## Principles of AI Planning

2. Transition systems and planning tasks



Bernhard Nebel and Robert Mattmüller

October 16th, 2017



## Transition systems

Definition Blocks world

Planning tasks

Summary

## Transition systems

#### Definition (transition system)

A transition system is a 5-tuple  $\mathscr{T} = \langle S, L, T, s_0, S_{\star} \rangle$  where

- $\blacksquare$  S is a finite set of states,
- *L* is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$  is the transition relation,
- $\blacksquare$   $s_0 \in S$  is the initial state, and
- $S_{\star} \subseteq S$  is the set of goal states.

We say that  $\mathscr{T}$  has the transition  $\langle s, \ell, s' \rangle$  if  $\langle s, \ell, s' \rangle \in T$ .

We also write this  $s \xrightarrow{\ell} s'$ , or  $s \to s'$  when not interested in  $\ell$ .

Note: Transition systems are also called state spaces.

Transition systems

Blocks world

Planning tasks

## Transition systems: example

JNI REIBURG

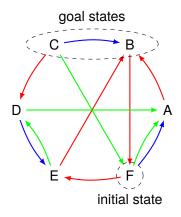
Transition systems are often depicted as directed arc-labeled graphs with marks to indicate the initial state and goal states.

Transition systems

Definition

Blocks world

Planning



## Transition system terminology



We use common graph theory terms for transition systems:

- $\blacksquare$  s' successor of s if  $s \rightarrow s'$
- **s** predecessor of s' if  $s \rightarrow s'$
- s' reachable from s if there exists a sequence of transitions

$$s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n \text{ s.t. } s^0 = s \text{ and } s^n = s'$$

- Note: n = 0 possible; then s = s'
- $\bullet$   $s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n$  is called path from s to s'
- $s^0, \dots, s^n$  is also called path from s to s'
- length of that path is n
- additional terms: strongly connected, weakly connected, strong/weak connected components, ...

Transition systems

Definition

Blocks world

Planning tasks

## Transition system terminology (ctd.)



# Transitio

Some additional terminology:

- $\blacksquare$  s' reachable (without reference state) means reachable from initial state  $s_0$
- lacksquare solution or goal path from s: path from s to some  $s' \in \mathcal{S}_{\star}$ 
  - if s is omitted,  $s = s_0$  is implied
- $\blacksquare$  transition system solvable if a goal path from  $s_0$  exists

systems
Definition

Blocks world

Planning

\_

## Deterministic transition systems



Definition Blocks world

Planning

Summary

#### Definition (deterministic transition system)

A transition system with transitions *T* is called deterministic if for all states s and labels  $\ell$ , there is at most one state s' with  $s \stackrel{\ell}{\rightarrow} s'$ .

Example: previously shown transition system

## Running example: blocks world



- Throughout the course, we will often use the blocks world domain as an example.
- In the blocks world, a number of differently coloured blocks are arranged on our table.
- Our job is to rearrange them according to a given goal.

Transition systems

Definition

Blocks world

Planning

#### Blocks world rules





#### Location on the table does not matter.







Transition systems

Definition

Blocks world

Planning tasks

Summary

#### Location on a block does not matter.







### Blocks world rules (ctd.)



ZE.

At most one block may be below a block.



Transition systems

Definition

Blocks world

Planning tasks

Summary

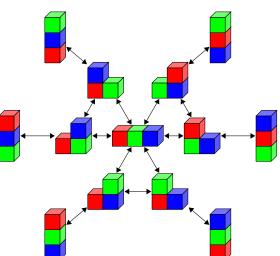
At most one block may be on top of a block.



## Blocks world transition system for three blocks



(Transition labels omitted for clarity.)



Transitior systems

Blocks world

Planning tasks

## Blocks world computational properties



| blocks | states  | blocks | states             |
|--------|---------|--------|--------------------|
| 1      | 1       | 10     | 58941091           |
| 2      | 3       | 11     | 824073141          |
| 3      | 13      | 12     | 12470162233        |
| 4      | 73      | 13     | 202976401213       |
| 5      | 501     | 14     | 3535017524403      |
| 6      | 4051    | 15     | 65573803186921     |
| 7      | 37633   | 16     | 1290434218669921   |
| 8      | 394353  | 17     | 26846616451246353  |
| 9      | 4596553 | 18     | 588633468315403843 |

Iransition systems Definition

Planning

Summarv

- Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- Finding a shortest solution is NP-complete (for a compact description of the problem).



Transition systems

## Planning tasks

State variables
Logic
Operators
Tasks

Summary

## Planning tasks

### Compact representations



- Classical (i. e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- Hence, the input to a planning algorithm must be given in a more concise form.
- In the rest of chapter, we discuss how to represent planning tasks in a suitable way.

Transition systems

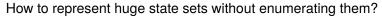
tasks

State variables

Operators Tasks

#### State variables





- represent different aspects of the world in terms of different state variables
- → a state is a valuation of state variables
- $\blacksquare$  *n* state variables with *m* possible values each induce  $m^n$  different states
- exponentially more compact than "flat" representations
  - **Example:** *n* variables suffice for blocks world with *n* blocks

Transition systems

Planning tasks

> State variables Logic

Operato Tasks

## Blocks world with finite-domain state variables





Describe blocks world state with three state variables:

- location-of-A: {B,C,table}
- *location-of-B*: {A, C, table}
- location-of-C: {A,B,table}

#### Example

$$s(location-of-A) = table$$
  
 $s(location-of-B) = A$   
 $s(location-of-C) = table$ 



Not all valuations correspond to intended blocks world states. Example: s with s(location-of-A) = B, s(location-of-B) = A.

Transitior systems

Planning tasks

State variables

Operators Tasks

#### Boolean state variables



#### Problem:

How to succinctly represent transitions and goal states?

#### Idea: Use propositional logic

- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
  - precondition: when is the action applicable?
  - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables

Transition systems

Planning tasks

State variables

Logic

#### Blocks world with Boolean state variables





#### Example

$$s(A\text{-}on\text{-}B)=0$$

$$s(A-on-C)=0$$

$$s(A-on-table) = 1$$

$$s(B-on-A) = 1$$

$$s(B-on-C)=0$$

$$s(B-on-table) = 0$$

$$s(C-on-A) = 0$$

$$s(C-on-B) = 0$$

$$s(C\text{-}on\text{-}table) = 1$$



Transition systems

Planning tasks

State variables

Operators Tasks

#### Definition (propositional formula)

Let *A* be a set of atomic propositions (here: state variables).

The propositional formulae over *A* are constructed by finite application of the following rules:

- $\blacksquare$   $\top$  and  $\bot$  are propositional formulae (truth and falsity).
- For all  $a \in A$ , a is a propositional formula (atom).
- If  $\varphi$  is a propositional formula, then so is  $\neg \varphi$  (negation)
- If  $\varphi$  and  $\psi$  are propositional formulas, then so are  $(\varphi \lor \psi)$  (disjunction) and  $(\varphi \land \psi)$  (conjunction).

Note: We often omit the word "propositional".

Transitior systems

Planning tasks

State variable: Logic

Tasks

### Propositional logic conventions



# PRE E

#### Abbreviations:

- $\blacksquare$   $(\phi \rightarrow \psi)$  is short for  $(\neg \phi \lor \psi)$  (implication)
- $\blacksquare$   $(\phi \leftrightarrow \psi)$  is short for  $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$  (equivalence)
- parentheses omitted when not necessary
- (¬) binds more tightly than binary connectives
- $\blacksquare$  ( $\land$ ) binds more tightly than ( $\lor$ ) than ( $\rightarrow$ ) than ( $\leftrightarrow$ )

Transition systems

Planning tasks

Logic

Tasks





#### Definition (propositional valuation)

A valuation of propositions *A* is a function  $v : A \rightarrow \{0,1\}$ .

Define the notation  $v \models \varphi$  (v satisfies  $\varphi$ ; v is a model of  $\varphi$ ;  $\varphi$  is true under v) for valuations v and formulae  $\varphi$  by

- $v \models \top$
- $v \not\models \bot$
- $v \models a \text{ iff } v(a) = 1, \text{ for } a \in A.$
- $v \models \neg \varphi \text{ iff } v \not\models \varphi$
- $\blacksquare v \models \varphi \lor \psi \text{ iff } v \models \varphi \text{ or } v \models \psi$
- $\blacksquare v \models \varphi \land \psi \text{ iff } v \models \varphi \text{ and } v \models \psi$

Transition systems

tasks

State variable Logic

Operators Tasks

## Propositional logic terminology



- A propositional formula  $\varphi$  is satisfiable if there is at least one valuation v so that  $v \models \varphi$ .
- Otherwise it is unsatisfiable.
- A propositional formula  $\varphi$  is valid or a tautology if  $v \models \varphi$  for all valuations v.
- A propositional formula  $\psi$  is a logical consequence of a propositional formula  $\varphi$ , written  $\varphi \models \psi$ , if  $v \models \psi$  for all valuations v with  $v \models \varphi$ .
- Two propositional formulae  $\varphi$  and  $\psi$  are logically equivalent, written  $\varphi \equiv \psi$ , if  $\varphi \models \psi$  and  $\psi \models \varphi$ .

Question: How to phrase these in terms of models?

Transition systems

Planning tasks

State variable

Logic

Operators

Tasks

## Propositional logic terminology (ctd.)



- Transition systems
- Planning tasks
- Logic Operators
- Tasks

Summary

- A propositional formula that is a proposition a or a negated proposition  $\neg a$  for some  $a \in A$  is a literal.
- A formula that is a disjunction of literals is a clause.

  This includes unit clauses *I* consisting of a single literal, and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

## **Operators**



DE NE

Transitions for state sets described by propositions A can be concisely represented as operators or actions  $\langle \chi, e \rangle$  where

- the precondition  $\chi$  is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and
- the effect e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).

Transition systems

Planning tasks

State variable Logic

Operators Tasks

Summarv

## Example: blocks world operators





#### Blocks world operators

To model blocks world operators conveniently, we use auxiliary state variables *A-clear*, *B-clear*, and *C-clear* to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $\blacksquare$   $\langle A\text{-clear} \land A\text{-on-}T \land B\text{-clear}, A\text{-on-}B \land \neg A\text{-on-}T \land \neg B\text{-clear} \rangle$
- $\blacksquare$   $\langle A\text{-clear} \land A\text{-on-}T \land C\text{-clear}, A\text{-on-}C \land \neg A\text{-on-}T \land \neg C\text{-clear} \rangle$
- $\blacksquare$   $\langle A\text{-clear} \land A\text{-on-B}, A\text{-on-T} \land \neg A\text{-on-B} \land B\text{-clear} \rangle$
- $\qquad \langle A\text{-}clear \land A\text{-}on\text{-}C, \ A\text{-}on\text{-}T \land \neg A\text{-}on\text{-}C \land C\text{-}clear \rangle$
- lacktriangledown  $\langle A\text{-clear} \wedge A\text{-on-}B \wedge B\text{-clear} \wedge \neg C\text{-clear} \rangle$
- $\qquad \langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}C \land C\text{-}clear \land \neg B\text{-}clear} \rangle$
- ...

Transition systems

Planning tasks

State variable Logic Operators

0 ......





#### Definition (effects)

(Deterministic) effects are recursively defined as follows:

- If  $a \in A$  is a state variable, then a and  $\neg a$  are effects (atomic effect).
- If  $e_1, ..., e_n$  are effects, then  $e_1 \wedge \cdots \wedge e_n$  is an effect (conjunctive effect).
  - The special case with n = 0 is the empty effect  $\top$ .
- If  $\chi$  is a propositional formula and e is an effect, then  $\chi \triangleright e$  is an effect (conditional effect).

Atomic effects a and  $\neg a$  are best understood as assignments a := 1 and a := 0, respectively.

Transition systems

Planning tasks

State variables
Logic
Operators

Tasks

## Effect example



 $\chi \rhd e$  means that change e takes place if  $\chi$  is true in the current state.

#### Example

Increment 4-bit number  $b_3b_2b_1b_0$  represented as four state variables  $b_0, \ldots, b_3$ :

$$(\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0)) \land \\ ((\neg b_3 \land b_2 \land b_1 \land b_0) \rhd (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))$$

Transition systems

Planning tasks

Logic

Operators

Tasks

#### Definition (changes caused by an operator)

For each effect e and state s, we define the change set of e in s, written  $[e]_s$ , as the following set of literals:

- $\blacksquare$   $[a]_s = \{a\}$  and  $[\neg a]_s = \{\neg a\}$  for atomic effects  $a, \neg a$
- $\blacksquare [e_1 \wedge \cdots \wedge e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- $[\chi \triangleright e]_s = [e]_s$  if  $s \models \chi$  and  $[\chi \triangleright e]_s = \emptyset$  otherwise

#### Definition (applicable operators)

Operator  $\langle \chi, e \rangle$  is applicable in a state s iff  $s \models \chi$  and  $[e]_s$  is consistent (i. e., does not contain two complementary literals).

Transitior systems

Planning tasks

Logic Operators

Tasks

The successor state  $app_o(s)$  of s with respect to operator  $o = \langle \chi, e \rangle$  is the state s' with  $s' \models [e]_s$  and s'(v) = s(v) for all state variables v not mentioned in  $[e]_s$ . This is defined only if o is applicable in s.

#### Example

Consider the operator  $\langle a, \neg a \land (\neg c \rhd \neg b) \rangle$  and the state  $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$ 

The operator is applicable because  $s \models a$  and  $[\neg a \land (\neg c \rhd \neg b)]_s = {\neg a}$  is consistent.

Applying the operator results in the successor state

$$app_{\langle a, \neg a \land (\neg c \rhd \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}.$$



Planning

Tacke

Summary

### Definition (deterministic planning task)

A deterministic planning task is a 4-tuple  $\Pi = \langle A, I, O, \gamma \rangle$  where

- A is a finite set of state variables (propositions),
- I is a valuation over A called the initial state.
- O is a finite set of operators over A, and
- $\gamma$  is a formula over A called the goal.

#### Note:

- When we talk about deterministic planning tasks, we usually omit the word "deterministic".
- When we will talk about nondeterministic planning tasks later, we will explicitly qualify them as "nondeterministic".

#### Definition (induced transition system of a planning task)

Every planning task  $\Pi = \langle A, I, O, \gamma \rangle$  induces a corresponding deterministic transition system  $\mathscr{T}(\Pi) = \langle S, L, T, s_0, S_{\star} \rangle$ :

- $\blacksquare$  *S* is the set of all valuations of *A*,
- $\blacksquare$  *L* is the set of operators *O*,
- $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = app_o(s)\},\$
- $\blacksquare$   $s_0 = I$ , and
- $S_{\star} = \{s \in S \mid s \models \gamma\}$

Transition systems

Planning

State variable Logic Operators

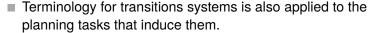
Tasks

## Planning tasks: terminology





Operators Tacke



- For example, when we speak of the states of  $\Pi$ , we mean the states of  $\mathcal{T}(\Pi)$ .
- $\blacksquare$  A sequence of operators that forms a goal path of  $\mathscr{T}(\Pi)$  is called a plan of  $\Pi$ .

## Planning





By planning, we mean the following two algorithmic problems:

#### Definition (satisficing planning)

Given: a planning task Π

Output: a plan for  $\Pi$ , or **unsolvable** if no plan for  $\Pi$  exists

systems

Planning tasks

State variable Logic Operators

Tasks

Summary

#### Definition (optimal planning)

Given: a planning task Π

Output: a plan for  $\Pi$  with minimal length among all plans

for  $\Pi$ , or **unsolvable** if no plan for  $\Pi$  exists

■ Planning tasks are compact representations for transition systems, suitable as input for planning algorithms.

- Planning tasks are based on concepts from propositional logic, enhanced to model state change.
- States of planning tasks are propositional valuations.
- Operators of planning tasks describe when (precondition) and how (effect) to change the current state of the world.
- In satisficing planning, we must find a solution to planning tasks (or show that no solution exists).
- In optimal planning, we additionally guarantee that generated solutions are of the shortest possible length.

Transitior systems

tasks