
Principles of AI Planning
6. Planning as search: search algorithms

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
November 6th, 2017

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Introduction to search
algorithms for planning

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 2 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Our plan for the next lectures

Choices to make:
1 search direction: progression/regression/both
 previous chapter

2 search space representation: states/sets of states
 previous chapter

3 search algorithm: uninformed/heuristic; systematic/local
 this chapter

4 search control: heuristics, pruning techniques
 next chapters

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 3 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.
Planning is one application of search among many.
In this chapter, we describe some popular and/or
representative search algorithms, and (the basics of) how
they apply to planning.
Most of this is review of material that should be known
(details: Russell and Norvig’s textbook).

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 4 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Search states vs. search nodes

In search, one distinguishes:
search states s states (vertices) of the transition system
search nodes σ search states plus information on
where/when/how they are encountered during search

What is in a search node?
Different search algorithms store different information in a search
node σ , but typical information includes:

state(σ): associated search state

parent(σ): pointer to search node from which σ is reached

action(σ): action leading from state(parent(σ)) to state(σ)

g(σ): cost of σ (length of path from the root node)

For the root node, parent(σ) and action(σ) are undefined.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 5 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Search states vs. planning states

Search states 6= (planning) states:
Search states don’t have to correspond to states in the
planning sense.

progression: search states ≈ (planning) states
regression: search states ≈ sets of states (formulae)

Search algorithms for planning where search states are
planning states are called state-space search algorithms.
Strictly speaking, regression is not an example of
state-space search, although the term is often used
loosely.
However, we will put the emphasis on progression, which
is almost always state-space search.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 6 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Required ingredients for search

A general search algorithm can be applied to any transition
system for which we can define the following three operations:

init(): generate the initial state
is-goal(s): test if a given state is a goal state
succ(s): generate the set of successor states of state s,
along with the operators through which they are reached
(represented as pairs 〈o,s′〉 of operators and states)

Together, these three functions form a search space (a very
similar notion to a transition system).

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 7 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Search for planning: progression

Let Π = 〈A, I,O,γ〉 be a planning task.

Search space for progression search
states: all states of Π (assignments to A)

init() = I

is-goal(s) =

{
true if s |= γ

false otherwise
succ(s) = {〈o,s′〉 | applicable o ∈O,s′ = appo(s)}

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 8 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Search for planning: regression

Let Π = 〈A, I,O,γ〉 be a planning task.

Search space for regression search
states: all formulae over A (how many?)

init() = γ

is-goal(ϕ) =

{
true if I |= ϕ

false otherwise
succ(ϕ) = {〈o,ϕ ′〉 | o ∈O,

ϕ ′ = regro(ϕ),ϕ ′ is satisfiable}
(modified if splitting is used)

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 9 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Classification of search algorithms

uninformed search vs. heuristic search:
uninformed search algorithms only use the basic
ingredients for general search algorithms
heuristic search algorithms additionally use heuristic
functions which estimate how close a node is to the goal

systematic search vs. local search:
systematic algorithms consider a large number of search
nodes simultaneously
local search algorithms work with one (or a few)
candidate solutions (search nodes) at a time
not a black-and-white distinction; there are crossbreeds
(e. g., enforced hill-climbing)

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 10 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Classification: what works where in planning?

uninformed vs. heuristic search:
For satisficing planning, heuristic search vastly
outperforms uninformed algorithms on most domains.
For optimal planning, the difference is less pronounced.

systematic search vs. local search:
For satisficing planning, the most successful algorithms
are somewhere between the two extremes.
For optimal planning, systematic algorithms are required.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 11 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Common procedures for search algorithms

Before we describe the different search algorithms, we
introduce three procedures used by all of them:

make-root-node: Create a search node without parent.
make-node: Create a search node for a state generated
as the successor of another state.
extract-solution: Extract a solution from a search node
representing a goal state.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 12 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node
def make-root-node(s):

σ := new node
state(σ) := s
parent(σ) := undefined
action(σ) := undefined
g(σ) := 0
return σ

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 13 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Procedure make-node

make-node: Create a search node for a state generated as the
successor of another state.

Procedure make-node
def make-node(σ , o, s):

σ ′ := new node
state(σ ′) := s
parent(σ ′) := σ

action(σ ′) := o
g(σ ′) := g(σ) +1
return σ ′

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 14 / 41

Introduction
Nodes and states

Search for planning

Common
procedures

Uninformed
search

Heuristic
search

Summary

Procedure extract-solution

extract-solution: Extract a solution from a search node
representing a goal state.

Procedure extract-solution
def extract-solution(σ):

solution := new list
while parent(σ) is defined:

solution.push-front(action(σ))
σ := parent(σ)

return solution

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 15 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Uninformed search
algorithms

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 16 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Uninformed search algorithms

Uninformed algorithms are less relevant for planning than
heuristic ones, so we keep their discussion brief.
Uninformed algorithms are mostly interesting to us
because we can compare and contrast them to related
heuristic search algorithms.

Popular uninformed systematic search algorithms:
breadth-first search
depth-first search
iterated depth-first search

Popular uninformed local search algorithms:
random walk

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 17 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Breadth-first search without duplicate
detection

Breadth-first search
queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():

σ = queue.pop-front()
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

return unsolvable

Possible improvement: duplicate detection (see next slide).
Another possible improvement: test if σ ′ is a goal node; if so,
terminate immediately. (We don’t do this because it obscures
the similarity to some of the later algorithms.)

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 18 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := /0
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed∪{state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

return unsolvable

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 19 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := /0
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed∪{state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

return unsolvable

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 19 / 41

Introduction

Uninformed
search
Breadth-first w/o
duplicate detection

Breadth-first with
duplicate detection

Random walk

Heuristic
search

Summary

Random walk

Random walk
σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Choose a random element 〈o,s〉 from succ(state(σ)).
σ := make-node(σ ,o,s)

The algorithm usually does not find any solutions, unless
almost every sequence of actions is a plan.
Often, it runs indefinitely without making progress.
It can also fail by reaching a dead end, a state with no
successors. This is a weakness of many local search
approaches.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 20 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Heuristic search algorithms

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 21 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:
greedy best-first search
A∗

weighted A∗

IDA∗

depth-first branch-and-bound search
. . .

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 22 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Heuristic search algorithms: local

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:
hill-climbing
enforced hill-climbing
beam search
tabu search
genetic algorithms
simulated annealing
. . .

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 22 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Heuristic search: idea

goalinit

dista
nce

estim
ate

distance estimate

distance estimate

distance estimate

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 23 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)
Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : Σ→ N0∪{∞}.

The value h(σ) is called the heuristic estimate or heuristic
value of heuristic h for node σ . It is supposed to estimate the
distance from σ to the nearest goal node.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 24 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?
For most heuristic search algorithms, h does not need to
have any strong properties for the algorithm to work (= be
correct and complete).
However, the efficiency of the algorithm closely relates to
how accurately h reflects the actual goal distance.
For some algorithms, like A∗, we can prove strong formal
relationships between properties of h and properties of
the algorithm (optimality, dominance, run-time for
bounded error, . . .)
For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 25 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Heuristics applied to nodes or states?

Most texts apply heuristic functions to states, not nodes.
This is slightly less general than our definition:

Given a state heuristic h, we can define an equivalent
node heuristic as h′(σ) := h(state(σ)).
The opposite is not possible. (Why not?)

There is good justification for only allowing state-defined
heuristics: why should the estimated distance to the goal
depend on how we ended up in a given state s?
We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.
In practice there are sometimes good reasons to have the
heuristic value depend on the generating path of σ

(e. g., landmark pseudo-heuristic, Richter et al. 2008).

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 26 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)
The optimal or perfect heuristic of a search space is the
heuristic h∗ which maps each search node σ to the length of a
shortest path from state(σ) to any goal state.

Note: h∗(σ) = ∞ iff no goal state is reachable from σ .

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 27 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Properties of heuristics

A heuristic h is called
safe if h∗(σ) = ∞ for all σ ∈ Σ with h(σ) = ∞

goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ
admissible if h(σ)≤ h∗(σ) for all nodes σ ∈ Σ
consistent if h(σ)≤ h(σ ′) +1 for all nodes σ ,σ ′ ∈ Σ
such that σ ′ is a successor of σ .1

Relationships?

1or: h(σ)≤ h(σ ′) + cost(σ ,σ ′) for non-unit costs, where cost(σ ,σ ′) is the
cost of the transition from σ to σ ′.
November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 28 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Greedy best-first search

Greedy best-first search (with duplicate detection)
open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := /0
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed∪{state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞:

open.insert(σ ′)
return unsolvable

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 29 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning
complete for safe heuristics (due to duplicate detection)
suboptimal unless h satisfies some very strong
assumptions (similar to being perfect)
invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a
constant)

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 30 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗

A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := /0
distance := /0
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed∪{state(σ)}
distance(state(σ)) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞: open.insert(σ ′)

return unsolvable
November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 31 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗ example
Example

γ

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 32 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗ example
Example

γ

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 32 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗ example
Example

γ

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 32 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗ example
Example

γ

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 32 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

A∗ example
Example

γ

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 32 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Terminology for A∗

f value of a node: defined by f (σ) := g(σ) + h(σ)
generated nodes: nodes inserted into open at some point
expanded nodes: nodes σ popped from open for which
the test against closed and distance succeeds
reexpanded nodes: expanded nodes for which
state(σ) ∈ closed upon expansion (also called reopened
nodes)

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 33 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Properties of A∗

the most commonly used algorithm for optimal planning
rarely used for satisficing planning
complete for safe heuristics (even without duplicate
detection)
optimal if h is admissible (even without duplicate
detection)
never reopens nodes if h is consistent

Implementation notes:
in the heap-ordering procedure, it is considered a good
idea to break ties in favour of lower h values
can simplify algorithm if we know that we only have to
deal with consistent heuristics
common, hard to spot bug: test membership in closed at
the wrong time

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 34 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Weighted A∗

Weighted A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + W ·h(σ))
open.insert(make-root-node(init()))
closed := /0
distance := /0
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed∪{state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o,s〉 ∈ succ(state(σ)):

σ ′ := make-node(σ ,o,s)
if h(σ ′) < ∞: open.insert(σ ′)

return unsolvable
November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 35 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search
for W = 1, behaves like A∗

for W → ∞, behaves like greedy best-first search

Properties:
one of the most commonly used algorithms for satisficing
planning
for W > 1, can prove similar properties to A∗, replacing
optimal with bounded suboptimal: generated solutions are
at most a factor W as long as optimal ones

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 36 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Hill-climbing

Hill-climbing
σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ ,o,s) | 〈o,s〉 ∈ succ(state(σ))}
σ := an element of Σ′ minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(σ) are not possible
many variations: tie-breaking strategies, restarts

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 37 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Enforced hill-climbing

Enforced hill-climbing: procedure improve
def improve(σ0):

queue := new fifo-queue
queue.push-back(σ0)
closed := /0
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed∪{state(σ)}
if h(σ) < h(σ0):

return σ

for each 〈o,s〉 ∈ succ(state(σ)):
σ ′ := make-node(σ ,o,s)
queue.push-back(σ ′)

fail

 breadth-first search for more promising node than σ0
November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 38 / 41

Introduction

Uninformed
search

Heuristic
search
Heuristics

Systematic search

Local search

Summary

Enforced hill-climbing (ctd.)

Enforced hill-climbing
σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

one of the three most commonly used algorithms for
satisficing planning
can fail if procedure improve fails (when the goal is
unreachable from σ0)
complete for undirected search spaces (where the
successor relation is symmetric) if h(σ) = 0 for all goal
nodes and only for goal nodes

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 39 / 41

Introduction

Uninformed
search

Heuristic
search

Summary

Summary

distinguish: planning states, search states, search nodes
planning state: situation in the world modelled by the task
search state: subproblem remaining to be solved

In state-space search (usually progression search),
planning states and search states are identical.
In regression search, search states usually describe
sets of states (“subgoals”).

search node: search state + info on “how we got there”
search algorithms mainly differ in order of node expansion

uninformed vs. informed (heuristic) search
local vs. systematic search

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 40 / 41

Introduction

Uninformed
search

Heuristic
search

Summary

Summary (ctd.)

heuristics: estimators for “distance to goal node”
usually: the more accurate, the better performance
desiderata: safe, goal-aware, admissible, consistent
the ideal: perfect heuristic h∗

most common algorithms for satisficing planning:
greedy best-first search
weighted A∗
enforced hill-climbing

most common algorithm for optimal planning:
A∗

November 6th, 2017 B. Nebel, R. Mattmüller – AI Planning 41 / 41

	Introduction to search algorithms for planning
	Search nodes & search states
	Search for planning
	Common procedures for search algorithms

	Uninformed search algorithms
	Breadth-first search without duplicate detection
	Breadth-first search with duplicate detection
	Random walk

	Heuristic search algorithms
	Heuristics: definition and properties
	Systematic heuristic search algorithms
	Heuristic local search algorithms

