Principles of AI Planning

5. Planning as search: progression and regression

Albert-Ludwigs-Universität Freiburg

William Willia

Bernhard Nebel and Robert Mattmüller

October 27th, 2017

What do we mean by search?

Introduction

- Search is a very generic term.
- Every algorithm that tries out various alternatives can be said to "search" in some way.
- Here, we mean classical search algorithms.
 - Search nodes are expanded to generate successor nodes.
 - Examples: breadth-first search, A*, hill-climbing, ...
- To be brief, we just say search in the following (not "classical search").

Search

Introduction

Progression

Regression

Summary

Planning as (classical) search

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

2 / 46

Do you know this stuff already?

Introduction Glassification

■ We assume prior knowledge of basic search algorithms:

uninformed vs. informed

systematic vs. local

- $\hfill \blacksquare$ There will be a small refresher in the next chapter.
- Background: Russell & Norvig, Artificial Intelligence –
 A Modern Approach, Ch. 3 (all of it), Ch. 4 (local search)

Classificatio

Progression Regression

Summary

October 27th, 2017 B. Nebel, R. Mattmüller – Al Planning

3 / 46

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Search in planning

Introduction

Progression

Regression

search: one of the big success stories of Al

- many planning algorithms based on classical Al search (we'll see some other algorithms later, though)
- will be the focus of this and the following chapters (the majority of the course)

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

5 / 46

Must carefully distinguish two different problems:

satisficing planning: any solution is OK (although shorter solutions typically preferred)

optimal planning: plans must have shortest possible length

Search Introduction

UNI FREIBURG

Progression

Both are often solved by search, but:

Satisficing or optimal planning?

- details are very different
- almost no overlap between good techniques for satisficing planning and good techniques for optimal planning
- many problems that are trivial for satisficing planners are impossibly hard for optimal planners

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

6 / 46

Planning by search

How to apply search to planning? → many choices to make!

Progression Regression

Choice 1: Search direction

- progression: forward from initial state to goal
- regression: backward from goal states to initial state
- bidirectional search

Planning by search

How to apply search to planning? → many choices to make!

Choice 2: Search space representation

- search nodes are associated with states (→ state-space search)
- search nodes are associated with sets of states

Search Classification

Progression

October 27th, 2017 B. Nebel, R. Mattmüller - Al Planning 7 / 46

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Planning by search

How to apply search to planning? → many choices to make!

Search Introduction Classification

Progression

Regression

Regression

Choice 3: Search algorithm

- uninformed search: depth-first, breadth-first, iterative depth-first, ...
- heuristic search (systematic): greedy best-first, A*, Weighted A*, IDA*, ...
- heuristic search (local): hill-climbing, simulated annealing, beam search, ...

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

7 / 46

Planning by search

How to apply search to planning? → many choices to make!

Search Introduction Classificatio

Progression

Regression

3

Choice 4: Search control

- heuristics for informed search algorithms
- pruning techniques: invariants, symmetry elimination, partial-order reduction, helpful actions pruning, ...

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

7 / 46

Search-based satisficing planners

Search Introduction Classification

Progression

Regression

Summary

FF (Hoffmann & Nebel, 2001)

- search direction: forward search
- search space representation: single states
- search algorithm: enforced hill-climbing (informed local)
- heuristic: FF heuristic (inadmissible)
- pruning technique: helpful actions (incomplete)
- \rightsquigarrow one of the best satisficing planners

Search-based optimal planners

Fast Downward Stone Soup (Helmert et al., 2011)

- search direction: forward search
- search space representation: single states
- search algorithm: A* (informed systematic)
- heuristic: multiple admissible heuristics combined into a heuristic portfolio (LM-cut, M&S, blind, ...)
- pruning technique: none
- → one of the best optimal planners

Search Introductio

Progression

Regression

October 27th, 2017 B. Nebel, R. Mattmüller – AI Planning 8 / 46 October 27th, 2017 B. Nebel, R. Mattmüller – AI Planning

Our plan for the next lectures

Choices to make:

search direction: progression/regression/both

2 search space representation: states/sets of states

- 3 search algorithm: uninformed/heuristic; systematic/local → next chapter
- 4 search control: heuristics, pruning techniques → following chapters

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

10 / 46

Progression

October 27th, 2017

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

11 / 46

13 / 46

Planning by forward search: progression

Progression: Computing the successor state $app_{o}(s)$ of a state s with respect to an operator o.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

pro: very easy and efficient to implement

Search space representation in progression planners

UNI FREIBURG

Two alternative search spaces for progression planners:

- search nodes correspond to states
 - when the same state is generated along different paths, it is not considered again (duplicate detection)
 - pro: save time to consider same state again
 - con: memory intensive (must maintain closed list)
- search nodes correspond to operator sequences
 - different operator sequences may lead to identical states (transpositions); search does not notice this
 - pro: can be very memory-efficient
 - con: much wasted work (often exponentially slower)

B. Nebel, R. Mattmüller - Al Planning

→ first alternative usually preferable in planning (unlike many classical search benchmarks like 15-puzzle)

Progression planning example (depth-first search) Example where search nodes correspond to operator sequences (no duplicate detection) So Search Progression Overview Example Regression Summary October 27th, 2017 B. Nebel, R. Mattmüller – Al Planning 14/46

Progression planning example (depth-first search) Example where search nodes correspond to operator sequences (no duplicate detection) So So So Summary

B. Nebel, R. Mattmüller - Al Planning

October 27th, 2017

Progression planning example (depth-first search)

Example where search nodes correspond to operator sequences (no duplicate detection)

B. Nebel, R. Mattmüller - Al Planning

UNI FREIBURG

14 / 46

15 / 46

Example

Regression

Progression planning example (depth-first search)

Example where search nodes correspond to operator sequences (no duplicate detection)

Search

UNI FREIBURG

Example

Forward search vs. backward search

14 / 46

Going through a transition graph in forward and backward directions is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s'; if we applied operator o to end up in state s', there can be several possible predecessor states s

→ most natural representation for backward search in planning associates sets of states with search nodes

Regression

Progression

Regression

Example STRIPS General case Practical icens

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Planning by backward search: regression

Regression: Computing the possible predecessor states $regr_o(G)$ of a set of states G with respect to the last operator o that was applied.

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated state set and regress it through an operator, generating a new state set
- solution found when a generated state set includes the initial state

Pro: can handle many states simultaneously Con: basic operations complicated and expensive

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

17 / 46

Search space representation in regression planners

Search

STRIPS

Summary

identify state sets with logical formulae (again):

- search nodes correspond to state sets
- each state set is represented by a logical formula: φ represents $\{s \in S \mid s \models \varphi\}$
- many basic search operations like detecting duplicates are NP-hard or coNP-hard

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

18 / 46

Regression planning example (depth-first search)

UNI FREIBURG

Regression

General case

Practical iccurs

Example

Regression planning example (depth-first search)

Example

October 27th, 2017 B. Nebel, R. Mattmüller - Al Planning

October 27th, 2017 B. Nebel, R. Mattmüller - Al Planning 19 / 46

Regression planning example (depth-first search)

NE NE

Regression Example

Practical iccurs

October 27th, 2017

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

19 / 46

Regression planning example (depth-first search)

October 27th, 2017 B. Nebel, R. Mattmüller - Al Planning

Regression planning example (depth-first search)

 $\varphi_3 = regr_{\bullet}(\varphi_2), I \models \varphi_3$

B. Nebel, R. Mattmüller - Al Planning

Example

Regression for STRIPS planning tasks

Definition (STRIPS planning task)

A planning task is a STRIPS planning task if all operators are STRIPS operators and the goal is a conjunction of atoms.

Regression for STRIPS planning tasks is very simple:

- Goals are conjunctions of atoms $a_1 \wedge \cdots \wedge a_n$.
- First step: Choose an operator that makes none of a_1, \ldots, a_n false.
- Second step: Remove goal atoms achieved by the operator (if any) and add its preconditions.
- Outcome of regression is again conjunction of atoms.

Optimization: only consider operators making some a_i true

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

UNI FREIBURG

19 / 46

Search

Example

Summary

STRIPS

STRIPS regression

Definition (STRIPS regression)

Let $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n$ be a conjunction of atoms, and let $o = \langle \chi, e \rangle$ be a STRIPS operator which adds the atoms a_1, \ldots, a_k and deletes the atoms d_1, \ldots, d_l .

The STRIPS regression of φ with respect to o is

$$sregr_o(\varphi) := egin{cases} \bot & \text{if } a_i = d_j \text{ for some } i,j \ \bot & \text{if } \varphi_i = d_j \text{ for some } i,j \ \chi \land \bigwedge (\{\varphi_1, \ldots, \varphi_n\} \setminus \{a_1, \ldots, a_k\}) & \text{otherwise} \end{cases}$$

Note: $sregr_o(\varphi)$ is again a conjunction of atoms, or \bot .

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

21 / 46

23 / 46

Regression

Example STRIPS

General case

Regression for general planning tasks

Example

STRIPS General case

- With disjunctions and conditional effects, things become more tricky. How to regress $a \lor (b \land c)$ with respect to $\langle a,d \rhd b \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

STRIPS regression example

Example

Note: Predecessor states are in general not unique. This picture is just for illustration purposes.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

22 / 46

Effect preconditions

Definition (effect precondition)

The effect precondition $EPC_I(e)$ for literal I and effect e is defined as follows:

$$EPC_{I}(I) = \top$$

$$EPC_{I}(I') = \bot \text{ if } I \neq I' \text{ (for literals } I')$$

$$EPC_{I}(e_{1} \wedge \cdots \wedge e_{n}) = EPC_{I}(e_{1}) \vee \cdots \vee EPC_{I}(e_{n})$$

$$EPC_{I}(\chi \triangleright e) = EPC_{I}(e) \wedge \chi$$

Intuition: EPC_I(e) describes the situations in which effect e causes literal I to become true.

B. Nebel, R. Mattmüller - Al Planning

Example

Effect precondition examples

Search

. . - 9. - - - . . .

Regression

Example STRIPS

General case

Summary

Example

$$\begin{aligned} EPC_a(b \wedge c) &= \bot \lor \bot \equiv \bot \\ EPC_a(a \wedge (b \rhd a)) &= \top \lor (\top \wedge b) \equiv \top \\ EPC_a((c \rhd a) \wedge (b \rhd a)) &= (\top \wedge c) \lor (\top \wedge b) \equiv c \lor b \end{aligned}$$

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

25 / 46

Lemma (A)

Let s be a state, I a literal and e an effect. Then $I \in [e]_s$ if and only if $s \models EPC_I(e)$.

Proof.

Induction on the structure of the effect e. Base case 1, e = I: $I \in [I]_s = \{I\}$ by definition, and $s \models EPC_I(I) = \top$ by definition. Both sides of the equivalence are true.

Base case 2, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

26 / 46

Effect preconditions: connection to change sets

Example

STRIPS

General case

Practical issues
Summary

Proof (ctd.)

October 27th, 2017

```
Inductive case 1, e = e_1 \wedge \cdots \wedge e_n: I \in [e]_s iff I \in [e_1]_s \cup \cdots \cup [e_n]_s (Def [e_1 \wedge \cdots \wedge e_n]_s) iff I \in [e']_s for some e' \in \{e_1, \dots, e_n\} iff s \models EPC_I(e') for some e' \in \{e_1, \dots, e_n\} (IH) iff s \models EPC_I(e_1) \vee \cdots \vee EPC_I(e_n) iff s \models EPC_I(e_1 \wedge \cdots \wedge e_n). (Def EPC)
```

Inductive case 2, $e = \chi \triangleright e'$:

 $I \in [\chi \rhd e']_s$ iff $I \in [e']_s$ and $s \models \chi$ (Def $[\chi \rhd e']_s$)
iff $s \models EPC_I(e')$ and $s \models \chi$ (IH)
iff $s \models EPC_I(e') \land \chi$

iff $s \models EPC_l(\chi \triangleright e')$.

(Def *EPC*)

27 / 46

B. Nebel, R. Mattmüller - Al Planning

Effect preconditions: connection to change sets

Search

Progression

Regression

Example

General case

Summary

Effect preconditions: connection to normal form

Progression

Regressio

STRIPS

General case Practical issues

Summary

Remark: EPC vs. effect normal form

Notice that in terms of $EPC_a(e)$, any operator $\langle \chi, e \rangle$ can be expressed in effect normal form as

$$\left\langle \chi, \bigwedge_{a \in A} ((EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a)) \right\rangle$$

where A is the set of all state variables.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Regressing state variables

UNI FREIB

Search

Progression

Regression

Overview Example STBIPS

General case Practical issues

Summary

Either:

- a became true, or
- a was true before and it did not become false.

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of state variable $a \in A$ after applying o

in terms of values of state variables before applying o.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

29 / 46

Regressing state variables: examples

Search

Progressio

_ _

Overview Example

STRIPS General case

Practical issues

Regression

General case

Summary

Example

Let $e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$.

	$\mid EPC_x(e) \lor (x \land \neg EPC_{\neg x}(e))$
а	$b \lor (a \land \neg c)$
b	$b \lor (a \land \neg c)$ $\top \lor (b \land \neg \bot) \equiv \top$ $\bot \lor (c \land \neg \bot) \equiv c$ $\bot \lor (d \land \neg \top) \equiv \bot$
C	$\perp \lor (c \land \lnot \bot) \equiv c$
d	$\perp \vee (d \wedge \neg \top) \equiv \perp$

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

30 / 46

UNI FREIBURG

Example

Regressing state variables: correctness

UNI FREIBURG

31 / 46

Lemma (B)

Let a be a state variable, $o = \langle \chi, e \rangle$ an operator, s a state, and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

(⇒): Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- Assume that $s \models EPC_a(e)$. By Lemma A, we have $a \in [e]_s$ and hence $s' \models a$.
- Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma A, we have $\neg a \notin [e]_s$. Hence a remains true in s'.

Proof (ctd.)

 (\Leftarrow) : We showed that if the formula is true in s, then a is true in s'. For the second part, we show that if the formula is false in s, then a is false in s'.

■ So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.

Regressing state variables: correctness

- Then $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ (de Morgan).
- Case distinction: *a* is true or *a* is false in *s*.
 - Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma A $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - 2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma A we get $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Regression: general definition

A THE THE PARTY OF THE PARTY OF

UNI FREIBURG

Search

STRIPS

General case

We base the definition of regression on formulae $EPC_{l}(e)$.

Definition (general regression)

Let φ be a propositional formula and $o = \langle \chi, e \rangle$ an operator.

The regression of φ with respect to o is

$$regr_o(\varphi) = \chi \wedge \varphi_r \wedge \kappa$$

where

- ¶ φ_r is obtained from φ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and
- $\kappa = \bigwedge_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e)).$

The formula κ expresses that operators are only applicable in states where their change sets are consistent.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

33 / 46

Regression examples

REIBU

■
$$regr_{\langle a,b\rangle}(b) \equiv a \wedge (\top \vee (b \wedge \neg \bot)) \wedge \top \equiv a$$

■ $regr_{(a,b)}(b \land c \land d)$ ≡ $a \land (\top \lor (b \land \neg \bot)) \land (\bot \lor (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot)) \land \top$ ≡ $a \land c \land d$

 $\blacksquare regr_{\langle a,c \rhd b \rangle}(b) \equiv a \land (c \lor (b \land \neg \bot)) \land \top \equiv a \land (c \lor b)$

■ $regr_{\langle a,(c \rhd b) \land (b \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg b)) \land \neg (c \land b)$ ≡ $a \land c \land \neg b$

■ $regr_{\langle a,(c \rhd b) \land (d \rhd \neg b) \rangle}(b) \equiv a \land (c \lor (b \land \neg d)) \land \neg (c \land d)$ $\equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$ $\equiv a \land (c \lor b) \land \neg d$ Search

Progres

Regression

Overview Example

STRIPS

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

34 / 46

Regression example: binary counter

$$\begin{split} EPC_{b_2}(e) &= \neg b_2 \wedge b_1 \wedge b_0 \\ EPC_{b_1}(e) &= \neg b_1 \wedge b_0 \\ EPC_{b_0}(e) &= \neg b_0 \\ EPC_{\neg b_2}(e) &= \bot \\ EPC_{\neg b_1}(e) &= \neg b_2 \wedge b_1 \wedge b_0 \\ EPC_{\neg b_0}(e) &= (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0) \equiv (\neg b_1 \vee \neg b_2) \wedge b_0 \end{split}$$

Regression replaces state variables as follows:

$$\begin{array}{lll} b_2 & \text{by} & (\neg b_2 \wedge b_1 \wedge b_0) \vee (b_2 \wedge \neg \bot) \equiv (b_1 \wedge b_0) \vee b_2 \\ b_1 & \text{by} & (\neg b_1 \wedge b_0) \vee (b_1 \wedge \neg (\neg b_2 \wedge b_1 \wedge b_0)) \\ & & & & & & & & & & \\ \hline b_0 & \text{by} & \neg b_0 \vee (b_0 \wedge \neg ((\neg b_1 \vee \neg b_2) \wedge b_0)) \equiv \neg b_0 \vee (b_1 \wedge b_2) \\ \end{array}$$

October 27th, 2017 B. Nebel, R. Mattmüller – Al Planning

UNI FREIBURG

Search

Progression

Regressio Overview

General case

Summary

General regression: correctness

Theorem (correctness of $regr_o(\varphi)$)

Let φ be a formula, o an operator and s a state. Then $s \models regr_o(\varphi)$ iff o is applicable in s and $app_o(s) \models \varphi$.

Proof.

Let $o = \langle \chi, e \rangle$. Recall that $regr_o(\varphi) = \chi \wedge \varphi_r \wedge \kappa$, where φ_r and κ are as defined previously.

If o is inapplicable in s, then $s \not\models \chi \land \kappa$, both sides of the "iff" condition are false, and we are done. Hence, we only further consider states s where o is applicable. Let $s' := app_o(s)$.

We know that $s \models \chi \land \kappa$ (because o is applicable), so the "iff" condition we need to prove simplifies to:

$$s \models \varphi_{\mathsf{r}} \text{ iff } s' \models \varphi.$$

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

36 / 46

S.E.

Progression

Regressio

STRIPS
General case
Practical issues

General regression: correctness

Proof (ctd.)

To show: $s \models \varphi_r$ iff $s' \models \varphi$.

We show that for all formulae ψ , $s \models \psi_r$ iff $s' \models \psi$, where ψ_r is ψ with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.

The proof is by structural induction on ψ .

Induction hypothesis $s \models \psi_r$ if and only if $s' \models \psi$. Base cases 1 & 2 $\psi = \top$ or $\psi = \bot$: trivial, as $\psi_r = \psi$. Base case 3 $\psi = a$ for some $a \in A$:

Then $\psi_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma B, $s \models \psi_r$ iff $s' \models \psi$.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

37 / 46

General regression: correctness

Example

Proof (ctd.)

Inductive case 1 $\psi = \neg \psi'$:

 $s \models \psi_r \text{ iff } s \models (\neg \psi')_r \text{ iff } s \models \neg (\psi'_r) \text{ iff } s \not\models \psi'_r$ iff (IH) $s' \not\models \psi'$ iff $s' \models \neg \psi'$ iff $s' \models \psi$

Inductive case 2 $\psi = \psi' \lor \psi''$:

 $s \models \psi_r \text{ iff } s \models (\psi' \lor \psi'')_r \text{ iff } s \models \psi_r' \lor \psi_r''$ iff $s \models \psi'_r$ or $s \models \psi''_r$ iff (IH, twice) $s' \models \psi'$ or $s' \models \psi''$ iff $s' \models \psi' \lor \psi''$ iff $s' \models \psi$

Inductive case 3 $\psi = \psi' \wedge \psi''$: Very similar to inductive case 2, just with \wedge instead of \vee and "and" instead of "or".

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

38 / 46

Emptiness and subsumption testing

The following two tests are useful when performing regression searches to avoid exploring unpromising branches:

- Test that $regr_o(\varphi)$ does not represent the empty set (which would mean that search is in a dead end). For example, $regr_{\langle a, \neg p \rangle}(p) \equiv a \land \bot \equiv \bot$.
- Test that $regr_{o}(\varphi)$ does not represent a subset of φ (which would make the problem harder than before). For example, $regr_{\langle b,c\rangle}(a) \equiv a \wedge b$.

Both of these problems are NP-hard.

STRIPS

General case Practical iccup

Progression

Example STRIPS General case

Practical iccurs

Formula growth

The formula $regr_{o_1}(regr_{o_2}(\dots regr_{o_{n-1}}(regr_{o_n}(\varphi))))$ may have size $O(|\varphi||o_1||o_2|...|o_{n-1}||o_n|)$, i. e., the product of the sizes of φ and the operators.

 \rightsquigarrow worst-case exponential size $O(m^n)$

Logical simplifications

October 27th, 2017

- $\blacksquare \perp \land \varphi \equiv \bot, \top \land \varphi \equiv \varphi, \bot \lor \varphi \equiv \varphi, \top \lor \varphi \equiv \top$
- $\blacksquare a \lor \varphi \equiv a \lor \varphi[\bot/a], \neg a \lor \varphi \equiv \neg a \lor \varphi[\top/a],$ $a \wedge \varphi \equiv a \wedge \varphi[\top/a], \neg a \wedge \varphi \equiv \neg a \wedge \varphi[\bot/a]$
- idempotency, absorption, commutativity, associativity, . . .

Progression

Example STRIPS General case Practical iccurs

Restricting formula growth in search trees

Search

Problem very big formulae obtained by regression

Cause disjunctivity in the (NNF) formulae (formulae without disjunctions easily convertible to small formulae $I_1 \land \cdots \land I_n$ where I_i are literals and I_i is at most the number of state variables.)

Idea handle disjunctivity when generating search trees

Regression

Overview Example STRIPS

Practical issues

Summary

October 27th, 2017

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

41 / 46

43 / 46

Unrestricted regression: search tree example

Unrestricted regression: do not treat disjunctions specially

Search

Progression

Б .

Overview Example

STRIPS
General case
Practical issues

Summary

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

42 / 46

Full splitting: search tree example

Full splitting: always remove all disjunctivity

Goal $\gamma = a \wedge b$, initial state $I = \{a \mapsto 0, b \mapsto 0, c \mapsto 0\}$. $(\neg c \vee a) \wedge b$ in DNF: $(\neg c \wedge b) \vee (a \wedge b)$ \rightsquigarrow split into $\neg c \wedge b$ and $a \wedge b$

B. Nebel, R. Mattmüller - Al Planning

Search

UNI FREIBURG

Progression

Regression

STRIPS General case

Practical issues

General splitting strategies

Alternatives:

- Do nothing (unrestricted regression).
- 2 Always eliminate all disjunctivity (full splitting).
- 3 Reduce disjunctivity if formula becomes too big.

Discussion:

- With unrestricted regression the formulae may have size that is exponential in the number of state variables.
- With full splitting search tree can be exponentially bigger than without splitting.
- The third option lies between these two extremes.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning

Sear

Progression

Regressio

STRIPS

General case Practical issues

Summary

Summary

- (Classical) search is a very important planning approach.
- Search-based planning algorithms differ along many dimensions, including
 - search direction (forward, backward)
 - what each search node represents (a state, a set of states, an operator sequence)
- Progression search proceeds forwards from the initial state.
 - If we use duplicate detection, each search node corresponds to a unique state.
 - If we do not use duplicate detection, each search node corresponds to a unique operator sequence.

Search

Progression Regression

Summary

October 27th, 2017

B. Nebel, R. Mattmüller – Al Planning

45 / 46

Summary (ctd.)

Search

Progression

Regression

Summary

- Regression search proceeds backwards from the goal.Each search node corresponds to a set of states
 - represented by a formula.
 - Regression is simple for STRIPS operators.
 - The theory for general regression is more complex.
 - When applying regression in practice, additional considerations such as when and how to perform splitting come into play.

October 27th, 2017

B. Nebel, R. Mattmüller - Al Planning