Principles of AI Planning

2. Transition systems and planning tasks

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Transition systems

Definition

Blocks world

Planning tasks

Summary

Transition systems

Definition (transition system)

A transition system is a 5-tuple $\mathscr{T} = \langle S, L, T, s_0, S_{\star} \rangle$ where

- *S* is a finite set of states,
- *L* is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- $S_{\star} \subseteq S$ is the set of goal states.

We say that \mathscr{T} has the transition $\langle \boldsymbol{s}, \ell, \boldsymbol{s}' \rangle$ if $\langle \boldsymbol{s}, \ell, \boldsymbol{s}' \rangle \in T$.

We also write this $s \xrightarrow{\ell} s'$, or $s \rightarrow s'$ when not interested in ℓ .

Note: Transition systems are also called state spaces.

Transition systems

Blocks world

Planning tasks

Transition systems are often depicted as directed arc-labeled graphs with marks to indicate the initial state and goal states.

Transition systems Definition Blocks world

Planning tasks

We use common graph theory terms for transition systems:

- s' successor of s if $s \rightarrow s'$
- s predecessor of s' if $s \rightarrow s'$
- s' reachable from s if there exists a sequence of transitions

$$s^0 \xrightarrow{\ell_1} s^1, \ldots, s^{n-1} \xrightarrow{\ell_n} s^n$$
 s.t. $s^0 = s$ and $s^n = s'$

Note:
$$n = 0$$
 possible; then $s = s'$

$$s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n$$
 is called path from s to s'

- **s**⁰,..., s^n is also called path from s to s'
- length of that path is n
- additional terms: strongly connected, weakly connected, strong/weak connected components, ...

Transition systems Definition Blocks world

> Planning tasks

Summary

T

Transition systems Definition Blocks world

Planning tasks

Summary

Some additional terminology:

■ *s'* reachable (without reference state) means reachable from initial state *s*₀

solution or goal path from *s*: path from *s* to some $s' \in S_{\star}$

if *s* is omitted, $s = s_0$ is implied

• transition system solvable if a goal path from s_0 exists

A transition system with transitions *T* is called deterministic if for all states *s* and labels ℓ , there is at most one state *s'* with $s \stackrel{\ell}{\to} s'$.

Example: previously shown transition system

Transition systems Definition Blocks world

Planning tasks

Transition systems Definition

Blocks world

Planning tasks

- Throughout the course, we will often use the blocks world domain as an example.
- In the blocks world, a number of differently coloured blocks are arranged on our table.
- Our job is to rearrange them according to a given goal.

Location on the table does not matter.

Location on a block does not matter.

October 16th, 2017

Transition systems

Definition Blocks world

Planning tasks

Blocks world rules (ctd.)

At most one block may be below a block.

At most one block may be on top of a block.

systems

Definition Blocks world

Planning tasks

Blocks world transition system for three blocks

(Transition labels omitted for clarity.)

Transition systems

Definition

Blocks world

Planning tasks

Blocks world computational properties

				- 22
blocks	states	blocks	states	
1	1	10	58941091	Transition
2	3	11	824073141	Systems
3	13	12	12470162233	Blocks world
4	73	13	202976401213	Planning
5	501	14	3535017524403	tasks
6	4051	15	65573803186921	Summary
7	37633	16	1290434218669921	
8	394353	17	26846616451246353	
9	4596553	18	588633468315403843	

- Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- Finding a shortest solution is NP-complete (for a compact description of the problem).

Transition systems

Planning tasks

State variables

Logic

Operators

Tasks

Summary

Planning tasks

- Classical (i. e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- Hence, the input to a planning algorithm must be given in a more concise form.
- In the rest of chapter, we discuss how to represent planning tasks in a suitable way.

Transition systems

Planning tasks

State variables

Logic Operator

Summary

How to represent huge state sets without enumerating them?

- represent different aspects of the world in terms of different state variables
- → a state is a valuation of state variables
 - n state variables with m possible values each induce mⁿ different states
- ~> exponentially more compact than "flat" representations
 - Example: *n* variables suffice for blocks world with *n* blocks

Transition systems

Planning tasks

State variables

Logic

Tasks

Summary

October 16th, 2017

B. Nebel, R. Mattmüller - Al Planning

15/34

Blocks world with finite-domain state variables

Describe blocks world state with three state variables:

- Iocation-of-A: {B,C,table}
- *location-of-B*: {A,C,table}
- *location-of-C*: {A,B,table}

Example

s(location-of-A) = tables(location-of-B) = As(location-of-C) = table

Not all valuations correspond to intended blocks world states. Example: *s* with s(location-of-A) = B, s(location-of-B) = A.

October 16th, 2017

Transition systems

Planning tasks

State variables

Logic

Operators

Problem:

How to succinctly represent transitions and goal states?

Idea: Use propositional logic

- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
 - precondition: when is the action applicable?
 - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables

Transition systems

Planning tasks

State variables

Logic

Operate

Summary

October 16th, 2017

B. Nebel, R. Mattmüller - Al Planning

Example

October 16th, 2017

s(A-on-B) = 0

$$s(A-on-C) = 0$$

s(A-on-table) = 1

$$s(B-on-A) = 1$$

$$s(B\text{-}on\text{-}C) = 0$$

$$s(B\text{-}on\text{-}table) = 0$$

$$s(C\text{-}on\text{-}A) = 0$$

$$s(C\text{-}on\text{-}B) = 0$$

$$s(C\text{-}on\text{-}table) = 1$$

2

ČEIB

Planning tasks

State variables

Logic

Operators Tasks

Definition (propositional formula)

Let *A* be a set of atomic propositions (here: state variables).

The propositional formulae over *A* are constructed by finite application of the following rules:

- \blacksquare \top and \bot are propositional formulae (truth and falsity).
- For all $a \in A$, a is a propositional formula (atom).
- If φ is a propositional formula, then so is $\neg \varphi$ (negation)
- If φ and ψ are propositional formulas, then so are $(\varphi \lor \psi)$ (disjunction) and $(\varphi \land \psi)$ (conjunction).

Note: We often omit the word "propositional".

UNI FREIBURG

Transition systems

Planning tasks

State variables

Logic

Operato Tasks

Summary

Abbreviations:

- $(\phi \to \psi)$ is short for $(\neg \phi \lor \psi)$ (implication)
- ($\phi \leftrightarrow \psi$) is short for (($\phi \rightarrow \psi$) \land ($\psi \rightarrow \phi$)) (equivalence)
- parentheses omitted when not necessary
- (¬) binds more tightly than binary connectives
- (\wedge) binds more tightly than (\vee) than (\rightarrow) than (\leftrightarrow)

Transition systems

Planning tasks

State variables

Logic Operators

Tasks

Definition (propositional valuation)

A valuation of propositions A is a function $v : A \rightarrow \{0, 1\}$.

Define the notation $v \models \varphi$ (*v* satisfies φ ; *v* is a model of φ ; φ is true under *v*) for valuations *v* and formulae φ by

•
$$v \models \top$$

• $v \not\models \bot$
• $v \models a$ iff $v(a) = 1$, for $a \in A$.
• $v \models \neg \varphi$ iff $v \not\models \varphi$
• $v \models \varphi \lor \psi$ iff $v \models \varphi$ or $v \models \psi$
• $v \models \varphi \land \psi$ iff $v \models \varphi$ and $v \models \psi$

Transition systems

Planning tasks

State variables

Logic

Operators Tasks

- A propositional formula φ is satisfiable if there is at least one valuation v so that v ⊨ φ.
- Otherwise it is unsatisfiable.
- A propositional formula φ is valid or a tautology if $v \models \varphi$ for all valuations v.
- A propositional formula ψ is a logical consequence of a propositional formula φ , written $\varphi \models \psi$, if $v \models \psi$ for all valuations v with $v \models \varphi$.
- Two propositional formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?

October 16th, 2017

Planning tasks

State variable:

Logic

Operators Tasks

Transition systems

Planning tasks

State variable:

Logic

Operator Tasks

Summary

- A propositional formula that is a proposition *a* or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses / consisting of a single literal, and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

Transition systems

Planning tasks

State variable

Logic

Operators

Summary

Transitions for state sets described by propositions *A* can be concisely represented as operators or actions $\langle \chi, e \rangle$ where

- the precondition χ is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and
- the effect e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).

Blocks world operators

To model blocks world operators conveniently, we use auxiliary state variables *A-clear*, *B-clear*, and *C-clear* to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $\blacksquare \langle A\text{-}clear \land A\text{-}on\text{-}T \land B\text{-}clear, A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}T \land \neg B\text{-}clear \rangle$
- $\blacksquare \langle A\text{-}clear \land A\text{-}on\text{-}T \land C\text{-}clear, A\text{-}on\text{-}C \land \neg A\text{-}on\text{-}T \land \neg C\text{-}clear \rangle$
- $\blacksquare \langle A\text{-clear} \land A\text{-on-}B, A\text{-on-}T \land \neg A\text{-on-}B \land B\text{-clear} \rangle$
- $\blacksquare \langle A\text{-clear} \land A\text{-on-}C, A\text{-on-}T \land \neg A\text{-on-}C \land C\text{-clear} \rangle$
- $\blacksquare \langle A\text{-}clear \land A\text{-}on\text{-}B \land C\text{-}clear, A\text{-}on\text{-}C \land \neg A\text{-}on\text{-}B \land B\text{-}clear \land \neg C\text{-}clear \rangle$
- $\blacksquare \langle A\text{-}clear \land A\text{-}on\text{-}C \land B\text{-}clear, A\text{-}on\text{-}B \land \neg A\text{-}on\text{-}C \land C\text{-}clear \land \neg B\text{-}clear \rangle$

Transitior svstems

> Planning tasks

> > State variable

Logic

Operators Tasks

Summary

. . . .

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effect).
- If e_1, \ldots, e_n are effects, then $e_1 \land \cdots \land e_n$ is an effect (conjunctive effect).

The special case with n = 0 is the empty effect \top .

If χ is a propositional formula and *e* is an effect, then $\chi \triangleright e$ is an effect (conditional effect).

Atomic effects *a* and $\neg a$ are best understood as assignments a := 1 and a := 0, respectively.

Transition systems

Planning tasks

State variable:

Logic

Operators

 $\chi \triangleright e$ means that change *e* takes place if χ is true in the current state.

Example

Increment 4-bit number $b_3b_2b_1b_0$ represented as four state variables b_0, \ldots, b_3 :

$$\begin{array}{c} (\neg b_0 \rhd b_0) \land \\ ((\neg b_1 \land b_0) \rhd (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \rhd (b_2 \land \neg b_1 \land \neg b_0)) \land \\ ((\neg b_3 \land b_2 \land b_1 \land b_0) \rhd (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))\end{array}$$

Transition systems

Planning tasks

State variables

Logic

Operators Tasks

Z

Definition (changes caused by an operator)

For each effect *e* and state *s*, we define the change set of *e* in *s*, written $[e]_s$, as the following set of literals:

■
$$[a]_s = \{a\}$$
 and $[\neg a]_s = \{\neg a\}$ for atomic effects $a, \neg a$

$$\blacksquare [e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$$

■
$$[\chi \triangleright e]_s = [e]_s$$
 if $s \models \chi$ and $[\chi \triangleright e]_s = \emptyset$ otherwise

Definition (applicable operators)

Operator $\langle \chi, e \rangle$ is applicable in a state *s* iff $s \models \chi$ and $[e]_s$ is consistent (i. e., does not contain two complementary literals).

Transition systems

Planning tasks

State variable

Logic

Operators

Definition (successor state)

The successor state $app_o(s)$ of *s* with respect to operator $o = \langle \chi, e \rangle$ is the state *s'* with *s'* $\models [e]_s$ and *s'*(*v*) = *s*(*v*) for all state variables *v* not mentioned in $[e]_s$. This is defined only if *o* is applicable in *s*.

Example

Consider the operator $\langle a, \neg a \land (\neg c \rhd \neg b) \rangle$ and the state $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$. The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \rhd \neg b)]_s = \{\neg a\}$ is consistent. Applying the operator results in the successor state $app_{\langle a, \neg a \land (\neg c \rhd \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.

Transition systems

Planning tasks

State variable

Logic

Operators

Definition (deterministic planning task)

- A deterministic planning task is a 4-tuple $\Pi = \langle A, I, O, \gamma \rangle$ where
 - A is a finite set of state variables (propositions),
 - *I* is a valuation over *A* called the initial state,
 - *O* is a finite set of operators over *A*, and
 - γ is a formula over A called the goal.

Note:

- When we talk about deterministic planning tasks, we usually omit the word "deterministic".
- When we will talk about nondeterministic planning tasks later, we will explicitly qualify them as "nondeterministic".

Transiti

Transition systems

Planning tasks

State variable

Logic

Operators

Definition (induced transition system of a planning task)

Every planning task $\Pi = \langle A, I, O, \gamma \rangle$ induces a corresponding deterministic transition system $\mathscr{T}(\Pi) = \langle S, L, T, s_0, S_* \rangle$:

- \blacksquare *S* is the set of all valuations of *A*,
- $\blacksquare L \text{ is the set of operators } O,$

$$\blacksquare T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = app_o(s) \},\$$

 \blacksquare $s_0 = I$, and

$$\blacksquare S_{\star} = \{ s \in S \mid s \models \gamma \}$$

systems Planning tasks

State variable

Logic

Operators

Transition systems

Planning tasks

State variable

Logic

Operators

Tasks

- Terminology for transitions systems is also applied to the planning tasks that induce them.
- For example, when we speak of the states of Π , we mean the states of $\mathscr{T}(\Pi)$.
- A sequence of operators that forms a goal path of *T*(Π) is called a plan of Π.

By planning, we mean the following two algorithmic problems:

Definition (satisficing planning)

- Given: a planning task Π
- Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (optimal planning)

- Given: a planning task Π
- Output: a plan for Π with minimal length among all plans for Π, or **unsolvable** if no plan for Π exists

Planning

State variable

Logic

Operators Tacks

Summary

- Transition systems are (typically huge) directed graphs
 - that encode how the state of the world can change.
 - Planning tasks are compact representations for transition systems, suitable as input for planning algorithms.
 - Planning tasks are based on concepts from propositional logic, enhanced to model state change.
 - States of planning tasks are propositional valuations.
 - Operators of planning tasks describe when (precondition) and how (effect) to change the current state of the world.
 - In satisficing planning, we must find a solution to planning tasks (or show that no solution exists).
 - In optimal planning, we additionally guarantee that generated solutions are of the shortest possible length.

Transition systems

Planning tasks

Summary

34/34