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Our plan for the next lectures

Choices to make:
1 search direction: progression/regression/both
 previous chapter

2 search space representation: states/sets of states
 previous chapter

3 search algorithm: uninformed/heuristic; systematic/local
 this chapter

4 search control: heuristics, pruning techniques
 next chapters
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Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.
Planning is one application of search among many.
In this chapter, we describe some popular and/or
representative search algorithms, and (the basics of) how
they apply to planning.
Most of this is review of material that should be known
(details: Russell and Norvig’s textbook).
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Search states vs. search nodes

In search, one distinguishes:
search states s states (vertices) of the transition system
search nodes σ  search states plus information on
where/when/how they are encountered during search

What is in a search node?
Different search algorithms store different information in a search
node σ , but typical information includes:

state(σ ): associated search state

parent(σ ): pointer to search node from which σ is reached

action(σ ): action leading from state(parent(σ )) to state(σ )

g(σ ): cost of σ (length of path from the root node)

For the root node, parent(σ ) and action(σ ) are undefined.
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Search states vs. planning states

Search states 6= (planning) states:
Search states don’t have to correspond to states in the
planning sense.

progression: search states ≈ (planning) states
regression: search states ≈ sets of states (formulae)

Search algorithms for planning where search states are
planning states are called state-space search algorithms.
Strictly speaking, regression is not an example of
state-space search, although the term is often used
loosely.
However, we will put the emphasis on progression, which
is almost always state-space search.
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Required ingredients for search

A general search algorithm can be applied to any transition
system for which we can define the following three operations:

init(): generate the initial state
is-goal(s): test if a given state is a goal state
succ(s): generate the set of successor states of state s,
along with the operators through which they are reached
(represented as pairs 〈o,s′〉 of operators and states)

Together, these three functions form a search space (a very
similar notion to a transition system).
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Search for planning: progression

Let Π = 〈A, I,O,γ〉 be a planning task.

Search space for progression search
states: all states of Π (assignments to A)

init() = I

is-goal(s) =

{
true if s |= γ

false otherwise
succ(s) = {〈o,s′〉 | applicable o ∈O,s′ = appo(s)}
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Search for planning: regression

Let Π = 〈A, I,O,γ〉 be a planning task.

Search space for regression search
states: all formulae over A (how many?)

init() = γ

is-goal(ϕ) =

{
true if I |= ϕ

false otherwise
succ(ϕ) = {〈o,ϕ ′〉 | o ∈O,

ϕ ′ = regro(ϕ),ϕ ′ is satisfiable}
(modified if splitting is used)
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Classification of search algorithms

uninformed search vs. heuristic search:
uninformed search algorithms only use the basic
ingredients for general search algorithms
heuristic search algorithms additionally use heuristic
functions which estimate how close a node is to the goal

systematic search vs. local search:
systematic algorithms consider a large number of search
nodes simultaneously
local search algorithms work with one (or a few)
candidate solutions (search nodes) at a time
not a black-and-white distinction; there are crossbreeds
(e. g., enforced hill-climbing)
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Classification: what works where in planning?

uninformed vs. heuristic search:
For satisficing planning, heuristic search vastly
outperforms uninformed algorithms on most domains.
For optimal planning, the difference is less pronounced.

systematic search vs. local search:
For satisficing planning, the most successful algorithms
are somewhere between the two extremes.
For optimal planning, systematic algorithms are required.
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Common procedures for search algorithms

Before we describe the different search algorithms, we
introduce three procedures used by all of them:

make-root-node: Create a search node without parent.
make-node: Create a search node for a state generated
as the successor of another state.
extract-solution: Extract a solution from a search node
representing a goal state.
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Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node
def make-root-node(s):

σ := new node
state(σ ) := s
parent(σ ) := undefined
action(σ ) := undefined
g(σ ) := 0
return σ
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Procedure make-node

make-node: Create a search node for a state generated as the
successor of another state.

Procedure make-node
def make-node(σ , o, s):

σ ′ := new node
state(σ ′) := s
parent(σ ′) := σ

action(σ ′) := o
g(σ ′) := g(σ ) +1
return σ ′
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Procedure extract-solution

extract-solution: Extract a solution from a search node
representing a goal state.

Procedure extract-solution
def extract-solution(σ ):

solution := new list
while parent(σ ) is defined:

solution.push-front(action(σ ))
σ := parent(σ )

return solution
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Uninformed search algorithms

Uninformed algorithms are less relevant for planning than
heuristic ones, so we keep their discussion brief.
Uninformed algorithms are mostly interesting to us
because we can compare and contrast them to related
heuristic search algorithms.

Popular uninformed systematic search algorithms:
breadth-first search
depth-first search
iterated depth-first search

Popular uninformed local search algorithms:
random walk
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Breadth-first search without duplicate
detection

Breadth-first search
queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():

σ = queue.pop-front()
if is-goal(state(σ )):

return extract-solution(σ )
for each 〈o,s〉 ∈ succ(state(σ )):

σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

return unsolvable

Possible improvement: duplicate detection (see next slide).
Another possible improvement: test if σ ′ is a goal node; if so,
terminate immediately. (We don’t do this because it obscures
the similarity to some of the later algorithms.)
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Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := /0
while not queue.empty():

σ = queue.pop-front()
if state(σ ) /∈ closed:

closed := closed∪{state(σ )}
if is-goal(state(σ )):

return extract-solution(σ )
for each 〈o,s〉 ∈ succ(state(σ )):

σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

return unsolvable
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Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
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Random walk

Random walk
σ := make-root-node(init())
forever:

if is-goal(state(σ )):
return extract-solution(σ )

Choose a random element 〈o,s〉 from succ(state(σ )).
σ := make-node(σ ,o,s)

The algorithm usually does not find any solutions, unless
almost every sequence of actions is a plan.
Often, it runs indefinitely without making progress.
It can also fail by reaching a dead end, a state with no
successors. This is a weakness of many local search
approaches.
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Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:
greedy best-first search
A∗

weighted A∗

IDA∗

depth-first branch-and-bound search
. . .
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Heuristic search algorithms: local

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:
hill-climbing
enforced hill-climbing
beam search
tabu search
genetic algorithms
simulated annealing
. . .
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Heuristic search: idea

goalinit

dista
nce

estim
ate

distance estimate

distance estimate

distance estimate
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Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)
Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : Σ→ N0∪{∞}.

The value h(σ ) is called the heuristic estimate or heuristic
value of heuristic h for node σ . It is supposed to estimate the
distance from σ to the nearest goal node.
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What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?
For most heuristic search algorithms, h does not need to
have any strong properties for the algorithm to work (= be
correct and complete).
However, the efficiency of the algorithm closely relates to
how accurately h reflects the actual goal distance.
For some algorithms, like A∗, we can prove strong formal
relationships between properties of h and properties of
the algorithm (optimality, dominance, run-time for
bounded error, . . . )
For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.
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Heuristics applied to nodes or states?

Most texts apply heuristic functions to states, not nodes.
This is slightly less general than our definition:

Given a state heuristic h, we can define an equivalent
node heuristic as h′(σ ) := h(state(σ )).
The opposite is not possible. (Why not?)

There is good justification for only allowing state-defined
heuristics: why should the estimated distance to the goal
depend on how we ended up in a given state s?
We call heuristics which don’t just depend on state(σ )
pseudo-heuristics.
In practice there are sometimes good reasons to have the
heuristic value depend on the generating path of σ

(e. g., landmark pseudo-heuristic, Richter et al. 2008).
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Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)
The optimal or perfect heuristic of a search space is the
heuristic h∗ which maps each search node σ to the length of a
shortest path from state(σ ) to any goal state.

Note: h∗(σ ) = ∞ iff no goal state is reachable from σ .
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Properties of heuristics

A heuristic h is called
safe if h∗(σ ) = ∞ for all σ ∈ Σ with h(σ ) = ∞

goal-aware if h(σ ) = 0 for all goal nodes σ ∈ Σ
admissible if h(σ )≤ h∗(σ ) for all nodes σ ∈ Σ
consistent if h(σ )≤ h(σ ′) +1 for all nodes σ ,σ ′ ∈ Σ
such that σ ′ is a successor of σ .1

Relationships?

1or: h(σ )≤ h(σ ′) + cost(σ ,σ ′) for non-unit costs, where cost(σ ,σ ′) is the
cost of the transition from σ to σ ′.
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Greedy best-first search

Greedy best-first search (with duplicate detection)
open := new min-heap ordered by (σ 7→ h(σ ))
open.insert(make-root-node(init()))
closed := /0
while not open.empty():

σ = open.pop-min()
if state(σ ) /∈ closed:

closed := closed∪{state(σ )}
if is-goal(state(σ )):

return extract-solution(σ )
for each 〈o,s〉 ∈ succ(state(σ )):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞:

open.insert(σ ′)
return unsolvable
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Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning
complete for safe heuristics (due to duplicate detection)
suboptimal unless h satisfies some very strong
assumptions (similar to being perfect)
invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a
constant)
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A∗

A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ ) + h(σ ))
open.insert(make-root-node(init()))
closed := /0
distance := /0
while not open.empty():

σ = open.pop-min()
if state(σ ) /∈ closed or g(σ ) < distance(state(σ )):

closed := closed∪{state(σ )}
distance(state(σ )) := g(σ )
if is-goal(state(σ )):

return extract-solution(σ )
for each 〈o,s〉 ∈ succ(state(σ )):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞: open.insert(σ ′)

return unsolvable
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Terminology for A∗

f value of a node: defined by f (σ ) := g(σ ) + h(σ )
generated nodes: nodes inserted into open at some point
expanded nodes: nodes σ popped from open for which
the test against closed and distance succeeds
reexpanded nodes: expanded nodes for which
state(σ ) ∈ closed upon expansion (also called reopened
nodes)
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Properties of A∗

the most commonly used algorithm for optimal planning
rarely used for satisficing planning
complete for safe heuristics (even without duplicate
detection)
optimal if h is admissible (even without duplicate
detection)
never reopens nodes if h is consistent

Implementation notes:
in the heap-ordering procedure, it is considered a good
idea to break ties in favour of lower h values
can simplify algorithm if we know that we only have to
deal with consistent heuristics
common, hard to spot bug: test membership in closed at
the wrong time
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Weighted A∗

Weighted A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ ) + W ·h(σ ))
open.insert(make-root-node(init()))
closed := /0
distance := /0
while not open.empty():

σ = open.pop-min()
if state(σ ) /∈ closed or g(σ ) < distance(state(σ )):

closed := closed∪{state(σ )}
distance(σ ) := g(σ )
if is-goal(state(σ )):

return extract-solution(σ )
for each 〈o,s〉 ∈ succ(state(σ )):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞: open.insert(σ ′)

return unsolvable
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Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search
for W = 1, behaves like A∗

for W → ∞, behaves like greedy best-first search

Properties:
one of the most commonly used algorithms for satisficing
planning
for W > 1, can prove similar properties to A∗, replacing
optimal with bounded suboptimal: generated solutions are
at most a factor W as long as optimal ones
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Hill-climbing

Hill-climbing
σ := make-root-node(init())
forever:

if is-goal(state(σ )):
return extract-solution(σ )

Σ′ := {make-node(σ ,o,s) | 〈o,s〉 ∈ succ(state(σ ))}
σ := an element of Σ′ minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(σ ) are not possible
many variations: tie-breaking strategies, restarts
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Enforced hill-climbing

Enforced hill-climbing: procedure improve
def improve(σ0):

queue := new fifo-queue
queue.push-back(σ0)
closed := /0
while not queue.empty():

σ = queue.pop-front()
if state(σ ) /∈ closed:

closed := closed∪{state(σ )}
if h(σ ) < h(σ0):

return σ

for each 〈o,s〉 ∈ succ(state(σ )):
σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

fail

 breadth-first search for more promising node than σ0
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Enforced hill-climbing (ctd.)

Enforced hill-climbing
σ := make-root-node(init())
while not is-goal(state(σ )):

σ := improve(σ )
return extract-solution(σ )

one of the three most commonly used algorithms for
satisficing planning
can fail if procedure improve fails (when the goal is
unreachable from σ0)
complete for undirected search spaces (where the
successor relation is symmetric) if h(σ ) = 0 for all goal
nodes and only for goal nodes
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distinguish: planning states, search states, search nodes
planning state: situation in the world modelled by the task
search state: subproblem remaining to be solved

In state-space search (usually progression search),
planning states and search states are identical.
In regression search, search states usually describe
sets of states (“subgoals”).

search node: search state + info on “how we got there”
search algorithms mainly differ in order of node expansion

uninformed vs. informed (heuristic) search
local vs. systematic search
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Summary (ctd.)

heuristics: estimators for “distance to goal node”
usually: the more accurate, the better performance
desiderata: safe, goal-aware, admissible, consistent
the ideal: perfect heuristic h∗

most common algorithms for satisficing planning:
greedy best-first search
weighted A∗
enforced hill-climbing

most common algorithm for optimal planning:
A∗
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