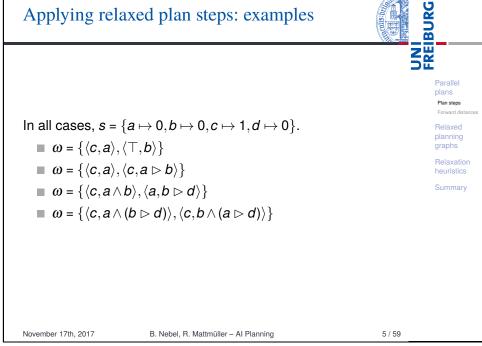
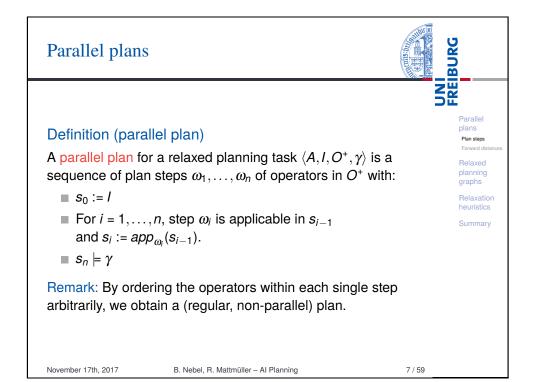


Applying relaxed plan steps: examples



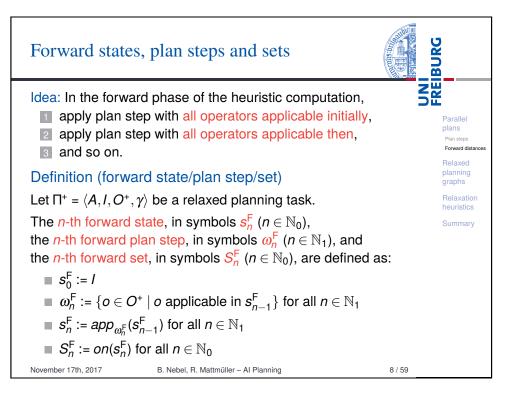


BURG **Serializations** FREI Applying a relaxed plan step to a state is related to applying the operators in the step to a state in sequence. **Definition** (serialization) A serialization of plan step $\omega = \{o_1^+, \dots, o_n^+\}$ is a sequence $o_{\pi(1)}^+,\ldots,o_{\pi(n)}^+$ where π is a permutation of $\{1,\ldots,n\}$. Lemma (conservativeness of plan step semantics) If ω is a plan step applicable in a state s of a relaxed planning task, then each serialization o_1, \ldots, o_n of ω is applicable in s and $app_{o_1,...,o_n}(s)$ dominates $app_{\omega}(s)$. Does equality hold for all/some serialization(s)? What if there are no conditional effects? What if we allowed general (unrelaxed) planning tasks? B. Nebel, R. Mattmüller - Al Planning 6/59 November 17th, 2017

Parallel

Plan step

graphs



The max heuristic h_{max}

if no forward state satisfies γ .

Definition (max heuristic h_{max})

polynomial time. (How?)

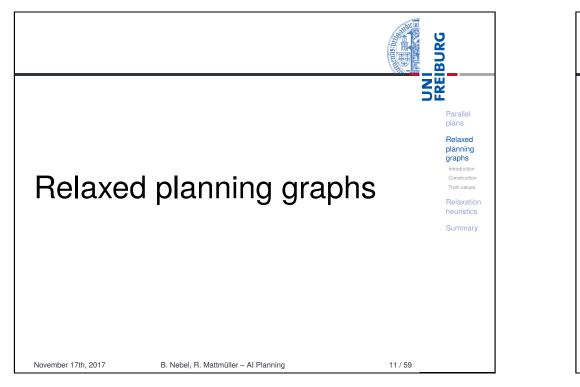
and let s be a state of Π .

Definition (parallel forward distance)

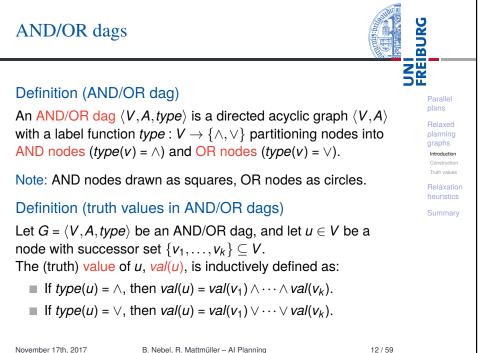
BURG UNI REI Parallel The parallel forward distance of a relaxed planning task plans $\langle A, I, O^+, \gamma \rangle$ is the lowest number $n \in \mathbb{N}_0$ such that $s_n^{\mathsf{F}} \models \gamma$, or ∞ Plan step Forward distanc planning graphs Remark: The parallel forward distance can be computed in Relaxation heuristics Let $\Pi = \langle A, I, O, \gamma \rangle$ be a planning task in positive normal form,

The max heuristic estimate for s, $h_{max}(s)$, is the parallel forward distance of the relaxed planning task $\langle A, s, O^+, \gamma \rangle$.

Remark: <i>h</i> max is	safe, goal-aware, admissible and co	onsistent.
(Why?)		
November 17th, 2017	B. Nebel, R. Mattmüller – Al Planning	9 / 59

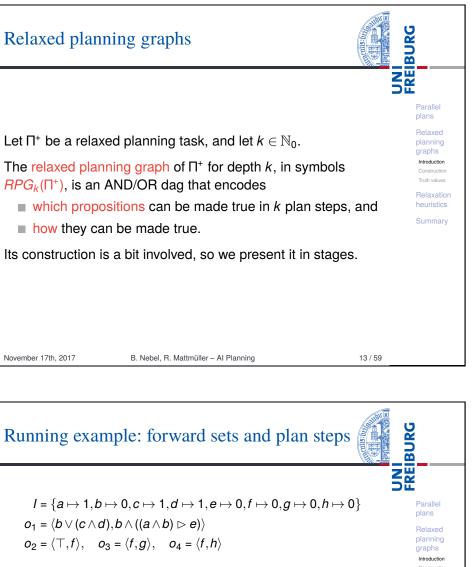


So far, so goo	d		BURG
			Parallel plans Plan steps Forward distan
	en how systematic computation o to an admissible heuristic estima		Relaxed planning graphs
However, this	s estimate is <mark>very coarse</mark> .		Relaxation heuristics
 To improve it of informatio 	t, we need to include <mark>backward p</mark> n.	propagation	Summary
For this purpose,	we use so-called relaxed plannir	ng graphs.	
November 17th, 2017	B. Nebel, R. Mattmüller – Al Planning	10 / 59	



12/59

Relaxed planning graphs



$$S_{0}^{F} = \{a, c, d\}$$

$$\omega_{1}^{F} = \{o_{1}, o_{2}\}$$

$$S_{1}^{F} = \{a, b, c, d, f\}$$

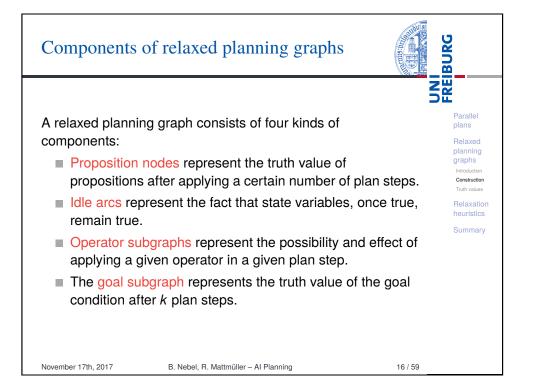
$$\omega_{2}^{F} = \{o_{1}, o_{2}, o_{3}, o_{4}\}$$

$$S_{2}^{F} = \{a, b, c, d, e, f, g, h\}$$

$$\omega_{3}^{F} = \omega_{2}^{F}$$

$$S_{3}^{F} = S_{2}^{F} \text{ etc.}$$

UNI FREIBURG Running example As a running example, consider the relaxed planning task Parallel $\langle A, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with plans $A = \{a, b, c, d, e, f, g, h\}$ graphs Introduction $I = \{a \mapsto 1, b \mapsto 0, c \mapsto 1, d \mapsto 1, h \mapsto 1, h$ Truth values $e \mapsto 0, f \mapsto 0, g \mapsto 0, h \mapsto 0$ Relaxation heuristics $o_1 = \langle b \lor (c \land d), b \land ((a \land b) \rhd e) \rangle$ $O_2 = \langle \top, f \rangle$ $o_3 = \langle f, g \rangle$ $O_4 = \langle f, h \rangle$ $\gamma = e \wedge (q \wedge h)$ B. Nebel, R. Mattmüller - Al Planning 14/59 November 17th, 2017



15/59

Truth values

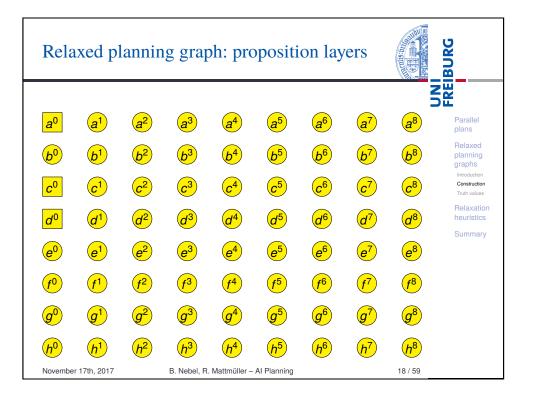
heuristics

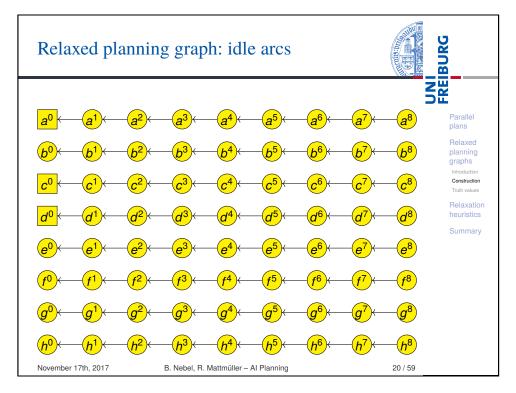
November 17th, 2017

Relaxed planning graph: proposition layers	
	Parallel plans
Let $\Pi^+ = \langle A, I, O^+, \gamma \rangle$ be a relaxed planning task, let $k \in \mathbb{N}_0$.	Relaxed planning graphs
For each $i \in \{0,, k\}$, $RPG_k(\Pi^+)$ contains one proposition layer which consists of:	Construction Truth values
a proposition node a^i for each state variable $a \in A$.	Relaxation heuristics Summary
Node a^i is an AND node if $i = 0$ and $l \models a$. Otherwise, it is an OR node.	

UNI FREIBURG Relaxed planning graph: idle arcs Parallel plans Relaxed planning graphs For each proposition node a^i with $i \in \{1, ..., k\}$, $RPG_k(\Pi^+)$ Introduction contains an arc from a^i to a^{i-1} (idle arcs). Construction Truth values Relaxation heuristics Intuition: If a state variable is true in step *i*, one of the possible Summary reasons is that it was already previously true. November 17th, 2017 B. Nebel, R. Mattmüller - Al Planning 19/59

B. Nebel, R. Mattmüller - Al Planning

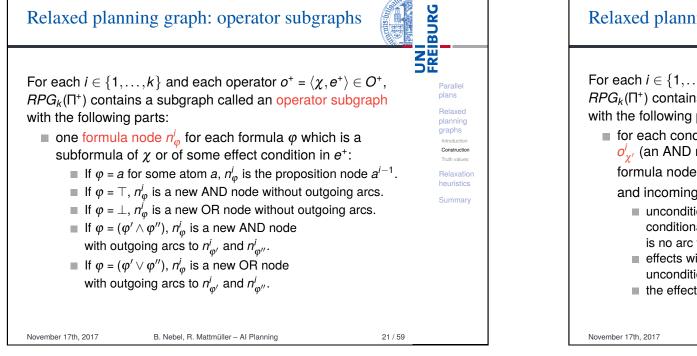


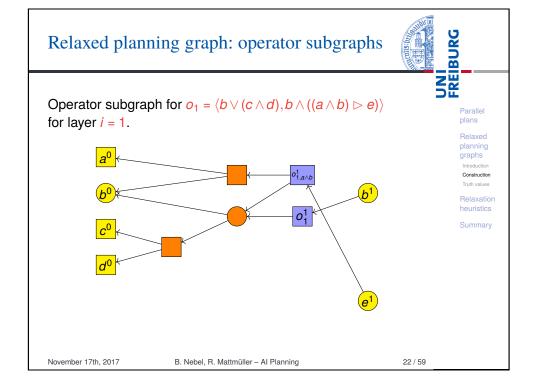


TIDICA

17/59

Relaxed planning graph: operator subgraphs





Relaxed planning graph: operator subgraphs

Parallel

graphs

Construction

Truth values

Relaxation

heuristics

plans

For each $i \in \{1, ..., k\}$ and each operator $o^+ = \langle \chi, e^+ \rangle \in O^+$, $RPG_k(\Pi^+)$ contains a subgraph called an operator subgraph with the following parts:

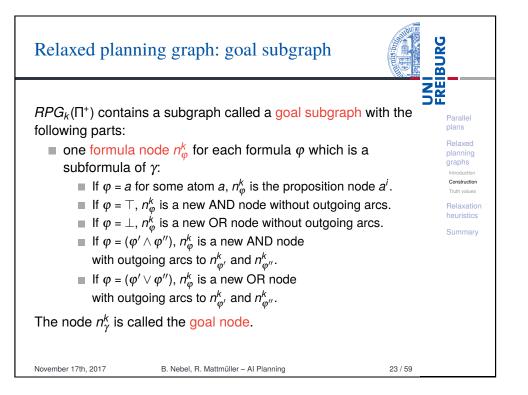
for each conditional effect ($\chi' \triangleright a$) in e^+ , an effect node $o_{\chi'}^{i}$ (an AND node) with outgoing arcs to the precondition formula node n_{γ}^{i} and effect condition formula node $n_{\gamma'}^{i}$, and incoming arc from proposition node a^i

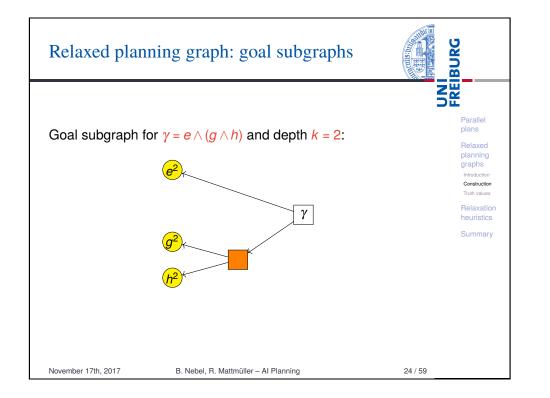
- unconditional effects a (effects which are not part of a conditional effect) are treated the same, except that there is no arc to an effect condition formula node
- effects with identical condition (including groups of unconditional effects) share the same effect node

• the effect node for unconditional effects is denoted by o^i

```
B. Nebel, R. Mattmüller - Al Planning
```

21/59





Connection to forward sets and plan steps

Theorem (relaxed planning graph truth values)

Let $\Pi^+ = \langle A, I, O^+, \gamma \rangle$ be a relaxed planning task. Then the truth values of the nodes of its depth-k relaxed planning graph $RPG_k(\Pi^+)$ relate to the forward sets and forward plan steps of Π^+ as follows:

- Proposition nodes: For all $a \in A$ and $i \in \{0, ..., k\}$, $val(a^i) = 1$ iff $a \in S_i^F$.
- (Unconditional) effect nodes: For all $o \in O^+$ and $i \in \{1,...,k\}$, $val(o^i) = 1$ iff $o \in \omega_i^F$.
- Goal nodes:

val $(n_{\gamma}^k) = 1$ iff the parallel forward distance of Π^+ is at most *k*.

(We omit the straight-forward proof.)

B. Nebel, R. Mattmüller – Al Planning

UNI FREIBURG

26 / 59

Paralle

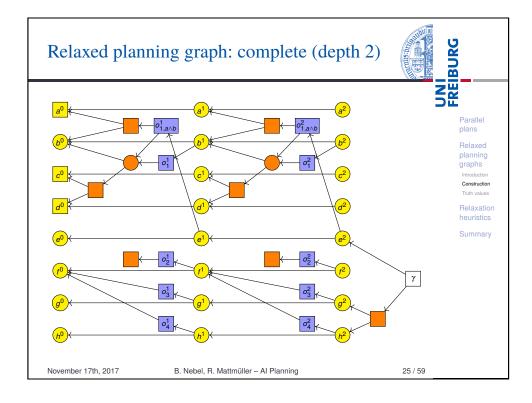
graphs

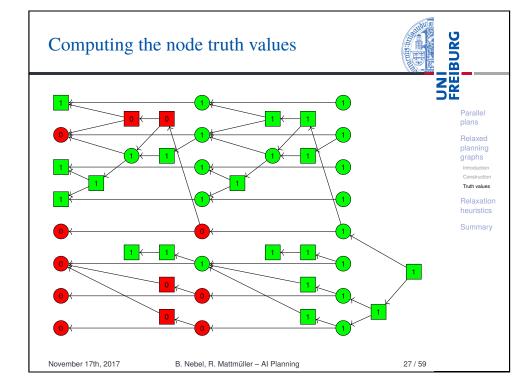
Introduction

Truth values

Relaxation heuristics

plans





Relaxed planning graphs for STRIPS

Remark: Relaxed planning graphs have historically been defined for STRIPS tasks only. In this case, we can simplify:

- Only one effect node per operator: STRIPS does not have conditional effects.
 - Because each operator has only one effect node, effect nodes are called operator nodes in relaxed planning graphs for STRIPS.
- No goal nodes: The test whether all goals are reached is done by the algorithm that evaluates the AND/OR dag.
- No formula nodes: Operator nodes are directly connected to their preconditions.

→ Relaxed planning graphs for STRIPS are layered digraphs and only have proposition and operator nodes.

November 17th, 2017

B. Nebel, R. Mattmüller – Al Planning

28 / 59

BURG

UNI FREI

Parallel

plans

planning

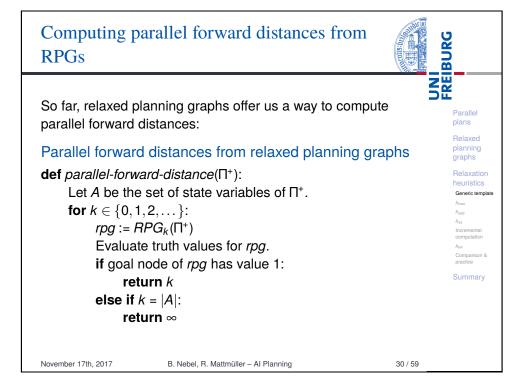
graphs

Introduction

Truth values

Relaxation

heuristics

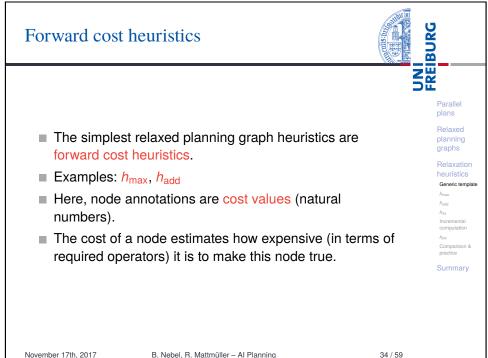


Remarks on th	e algorithm	BURG
incrementally Add new Move go Similarly, all Thus, overall time O(RPC	planning graph for depth $k \ge 1$ can from the one for depth $k - 1$: layer k . al subgraph from layer $k - 1$ to layer wruth values up to layer $k - 1$ can computation with maximal depth $G_m(\Pi^+)) = O((m+1) \cdot \Pi^+).$ very efficient way of computing p nces (and wouldn't be used in provided the section of the sect	plans Relaxed planning graphs r k. h be reused. h m requires has incremental computation has has incremental computation has has has has has has has has
the relaxed p	llows computing additional inforr lanning graph nodes along the w for heuristic estimates.	

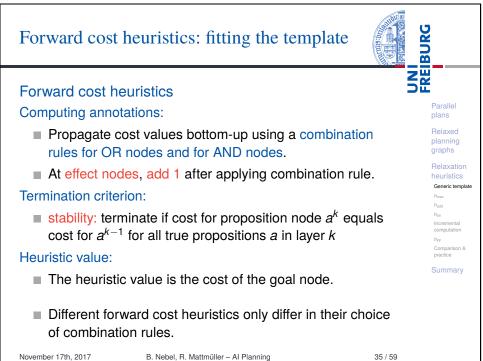
Generic relaxed planning graph heuristics

Computing	heuristics	from	relaxed	planning	graphs
-----------	------------	------	---------	----------	--------

def generic-rpg-heuristic($\langle A, I, O, \gamma \rangle$, s):	Parallel plans
$\Pi^+ := \langle A, oldsymbol{s}, O^+, \gamma angle$	Relaxed
for $k \in \{0, 1, 2,\}$:	planning graphs
$rpg := RPG_k(\Pi^+)$	Relaxation
Evaluate truth values for rpg.	heuristics Generic template
if goal node of <i>rpg</i> has value 1:	h _{max} h _{add}
Annotate true nodes of rpg.	h _{sa} Incremental
if termination criterion is true:	computation h _{FF}
return heuristic value from annotations	Comparison & practice
else if $k = A $:	Summary
return ∞	
→ generic template for heuristic functions	
→ to get concrete heuristic: fill in highlighted parts	
November 17th, 2017 B. Nebel, R. Mattmüller – Al Planning	32 / 59



Concrete exam	ples for the generic heu	ristic	BURG
Many planning her	uristics fit the generic template	e:	UN ERE
additive heuri	stic h _{add} (Bonet, Loerincs & G	Geffner, 1997)	Parallel
max heuristic	hmax (Bonet & Geffner, 1999))	plans Relaxed
FF heuristic h	FF (Hoffmann & Nebel, 2001)		planning
cost-sharing h	neuristic h _{cs} (Mirkis & Domshl ed in this course		graphs Relaxation heuristics Generic temple
set-additive h	euristic h _{sa} (Keyder & Geffner	r, 2008)	h _{max}
Remarks:			h _{sa} Incremental computation
For all these I	neuristics, equivalent definitio	ns that don't	h _{FF} Comparison &
refer to relaxe	ed planning graphs are possib	ole.	practice
	uch equivalent definitions hav , h _{add} and h _{sa} .	e mostly been	Summary
	ristics, the most efficient impl laxed planning graphs explicit		
November 17th, 2017	B. Nebel, R. Mattmüller – Al Planning	33 / 59	



BURG

FREI

The max heuristic h_{max} (again)

Forward cost heuristics: max heuristic h_{max} Combination rule for AND nodes:

■ $cost(u) = max({cost(v_1), ..., cost(v_k)})$ (with $max(\emptyset) := 0$)

Combination rule for OR nodes:

 $cost(u) = min(\{cost(v_1), \dots, cost(v_k)\})$

In both cases, $\{v_1, \ldots, v_k\}$ is the set of true successors of u.

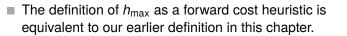
Intuition:

- AND rule: If we have to achieve several conditions, estimate this by the most expensive cost.
- OR rule: If we have a choice how to achieve a condition, pick the cheapest possibility.

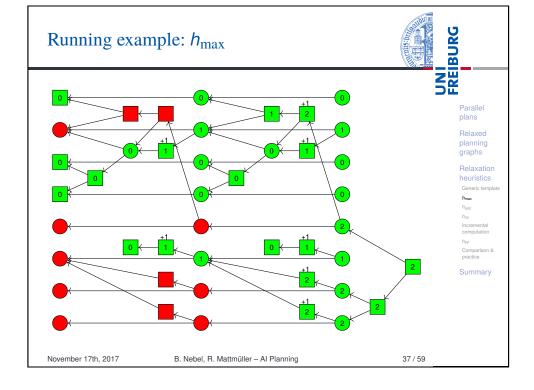
November 17th, 2017

B. Nebel, R. Mattmüller – Al Planning

Remarks on h_{max}



- Unlike the earlier definition, it generalizes to an extension where every operator has an associated non-negative cost (rather than all operators having cost 1).
- In the case without costs (and only then), it is easy to prove that the goal node has the same cost in all graphs *RPG_k*(Π⁺) where it is true. (Namely, the cost is equal to the lowest value of *k* for which the goal node is true.)
- We can thus terminate the computation as soon as the goal becomes true, without waiting for stability.
- The same is not true for other forward-propagating heuristics (h_{add}, h_{cs}, h_{sa}).



The additive heuristic	BURG
Forward cost heuristics: additive heuristic <i>h</i> add Combination rule for AND nodes:	Parallel
$ cost(u) = cost(v_1) + \dots + cost(v_k) $ (with $\Sigma(\emptyset) := 0$)	Relaxed planning graphs
Combination rule for OR nodes:	Relaxation heuristics Generic template
■ $cost(u) = min({cost(v_1),, cost(v_k)})$ In both cases, $\{v_1,, v_k\}$ is the set of true successors of u .	h _{max} h _{add} h _{sa} Incremental
Intuition:	computation h _{FF} Comparison & practice
AND rule: If we have to achieve several conditions, estimate this by the cost of achieving each in isolation.	Summary
OR rule: If we have a choice how to achieve a condition, pick the cheapest possibility.	
November 17th, 2017 B. Nebel, R. Mattmüller – AI Planning 39 / 55	Э

BURG

N

Parallel

planning graphs

heuristics

h_{max} h_{add} h_{sa}

hee

BURG

FREI

Parallel

graphs

heuristics

Comparison &

Summary

h_{max} h_{add}

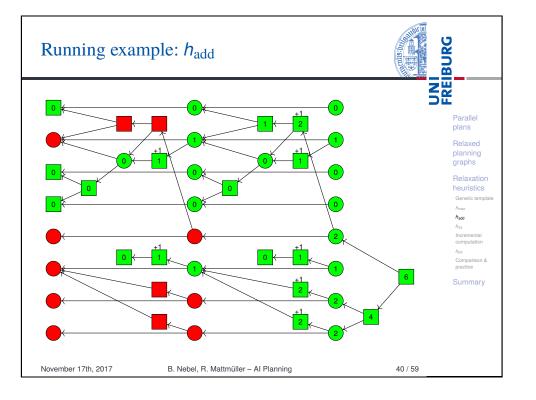
hsa

plans

36 / 59

practice

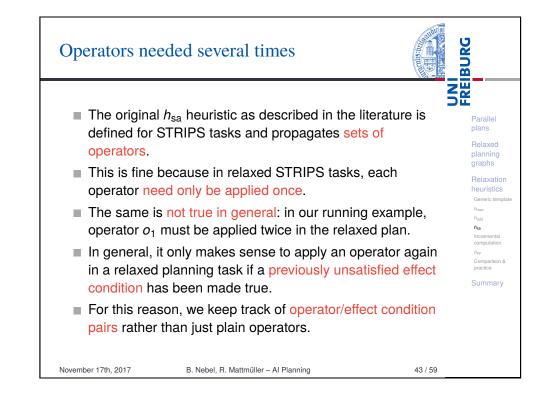
plans



The set-additive heuristic

- We now discuss a refinement of the additive heuristic called the set-additive heuristic h_{sa}.
- The set-additive heuristic addresses the problem that h_{add} does not take positive interactions into account.
- Like h_{max} and h_{add}, h_{sa} is calculated through forward propagation of node annotations.
- However, the node annotations are not cost values, but sets of operators (kind of).
- The idea is that by taking set unions instead of adding costs, operators needed only once are counted only once.

Disclaimer: There are some quite subtle differences between the h_{sa} heuristic as we describe it here and the "real" heuristic of Keyder & Geffner. We do not want to discuss this in detail, but please note that such differences exist.



42 / 59

BURG

Paralle

graphs

heuristics

hadd

hsa

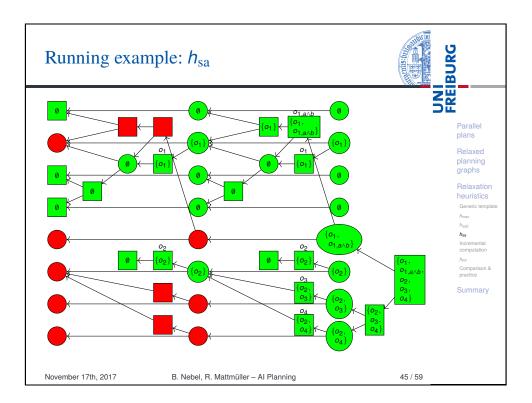
practice

Summary

plans

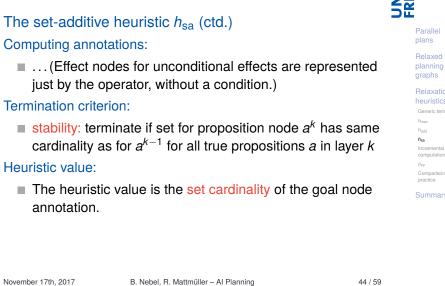
Set-additive heuristic: fitting the template

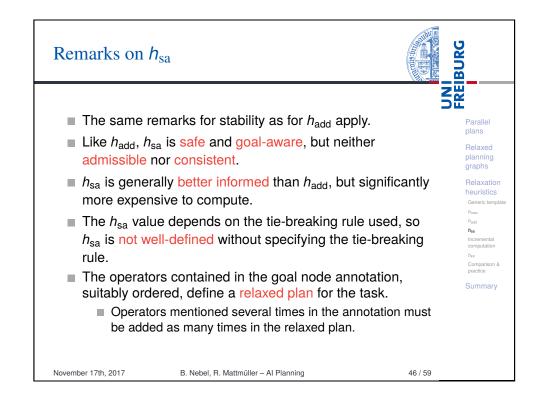
BURG N The set-additive heuristic h_{sa} plans Computing annotations: Annotations are sets of operator/effect condition pairs. graphs computed bottom-up. Relaxation Combination rule for AND nodes: heuristics ■ $ann(u) = ann(v_1) \cup \cdots \cup ann(v_k)$ (with $\bigcup (\emptyset) := \emptyset$) Combination rule for OR nodes: hsa ■ $ann(u) = ann(v_i)$ for some v_i minimizing $|ann(v_i)|$ hee In case of several minimizers, use any tie-breaking rule. practice In both cases, $\{v_1, \ldots, v_k\}$ is the set of true successors of u. At effect nodes, add the corresponding operator/effect condition pair to the set after applying combination rule. . . . 44 / 59 November 17th, 2017 B. Nebel, R. Mattmüller - Al Planning



Set-additive heuristic: fitting the template (ctd.)

BURG **FREI**





Incremental computa heuristics

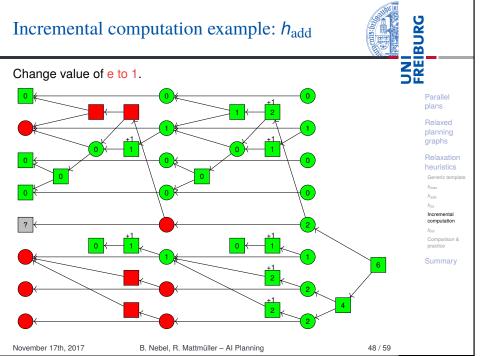
ation of forward	UNI FREBURG	_
vard-propagating heuristics is that omputation: eral states in sequence which onl variables, can from previous results and f what needs to be recomputed oth-first style searches (e.g., IDA* actice	у	Parallel plans Relaxed planning graphs Relaxation heuristics Generic template hma has Incremental computation hrp Comparison & practice Summary
el, R. Mattmüller – Al Planning	47 / 59	
ation example: <i>h</i> _11		

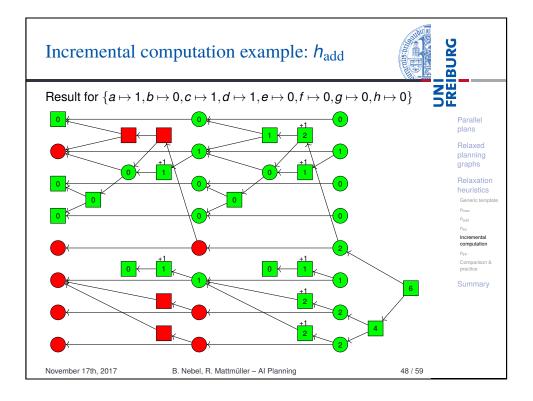
One nice property of forwa they allow incremental co

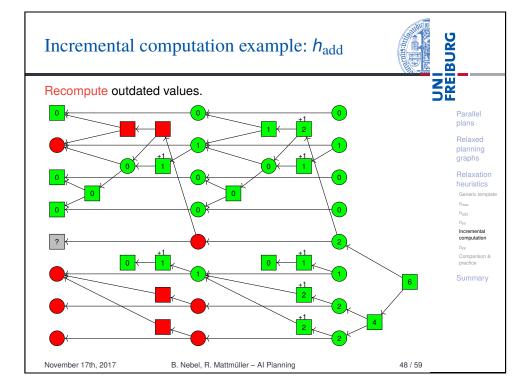
- when evaluating several differ in a few state va
 - start computation
 - keep track only of
- typical use case: dep
- rarely exploited in pra

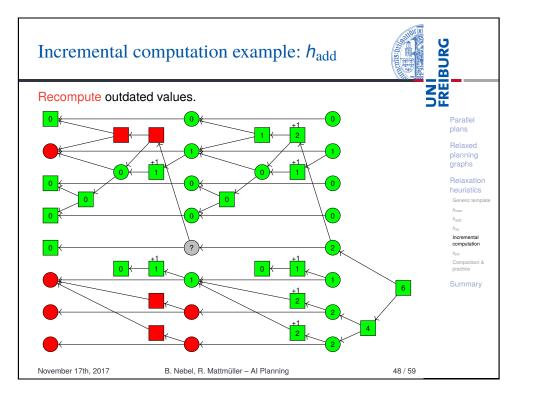
November	17th,	2017

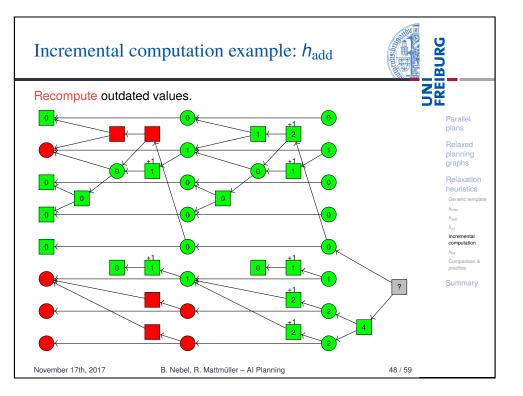
B. Nebel

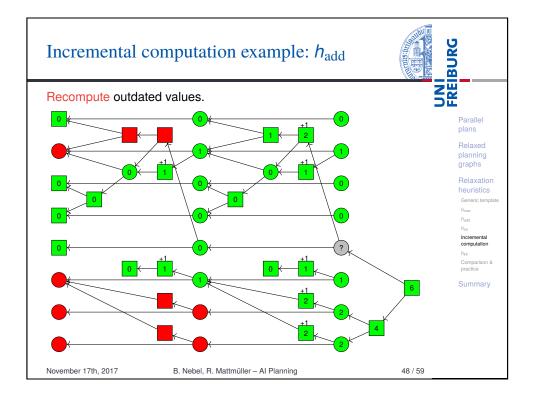


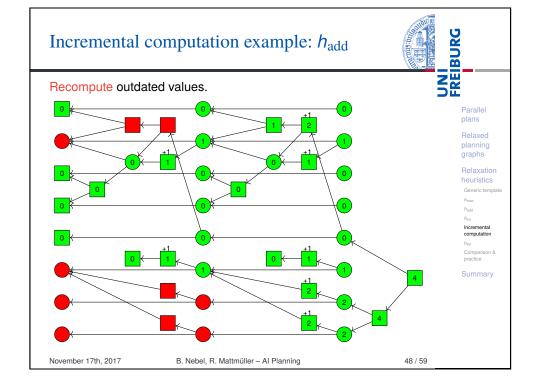












Heuristic estimate $h_{\rm FF}$

Parallel plans

planning graphs

heuristics

h_{add} hsa

h_{FF}

49 / 59

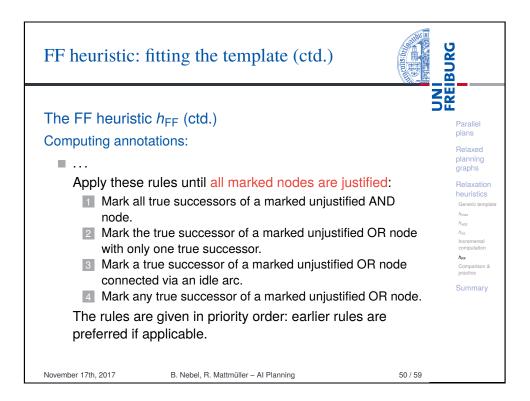
practice Summary

- h_{sa} is more expensive to compute than the other forward propagating heuristics because we must propagate sets.
- It is possible to get the same advantage over h_{add} combined with efficient propagation.
- Key idea of h_{FF}: perform a backward propagation that selects a sufficient subset of nodes to make the goal true (called a solution graph in AND/OR dag literature).
- The resulting heuristic is almost as informative as h_{sa}, yet computable as quickly as h_{add}.

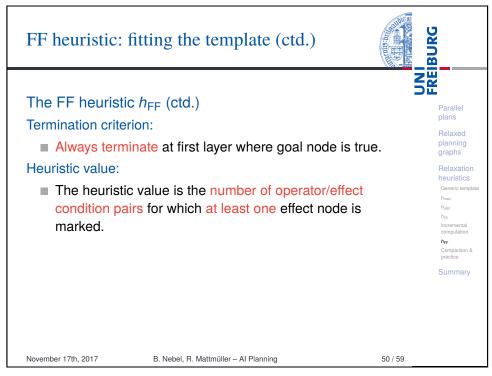
Note: Our presentation inverts the historical order. The set-additive heuristic was defined after the FF heuristic (sacrificing speed for even higher informativeness).

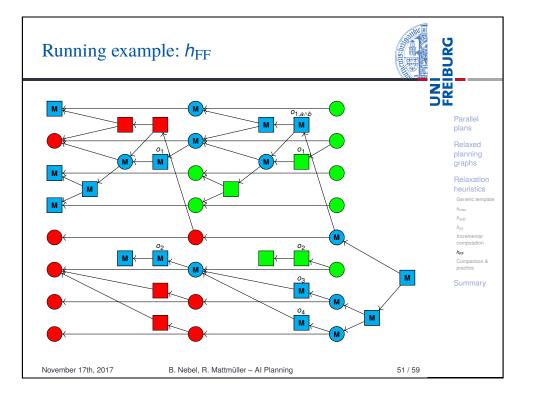
November 17th, 2017

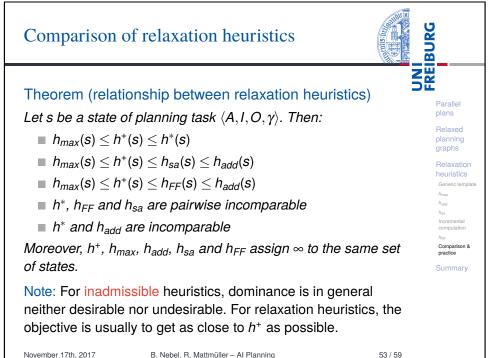
B. Nebel, R. Mattmüller – Al Planning



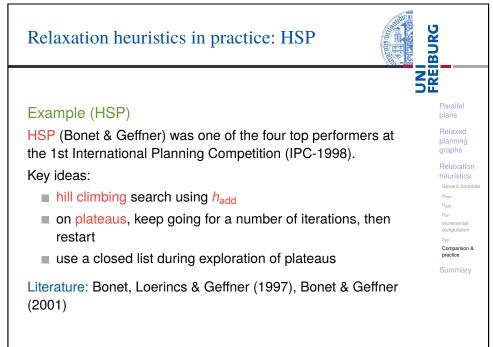
FF heuristic: fitt	ing the template		
A node is mark unmarked if it is and all other no We say that a the successors are		1 and is marked, s true de is	Parallel plans Relaxed planning graphs Relaxation heuristics Generic template haat has Incremental computation Per Comparison & practice
November 17th, 2017	B. Nebel, R. Mattmüller – Al Planning	50 / 59	







Remarks on <i>I</i>	0 _{FF}	BURG
	d h _{sa} , h _{FF} is safe and goal-aware nor consistent.	plans
	veness can be expected to be sli but is usually not far off.	graph
Unlike h _{sa} , I	n _{FF} can be computed in linear tim	ne. Relaxa heuris Generic
-	sa, the operators corresponding to ect condition pairs define a relaxi	o the marked hmax had
when the m	ba, the h _{FF} value depends on tie-larking rules allow several possib ell-defined without specifying the	le choices, so
•	plementation in FF uses additional re reduce the size of the generated re	
November 17th, 2017	B. Nebel, R. Mattmüller – Al Planning	52 / 59



Relaxation heuristics in practice: FF

Example (FF)

FF (Hoffmann & Nebel) won the 2nd International Planning Competition (IPC-2000).

Key ideas:

- enforced hill-climbing search using h_{EE}
- helpful action pruning: in each search node, only consider successors from operators that add one of the atoms marked in proposition layer 1
- goal ordering: in certain cases, FF recognizes and exploits that certain subgoals should be solved one after the other

If main search fails, FF performs greedy best-first search using $h_{\rm FF}$ without helpful action pruning or goal ordering.

November 17th, 2017

B. Nebel, R. Mattmüller - Al Planning

BURG

L N N N N N

graphs

heuristics

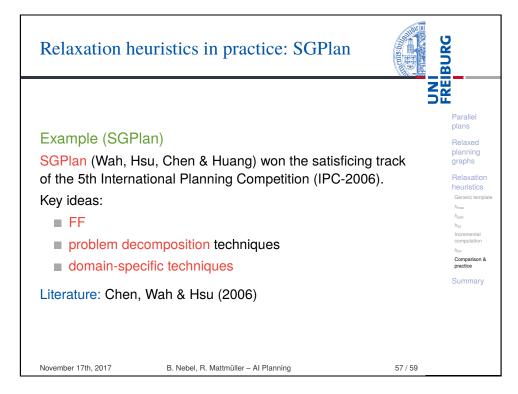
hadd

hsa

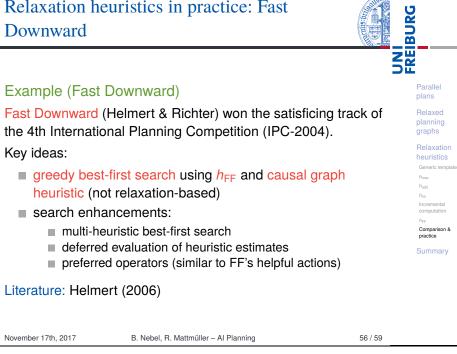
hee Comparison 8

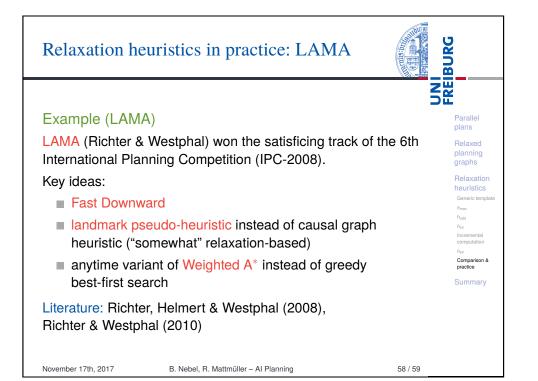
55 / 59

practice



Relaxation heuristics in practice: Fast Downward





Summary	BURG
 Relaxed planning graphs are AND/OR dags. Th which propositions can be made true in Π⁺ and Closely related to forward sets and forward plat based on the notion of parallel relaxed plans. They can be constructed and evaluated efficier O((m+1) Π⁺) for planning task Π and depth <i>n</i> By annotating RPG nodes with appropriate inforwer can compute many useful heuristics. 	how. Parallel plans n steps, Relaxed planning graphs ntly, in time Relaxation heuristics
 Examples: max heuristic h_{max}, additive heuristic set-additive heuristic h_{sa} and FF heuristic h_{FF} Of these, only h_{max} admissible (but not very ac The others are much more informative. The set heuristic is the most sophisticated one. The FF heuristic is often similarly informative. If good trade-off between accuracy and computation. 	curate). t-additive t offers a
November 17th, 2017 B. Nebel, R. Mattmüller - Al Planning	59 / 59