task, let Π' be an EVMDD-based action compilation of Π , and let s be a state of Π . Then the classical h^{add} heuristic in Π' gives the same value for $s \cup \{\sigma \mapsto 0\} \cup \{\alpha_a \mapsto 0 \mid a \in O\}$ as the generalization of h^{add} to SDAC tasks defined above gives for s in Π .

Computing hadd for SDAC:

- Option 1: Compute classical h^{add} on compiled task.
- Option 2: Compute *Cost*^s directly. How?
 - Plug EVMDDs as subgraphs into RPG
 - ~→ efficient computation of h^{add}

Backgroun

Compilation

Delete Relaxation in SAS*

Costs in Relaxed

Additive Heuristic Relaxed Planning

. A la adua adi a a

Abstractions

Summary

RPG Compilation

P

Remark: We can use EVMDDs to compute C_s^a and hence the generalized additive heuristic directly, by embedding them into the relaxed planning task.

We just briefly show the example, without going into too much detail.

Idea: Augment EVMDD with input nodes representing h^{add} values from the previous RPG layer.

- Use augmented diagrams as RPG subgraphs.
- Allows efficient computation of h^{add}.

Backgroun

Compilation

Delete Relaxations in SAS*

Costs in Relaxed States

Additive Heuristic Relaxed Planning

Graph

Abstractions

Summary

Option 2: RPG Compilation Option 2: Computing $Cost_a^s$

EIBURG

Evaluate nodes:

$$cost_a = xy^2 + z + 2$$

■ variable nodes become ∨-nodes

weights become ^-nodes

Augment with input nodes

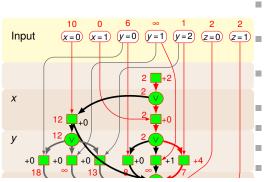
Ensure complete evaluation

Insert hadd values

 \wedge : \sum (parents) + weight

V: min(parents)

 $Cost_a^s =$



54 / 80

Background

Compilation

Delete Relaxation in SAS+

Costs in Relaxed States

Additive Heuristic Relaxed Planning Graph

Abstractions

ADSITACTIONS

Summary

Additive Heuristic

R E

- Use above construction as subgraph of RPG in each layer, for each action (as operator subgraphs).
- Add AND nodes conjoining these subgraphs with operator precondition graphs.
- Link EVMDD outputs to next proposition layer.

Theorem

Let Π be an SDAC planning task. Then the classical additive RPG evaluation of the RPG constructed using EVMDDs as above computes the generalized additive heuristic h^{add} defined before.

Backgroun

Compilation

Relaxations

Delete Relaxations in SAS⁺

Costs in Relaxed States

Additive Heuristic Relaxed Planning Graph

. A la adua adi a a

Abstractions

Summary

FREIBU

Background

Compilation

Relaxations

Abstractions

Cartesian Abstractions CEGAR

Summary

References

Abstractions

Abstraction Heuristics for SDAC

FREIBU

Question: Why consider abstraction heuristics?

Answer:

- admissibility
- ~→ optimality

Background

Compilatio

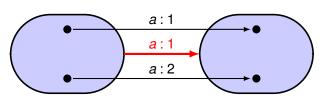
Relaxations

Abstractions

Abstractions CEGAR

Summary

Abstraction Heuristics for SDAC



Question: What are the abstract action costs?

Answer: For admissibility, abstract cost of a should be

$$cost_a(s^{abs}) = \min_{\substack{\text{concrete state } s \\ \text{abstracted to } s^{abs}}} cost_a(s).$$

Problem: exponentially many states in minimization

Aim: Compute cost_a(s^{abs}) efficiently

(given EVMDD for $cost_a(s)$).

Relaxations

Abstractions

JNI

We will see: possible if the abstraction is Cartesian or coarser.

(Includes projections and domain abstractions.)

Definition (Cartesian abstraction)

A set of states s^{abs} is Cartesian if it is of the form

$$D_1 \times \cdots \times D_n$$
,

where $D_i \subseteq \mathcal{D}_i$ for all i = 1, ..., n.

An abstraction is Cartesian if all abstract states are Cartesian sets.

[Seipp and Helmert, 2013]

Intuition: Variables are abstracted independently.

→ exploit independence when computing abstract costs!

Background

Compilation

Relaxations

Abstractions Cartesian

> Abstractions CEGAR

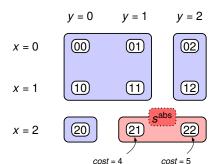
Summary

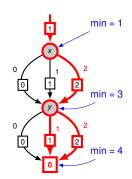
JNI

Example (Cartesian abstraction)

Cartesian abstraction over x, y

Cost x + y + 1(edges consistent with s^{abs})





Backgroun

Relaxations

Abstractions

Cartesian Abstractions

Summary

UNI FREIBURG

Why does the topsort EVMDD traversal (cheapest path computation) correctly compute $cost_a(s^{abs})$?

Short answer: The exact same thing as with relaxed states, because relaxed states are Cartesian sets!

Longer answer:

- For each Cartesian state s^{abs} and each variable v, each value $d \in \mathcal{D}_v$ is either consistent with s^{abs} or not.
- This implies: at all decision nodes associated with variable v, some outgoing edges are enabled, others are disabled. This is independent from all other decision nodes.
- This allows local minimizations over linearly many edges instead of global minimization over exponentially many paths in the EVMDD when computing minimum costs.

→ polynomial in EVMDD size!

Backgroun

Relaxations

T to taxactor to

Cartesian Abstractions

Summary

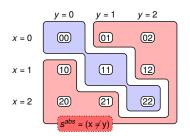
Not Cartesian!

If abstraction not Cartesian: two variables can be

- independent in cost function (~> compact EVMDD), but
- dependent in abstraction.
- → cannot consider independent parts of EVMDD separately.

Example (Non-Cartesian abstraction)

cost: x + y + 1, $cost(s^{abs}) = 2$, local minim.: 1 \rightsquigarrow underestimate!





Background

Relaxations

Abstractions Cartesian

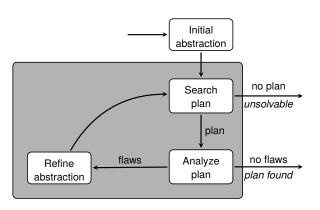
> Abstractions CEGAR

,

Counterexample-Guided Abstraction Refinement

FIRING

Wanted: principled way of computing Cartesian abstractions.



Backgroun

Compliation

Relaxations

Abstractions
Cartesian

CEGAR

,

CEGAR and Cartesian Abstractions

Assume the following:

- Initial abstraction is one-state abstraction with single abstract state $\mathcal{D}_1 \times \cdots \times \mathcal{D}_n$.
- Each refinement step takes one abstract state $s^{abs} = D_1 \times \cdots \times D_n$, one variable v_i , and splits s^{abs} into

$$D_1 \times \cdots \times D_{i-1} \times D'_i \times D_{i+1} \times \cdots \times D_n$$

$$\square$$
 $D_1 \times \cdots \times D_{i-1} \times D_i'' \times D_{i+1} \times \cdots \times D_n$

such that $D_i' \cap D_i'' = \emptyset$ and $D_i' \cup D_i'' = D_i$.

→ still a Cartesian abstraction

So, inductively:

- Initial abstraction is Cartesian.
- Each refinement step preserves being Cartesian.
- ~ All generated abstractions are Cartesian.

Background

Compliation

neiax

Abstractions

Abstractions CEGAR

Summary

CEGAR and Cartesian Abstractions

FREIBUR

Dackgroun

Compilation

Relaxations

Abstractions

CEGAR

Summary

References

Some questions:

Q: When to split abstract states?

A: When first flaw is identified. (Details below.)

Q: How to split abstract states?

A: So as to resolve that flaw. (Details below.)

CEGAR and Cartesian Abstractions

Some questions:

- Q: How long to stay in refinement loop?
 - A: Until one of the following termination criteria is met:
 - No abstract plan exists.
 - → Terminate with result "unsolvable".
 - Abstract plan π is concretizable (= has no flaw).
 - \rightsquigarrow Return π as concrete plan.
 - Available resources (time, memory, abstraction size bound, ...) exhausted.
 - → Use current abstraction as basis for abstraction heuristic for concrete planning task (i. e., compute abstract goal distances, store in lookup table, ...).

Backgroun

Compliation

neiaxai

Abstractions

CEGAR

Summary

CEGAR by Example

FREIBU

Example (one package, one truck)

Consider the following FDR planning task $\langle V, I, O, \gamma \rangle$:

■
$$V = \{t, p\}$$
 with
■ $\mathcal{D}_t = \{L, R\}$
■ $\mathcal{D}_p = \{L, T, R\}$
■ $I = \{t \mapsto L, p \mapsto L\}$
■ $O = \{pick-ip, | i \in P\}$

■
$$O = \{pick-in_i \mid i \in \{L,R\}\}\$$

 $\cup \{drop-in_i \mid i \in \{L,R\}\}\$
 $\cup \{move_{i,i} \mid i,j \in \{L,R\}, i \neq j\}, \text{ where}$

■
$$pick-in_i = \langle t = i \land p = i, p := T \rangle$$

■ $drop-in_i = \langle t = i \land p = T, p := i \rangle$

$$\blacksquare$$
 $move_{i,j} = \langle t = i, t := j \rangle$

Background

Compilation

Relax

Abstractions

Cartesian

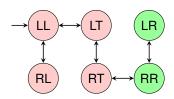
CEGAR

CEGAR by Example

FREIBU

Example (Ctd.)

Before we look at CEGAR applied to this task, here is the concrete transition system (just for reference):



Background

Compilation

Relaxations

Abstractions

Abstractions CEGAR

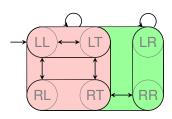
Summary

CEGAR by Example

FREIBU

Example (Ctd.)

Refinement step 0 (initial abstraction): Refinement step 1: Refinement step 2: Refinement step 3: Refinement step 4:



Backgroun

Compliation

Relaxations

Abstractions
Cartesian

CEGAR

References

Abstract plan:

$$\pi_0 = \langle \rangle \pi_1 = \langle drop - in_R \rangle \pi_2 = \langle move_{L,R}, drop - in_R \rangle \pi_3 = \langle move_{L,R}, drop - in_R \rangle \pi_4 = \langle pick - in_L, move_{L,R}, drop - in_R \rangle$$

Flaw: $s_0 = LL$ is not a goal state.

FREIBL

CEGAR for unit-cost tasks. Three kinds of flaws:

- Abstract plan works in concrete transition system, but ends in non-goal state.
 (Step 0 in example.)
- Some step of abstract plan fails in concrete transition system, because operator precondition is violated. (Steps 1 and 2 in example.)
- Concrete and abstract paths diverge at some point, because abstract transition system is nondeterministic. (Step 3 in example.)

Backgroun

Compliation

Abetroetions

Cartesian

CEGAR

- -

CEGAR: Flaw Resolution

E

Backgroun

Compilation

Abstractions

CEGAR

Summary

References

Flaw 1: Abstract plan terminates in concrete non-goal state.

Resolution: Split abstraction of last state s_n of concrete trace into (a) part containing s_n , but containing no concrete goal state, and (b) rest.

CEGAR: Flaw Resolution

FREIBU

Flaw 2: Abstract plan fails because some operator precondition is violated.

Resolution: Split abstraction of state s_{i-1} of concrete trace, where operator precondition χ is violated, into (a) part containing s_{i-1} , but no concrete state in which precondition χ is satisfied, and (b) rest.

Backgrour

Compilation

Relaxations

Abstractions

Cartesian

CEGAR

- -

CEGAR: Flaw Resolution

FREIBU

Flaw 3: Concrete and abstract paths diverge.

Resolution: Split abstraction of state s_{i-1} of concrete trace, after which paths diverge when applying operator o, into (a) part containing s_{i-1} where applying o always leads to the "wrong" abstract successor state, and (b), rest.

Backgrour

Compilation

Relaxations

Abstractions

Abstractions CEGAR

Summary

CEGAR: Cost-Mismatch Flaws

FREBL

Remark: In tasks with state-dependent action costs, there is a fourth type of flaws, so-called cost-mismatch flaws.

Flaw 4: Action is more costly in concrete state than in abstract state.

Resolution: Split abstraction of violating concrete state into two parts that differ on the value of a variable that is relevant to the cost function of the operator in question, such that we have different cost values in the two parts.

Backgroun

.

Abstractions

Cartesian Abstractions CEGAR

Juliliary

CEGAR: Cost-Mismatch Flaws

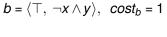
UNI FREIBURG

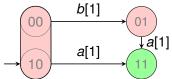
Example (Cost-mismatch flaw)

$$a = \langle \top, x \wedge y \rangle, cost_a = 2x + 1$$

$$s_0 = 10$$

 $s_{\star} = x \wedge y$





Backgrour

Compilation

Relaxations

Abstractions

Cartesian Abstractions CEGAR

Summary

- Optimal abstract plan: ⟨a⟩ (abstract cost 1)
- This is also a concrete plan (concrete cost $3 \neq 1$) \rightsquigarrow split $\{0,1\} \times \{0\}$
- Cf. optimal concrete plan: $\langle b, a \rangle$ (concr. and abstr. cost 2)

Summary

Background

Compilation

Relaxations

Abstractions

Summary

SDAC Planning and EVMDDs

Conclusion

FREIB

Summary:

- State-dependent actions costs practically relevant.
- EVMDDs exhibit and exploit structure in cost functions.
- Graph-based representations of arithmetic functions.
- Edge values express partial cost contributed by facts.
- Size of EVMDD is compact in many "typical" cases.
- Can be used to compile tasks with state-dependent costs to tasks with state-independent costs.
- Alternatively, can be embedded into the RPG to compute forward-cost heuristics directly.
- \blacksquare For h^{add} , both approaches give the same heuristic values.
- Abstraction heuristics can also be generalized to state-dependent action costs.

Backgroun

.

Abstractions

Summary

Future Work and Work in Progress:

- Investigation of other delete-relaxation heuristics for tasks with state-dependent action costs.
- Investigation of static and dynamic EVMDD variable orders.
- Application to cost partitioning, to planning with preferences, ...
- Better integration of SDAC in PDDL.
- Tool support.
- Benchmarks.

Backgroun

Relaxations

Abstractions

Summary

References

Background

Compilation Relaxations

Abstractions

Summary

Ciardo and Siminiceanu, Using edge-valued decision diagrams for symbolic generation of shortest paths, in Proc. 4th Intl. Conference on Formal Methods in Computer-Aided Design (FMCAD 2002), pp. 256–273, 2002.

Geißer, Keller, and Mattmüller, Delete relaxations for planning with state-dependent action costs, in Proc. 24th Intl. Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1573–1579, 2015.

References

Geißer, Keller, and Mattmüller, Abstractions for planning with state-dependent action costs, in Proc. 26th Intl. Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 140–148, 2016.