Principles of AI Planning

6. Planning as search: search algorithms

Bernhard Nebel and Robert Mattmüller
November 6th, 2017
Introduction to search algorithms for planning
Our plan for the next lectures

Choices to make:

1. search direction: progression/regression/both
 ⇝ previous chapter

2. search space representation: states/sets of states
 ⇝ previous chapter

3. search algorithm: uninformed/heuristic; systematic/local
 ⇝ this chapter

4. search control: heuristics, pruning techniques
 ⇝ next chapters
Search

- Search algorithms are used to find solutions (plans) for transition systems in general, not just for planning tasks.
- Planning is one application of search among many.
- In this chapter, we describe some popular and/or representative search algorithms, and (the basics of) how they apply to planning.
- Most of this is review of material that should be known (details: Russell and Norvig’s textbook).
Search states vs. search nodes

In search, one distinguishes:

- **search states** $s \rightsquigarrow$ states (vertices) of the transition system
- **search nodes** $\sigma \rightsquigarrow$ search states plus information on where/when/how they are encountered during search

What is in a search node?

Different search algorithms store different information in a search node σ, but typical information includes:

- $\text{state}(\sigma)$: associated search state
- $\text{parent}(\sigma)$: pointer to search node from which σ is reached
- $\text{action}(\sigma)$: action leading from $\text{state}(\text{parent}(\sigma))$ to $\text{state}(\sigma)$
- $g(\sigma)$: cost of σ (length of path from the root node)

For the root node, $\text{parent}(\sigma)$ and $\text{action}(\sigma)$ are undefined.
Search states vs. planning states

Search states \neq (planning) states:

- **Search states** don’t have to correspond to **states** in the planning sense.
 - progression: search states \approx (planning) states
 - regression: search states \approx sets of states (formulae)

- Search algorithms for planning where search states are planning states are called **state-space search** algorithms.

- Strictly speaking, regression is not an example of state-space search, although the term is often used loosely.

- However, we will put the emphasis on progression, which is almost always state-space search.
Required ingredients for search

A general search algorithm can be applied to any transition system for which we can define the following three operations:

- **init()**: generate the initial state
- **is-goal(s)**: test if a given state is a goal state
- **succ(s)**: generate the set of successor states of state s, along with the operators through which they are reached (represented as pairs $\langle o, s' \rangle$ of operators and states)

Together, these three functions form a search space (a very similar notion to a transition system).
Search for planning: progression

Let $\Pi = \langle A, I, O, \gamma \rangle$ be a planning task.

Search space for progression search

states: all states of Π (assignments to A)

- $\text{init}() = I$
- $\text{is-goal}(s) = \begin{cases} \text{true} & \text{if } s \models \gamma \\ \text{false} & \text{otherwise} \end{cases}$
- $\text{succ}(s) = \{ \langle o, s' \rangle | \text{applicable } o \in O, s' = \text{app}_o(s) \}$
Search for planning: regression

Let $\Pi = \langle A, I, O, \gamma \rangle$ be a planning task.

Search space for regression search

states: all formulae over A (how many?)

- $\text{init}() = \gamma$
- $\text{is-goal}(\varphi) = \begin{cases} \text{true} & \text{if } I \models \varphi \\ \text{false} & \text{otherwise} \end{cases}$
- $\text{succ}(\varphi) = \{ \langle o, \varphi' \rangle \mid o \in O, \varphi' = \text{regr}_o(\varphi), \varphi' \text{ is satisfiable} \}$ (modified if splitting is used)
uninformed search vs. heuristic search:

- **uninformed search algorithms** only use the basic ingredients for general search algorithms
- **heuristic search algorithms** additionally use **heuristic functions** which estimate how close a node is to the goal

systematic search vs. local search:

- **systematic algorithms** consider a large number of search nodes simultaneously
- **local search algorithms** work with one (or a few) candidate solutions (search nodes) at a time
- not a black-and-white distinction; there are **crossbreeds** (e.g., enforced hill-climbing)
uninformed vs. heuristic search:

- For **satisficing** planning, heuristic search vastly outperforms uninformed algorithms on most domains.
- For **optimal** planning, the difference is less pronounced.

systematic search vs. local search:

- For **satisficing** planning, the most successful algorithms are somewhere between the two extremes.
- For **optimal** planning, systematic algorithms are required.
Common procedures for search algorithms

Before we describe the different search algorithms, we introduce three procedures used by all of them:

- **make-root-node**: Create a search node without parent.
- **make-node**: Create a search node for a state generated as the successor of another state.
- **extract-solution**: Extract a solution from a search node representing a goal state.
Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node

def make-root-node(s):
 \(\sigma := \text{new node} \)
 \(\text{state}(\sigma) := s \)
 \(\text{parent}(\sigma) := \text{undefined} \)
 \(\text{action}(\sigma) := \text{undefined} \)
 \(g(\sigma) := 0 \)
 return \(\sigma \)
Procedure make-node

make-node: Create a search node for a state generated as the successor of another state.

Procedure make-node

```python
def make-node(σ, o, s):
    σ' := new node
    state(σ') := s
    parent(σ') := σ
    action(σ') := o
    g(σ') := g(σ) + 1
    return σ'
```
Procedure extract-solution

eextract-solution: Extract a solution from a search node representing a goal state.

Procedure extract-solution

def extract-solution(σ):
 solution := new list
 while parent(σ) is defined:
 solution.push-front(action(σ))
 σ := parent(σ)
 return solution
Uninformed search algorithms
Uninformed search algorithms

- Uninformed algorithms are less relevant for planning than heuristic ones, so we keep their discussion brief.
- Uninformed algorithms are mostly interesting to us because we can compare and contrast them to related heuristic search algorithms.

Popular uninformed systematic search algorithms:
- breadth-first search
- depth-first search
- iterated depth-first search

Popular uninformed local search algorithms:
- random walk
Breadth-first search without duplicate detection

Breadth-first search

\[queue := \textbf{new} \ \text{fifo-queue} \]
\[queue.\text{push-back}(\text{make-root-node}(\text{init}())) \]
\[\text{while not } queue.\text{empty}(): \]
\[\quad \sigma = queue.\text{pop-front}() \]
\[\quad \text{if is-goal(state}(\sigma)):\]
\[\quad \quad \text{return extract-solution}(\sigma) \]
\[\quad \text{for each } \langle o, s \rangle \in \text{succ}(\text{state}(\sigma)):\]
\[\quad \quad \sigma' := \text{make-node}(\sigma, o, s) \]
\[\quad \quad queue.\text{push-back}(\sigma') \]
\[\text{return unsolvable} \]

- Possible improvement: duplicate detection (see next slide).
- Another possible improvement: test if \(\sigma' \) is a goal node; if so, terminate immediately. (We don’t do this because it obscures the similarity to some of the later algorithms.)
Breadth-first search with duplicate detection

queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅

while not queue.empty():
 σ = queue.pop-front()
 if state(σ) ∉ closed:
 closed := closed ∪ {state(σ)}
 if is-goal(state(σ)):
 return extract-solution(σ)
 for each ⟨o, s⟩ ∈ succ(state(σ)):
 σ′ := make-node(σ, o, s)
 queue.push-back(σ′)

return unsolvable
Breadth-first search with duplicate detection

```java
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := Ø
while not queue.empty():
    σ = queue.pop-front()
    if state(σ) ∉ closed:
        closed := closed ∪ {state(σ)}
        if is-goal(state(σ)):
            return extract-solution(σ)
        for each ⟨o, s⟩ ∈ succ(state(σ)):
            σ′ := make-node(σ, o, s)
            queue.push-back(σ′)
return unsolvable
```
Random walk

\[\sigma := \text{make-root-node}(\text{init}()) \]

\textbf{forever:}

\[\text{if is-goal(state(\sigma))}: \]

\[\text{return extract-solution(\sigma)} \]

Choose a random element \(\langle o, s \rangle \) from \(\text{succ(state(\sigma))}. \)

\[\sigma := \text{make-node}(\sigma, o, s) \]

- The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.
- Often, it runs indefinitely without making progress.
- It can also fail by reaching a dead end, a state with no successors. This is a weakness of many local search approaches.
Heuristic search algorithms
Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

- greedy best-first search
- A*
- weighted A*
- IDA*
- depth-first branch-and-bound search
- ...
Heuristic search algorithms: local

- Heuristic search algorithms are the most common and overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:
- hill-climbing
- enforced hill-climbing
- beam search
- tabu search
- genetic algorithms
- simulated annealing
- …
Heuristic search: idea
A **heuristic search algorithm** requires one more operation in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space. A **heuristic function** or **heuristic** (for that search space) is a function $h : \Sigma \rightarrow \mathbb{N}_0 \cup \{\infty\}$.

The value $h(\sigma)$ is called the **heuristic estimate or heuristic value** of heuristic h for node σ. It is supposed to estimate the distance from σ to the nearest goal node.
What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

- For most heuristic search algorithms, h does not need to have any strong properties for the algorithm to work (= be correct and complete).
- However, the **efficiency** of the algorithm closely relates to how accurately h reflects the actual goal distance.
- For some algorithms, like A^*, we can prove strong formal relationships between properties of h and properties of the algorithm (optimality, dominance, run-time for bounded error, . . .)
- For other search algorithms, “it works well in practice” is often as good an analysis as one gets.
Heuristics applied to nodes or states?

- Most texts apply heuristic functions to states, not nodes.
- This is slightly less general than our definition:
 - Given a state heuristic h, we can define an equivalent node heuristic as $h'(\sigma) := h(state(\sigma))$.
 - The opposite is not possible. (Why not?)
- There is good justification for only allowing state-defined heuristics: why should the estimated distance to the goal depend on how we ended up in a given state s?
- We call heuristics which don’t just depend on $state(\sigma)$ pseudo-heuristics.
- In practice there are sometimes good reasons to have the heuristic value depend on the generating path of σ (e.g., landmark pseudo-heuristic, Richter et al. 2008).
Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The **optimal** or **perfect heuristic** of a search space is the heuristic h^* which maps each search node σ to the length of a shortest path from $state(\sigma)$ to any goal state.

Note: $h^*(\sigma) = \infty$ iff no goal state is reachable from σ.
Properties of heuristics

A heuristic h is called

- **safe** if $h^*(\sigma) = \infty$ for all $\sigma \in \Sigma$ with $h(\sigma) = \infty$
- **goal-aware** if $h(\sigma) = 0$ for all goal nodes $\sigma \in \Sigma$
- **admissible** if $h(\sigma) \leq h^*(\sigma)$ for all nodes $\sigma \in \Sigma$
- **consistent** if $h(\sigma) \leq h(\sigma') + 1$ for all nodes $\sigma, \sigma' \in \Sigma$ such that σ' is a successor of σ.\(^1\)

Relationships?

\(^1\)or: $h(\sigma) \leq h(\sigma') + \text{cost}(\sigma, \sigma')$ for non-unit costs, where $\text{cost}(\sigma, \sigma')$ is the cost of the transition from σ to σ'.
Greedy best-first search

Greedy best-first search (with duplicate detection)

\[
\begin{aligned}
\text{open} & := \textbf{new} \text{ min-heap ordered by } (\sigma \mapsto h(\sigma)) \\
\text{open.insert} & (\text{make-root-node}(\text{init}())) \\
\text{closed} & := \emptyset \\
\textbf{while not} \ & \text{open.empty}(): \\
& \quad \sigma = \text{open.pop-min}() \\
& \quad \textbf{if} \ \text{state}(\sigma) \notin \text{closed}: \\
& \quad \quad \text{closed} := \text{closed} \cup \{\text{state}(\sigma)\} \\
& \quad \quad \textbf{if} \ \text{is-goal}(\text{state}(\sigma)): \\
& \quad \quad \quad \textbf{return} \ \text{extract-solution}(\sigma) \\
& \quad \quad \textbf{for each} \ \langle o, s \rangle \in \text{succ}(\text{state}(\sigma)):\ \\
& \quad \quad \quad \sigma' := \text{make-node}(\sigma, o, s) \\
& \quad \quad \quad \textbf{if} \ h(\sigma') < \infty: \\
& \quad \quad \quad \quad \text{open.insert}(\sigma') \\
\textbf{return} \ & \text{unsolvable}
\end{aligned}
\]
Properties of greedy best-first search

- one of the three most commonly used algorithms for satisficing planning
- **complete** for safe heuristics (due to duplicate detection)
- **suboptimal** unless \(h \) satisfies some very strong assumptions (similar to being perfect)
- invariant under all strictly monotonic transformations of \(h \) (e.g., scaling with a positive constant or adding a constant)
A* (with duplicate detection and reopening)

\[\text{open} := \textbf{new} \ \text{min-heap ordered by} \ (\sigma \mapsto g(\sigma) + h(\sigma)) \]
\[\text{open.insert(make-root-node(init()))} \]
\[\text{closed} := \emptyset \]
\[\text{distance} := \emptyset \]

\textbf{while not} \ \text{open.empty}():
\[\sigma = \text{open.pop-min}() \]
\[\textbf{if} \ \text{state}(\sigma) \notin \text{closed} \textbf{ or } g(\sigma) < \text{distance(state}(\sigma)) : \]
\[\text{closed} := \text{closed} \cup \{\text{state}(\sigma)\} \]
\[\text{distance(state}(\sigma)) := g(\sigma) \]
\[\textbf{if} \ \text{is-goal}(\text{state}(\sigma)) : \]
\[\textbf{return} \ \text{extract-solution}(\sigma) \]
\[\textbf{for each} \ \langle o, s \rangle \in \text{succ(state}(\sigma)) : \]
\[\sigma' := \text{make-node}(\sigma, o, s) \]
\[\textbf{if} \ h(\sigma') < \infty : \text{open.insert}(\sigma') \]
\[\textbf{return} \ \text{unsolvable} \]
A* example

Example
A* example

Example
A* example

Example
A* example

Example
Terminology for A^*

- f value of a node: defined by $f(\sigma) := g(\sigma) + h(\sigma)$
- generated nodes: nodes inserted into open at some point
- expanded nodes: nodes σ popped from open for which the test against closed and distance succeeds
- reexpanded nodes: expanded nodes for which $\text{state}(\sigma) \in \text{closed}$ upon expansion (also called reopened nodes)
Properties of A*

- the most commonly used algorithm for optimal planning
- rarely used for satisficing planning
- **complete** for safe heuristics (even without duplicate detection)
- **optimal** if h is admissible (even without duplicate detection)
- never reopens nodes if h is consistent

Implementation notes:

- in the heap-ordering procedure, it is considered a good idea to break ties in favour of lower h values
- can simplify algorithm if we know that we only have to deal with consistent heuristics
- common, hard to spot bug: test membership in `closed` at the wrong time
Weighted A* (with duplicate detection and reopening)

\[\text{open} := \textbf{new} \text{ min-heap ordered by } (\sigma \mapsto g(\sigma) + W \cdot h(\sigma))\]

\[\text{open.insert}(\text{make-root-node}(\text{init}()))\]

\[\text{closed := } \emptyset\]

\[\text{distance := } \emptyset\]

\textbf{while not} \text{open.empty():}

\[\sigma = \text{open.pop-min()}\]

\textbf{if} \text{state(}\sigma\text{)} \notin \text{closed} \textit{or} \text{g(}\sigma\text{)} < \text{distance(state(}\sigma\text{))}: \]

\[\text{closed := closed } \cup \{\text{state(}\sigma\text{)}\}\]

\[\text{distance(}\sigma\text{)} := \text{g(}\sigma\text{)}\]

\textbf{if} \text{is-goal}(\text{state(}\sigma\text{))}: \]

\[\text{return extract-solution}(\sigma)\]

\textbf{for each } \langle o, s \rangle \in \text{succ(state(}\sigma\text{))}: \]

\[\sigma' := \text{make-node}(\sigma, o, s)\]

\textbf{if} \text{h(}\sigma'\text{)} < \infty: \text{open.insert(}\sigma'\text{)}

\textbf{return} \text{unsolvable}
Properties of weighted A*

The weight $W \in \mathbb{R}_0^+$ is a parameter of the algorithm.
- for $W = 0$, behaves like breadth-first search
- for $W = 1$, behaves like A*
- for $W \to \infty$, behaves like greedy best-first search

Properties:
- one of the most commonly used algorithms for satisficing planning
- for $W > 1$, can prove similar properties to A*, replacing optimal with bounded suboptimal: generated solutions are at most a factor W as long as optimal ones
Hill-climbing

\[\sigma := \text{make-root-node}(\text{init}()) \]

forever:

\[\text{if is-goal}(\text{state}(\sigma)): \]
\[\quad \text{return } \text{extract-solution}(\sigma) \]
\[\Sigma' := \{ \text{make-node}(\sigma, o, s) \mid \langle o, s \rangle \in \text{succ}(\text{state}(\sigma)) \} \]
\[\sigma := \text{an element of } \Sigma' \text{ minimizing } h \text{ (random tie breaking)} \]

- can easily get stuck in \text{local minima} where immediate improvements of \(h(\sigma) \) are not possible
- many variations: tie-breaking strategies, restarts
Enforced hill-climbing

Enforced hill-climbing: procedure improve

```python
def improve(σ₀):
    queue := new fifo-queue
    queue.push-back(σ₀)
    closed := ∅
    while not queue.empty():
        σ = queue.pop-front()
        if state(σ) ∉ closed:
            closed := closed ∪ {state(σ)}
            if h(σ) < h(σ₀):
                return σ
            for each ⟨o, s⟩ ∈ succ(state(σ)):
                σ′ := make-node(σ, o, s)
                queue.push-back(σ′)
    fail

⇝ breadth-first search for more promising node than σ₀
```
Enforced hill-climbing (ctd.)

Enforced hill-climbing

\[
\sigma := \text{make-root-node}(\text{init}()) \\
\textbf{while not} \ \text{is-goal}(\text{state}(\sigma)):\ \\
\quad \sigma := \text{improve}(\sigma) \\
\textbf{return} \ \text{extract-solution}(\sigma)
\]

- one of the three most commonly used algorithms for satisficing planning
- can fail if procedure improve fails (when the goal is unreachable from \(\sigma_0\))
- complete for undirected search spaces (where the successor relation is symmetric) if \(h(\sigma) = 0\) for all goal nodes and only for goal nodes
Summary

- distinguish: planning states, search states, search nodes
 - planning state: situation in the world modelled by the task
 - search state: subproblem remaining to be solved
 - In state-space search (usually progression search), planning states and search states are identical.
 - In regression search, search states usually describe sets of states (“subgoals”).
 - search node: search state + info on “how we got there”

- search algorithms mainly differ in order of node expansion
 - uninformed vs. informed (heuristic) search
 - local vs. systematic search
heuristics: estimators for “distance to goal node”
- usually: the more accurate, the better performance
- desiderata: safe, goal-aware, admissible, consistent
- the ideal: perfect heuristic h^*

most common algorithms for satisficing planning:
- greedy best-first search
- weighted A*
- enforced hill-climbing

most common algorithm for optimal planning:
- A*