Dynamic Epistemic Logic

Chapter 2 - Multi agent S5
Axiomatisation and Common knowledge

2.3 Axiomatisation

1- Semantic derivation of valid formulas via Kripke models.
2- Syntactic derivation of valid formulas via axioms.

Modal logic K:
- all instantiations of propositional tautologies (Prop)
- \(K_a(\phi \rightarrow \psi) \rightarrow (K_a\phi \rightarrow K_a\psi) \) (K)
- From \(\phi \land \phi \rightarrow \psi \), we can infer \(\psi \) (MP, modus ponens)
- From \(\phi \), we can infer \(K_a\phi \) (Nec, necessitation)

Definition 1 Derivation

Let \(\mathcal{X} \) be an arbitrary axiomatisation with axioms \(\Lambda_{x_1}, \ldots, \Lambda_{x_n} \) and rules \(R_{u_1}, \ldots, R_{u_m} \), where each rule is of the form "From \(\phi_1, \ldots, \phi_l \), infer \(\phi_j \)." Then a derivation of a formula \(\phi \) with \(\mathcal{X} \) is a finite sequence \(\phi_1, \ldots, \phi_m \) of formulas such that:

1) \(\phi_m = \phi \) and
2) every \(\phi_i \) in the sequence is:
 a) either an instance of one of the axioms
 b) or else the result of the application of one of the rules to formulas in the sequence that appear before \(\phi_i \)

If there is a derivation for \(\phi \) in \(\mathcal{X} \), then we write \(\vdash_{\mathcal{X}} \phi \) or \(\vdash \phi \) if \(\mathcal{X} \) is clear.

We say that \(\phi \) is a theorem of \(\mathcal{X} \).

Logic K is only (arbitrary) Kripke models, including models where \(R_i \) not necessarily reflect knowledge. E.g model \(\mathcal{M} \)

\[
\begin{array}{c}
\text{w}_1 : p \\
\text{a} \\
\text{w}_2 : \neg p
\end{array}
\]

\((\mathcal{M}, w_1) \models p \) but, \((\mathcal{M}, w_2) \) models \(K_a \neg p \)
We would like a logic where something like \(\neg(p \land K_a \neg p) \) is a theorem. Semantically, we solved this by requiring epistemic models to have reflexive accessibility relations (among other requirements). Syntactically, add axiom \(K_a \phi \rightarrow \phi \).

Additional axioms for S5:

\[
K_a \phi \rightarrow K_a K_a \phi \quad (4, \text{positive introspection})
\]

\[
\neg K_a \phi \rightarrow K_a \neg K_a \phi \quad (5, \text{negative introspection})
\]

Theorem 1 Axiom system \(K \) is sound and complete w.r.t. the class \(\mathcal{K} \) of all Kripke models, i.e. for every formula \(\phi \) in \(L_K \), we have that \(\vdash K \phi \iff K \models \phi \).

Similarly, \(\vdash S_5 \phi \iff S_5 \models \phi \). ("you can derive \(\phi \) in \(S_5 \) iff \(\phi \) is valid in all epistemic Kripke models")

2.4 Common knowledge

Group notions of knowledge:

Recall \(E_B \phi \). \(E_B \) satisfies axiom T, but not positive introspection.

\(E_B \phi \rightarrow E_B E_B \phi \) is not valid. E.g if agents a and b are both (separately) told that \(p \) is true, \(E_a b p \) is true but not \(E_a b E_a b p \).

So, how to model that everybody knows that everybody knows that... that \(p \)?

The common knowledge operator!

For \(B \subseteq A \), \(C_B \phi \equiv \bigwedge_{n=0} E^n_B \phi \), where \(E_B \phi = E_B E_B ... E_B \phi \).

Definition 2 By language \(L_{KC} \), we refer to the language defined just like \(L_K \), but with the additional \(C \) modality. For \(a \in A, B \subseteq A, p \in P \), we define:

\[
\phi := \phi \land \phi \land ... \land K_a \phi \land C_B \phi
\]

Semantics: As before, using (epistemic) Kripke models.

Definition 3 Let \(M = \langle S, R, V \rangle \) be a Kripke models with agents \(A \) and \(B \subseteq A \). Then \(R_{E_B} = \bigvee_{b \in B} R_b \).

The transitive closure of a relation \(R \) is the smallest relation \(R^+ \) s.t. :

1. \(R \subseteq R^+ \)

2. \(\forall x, y, z \text{ if } (x, y) \in R^+ \text{ and } (y, z) \in R^+ \text{ then also } (x, z) \in R^+ \)

If additionally, \((x, x) \in R^+ \forall x \), then \(R^+ \) is the reflexive-transitive closure of \(R \).

Definition 4 Let \(P \) be a set of atomic propositions, \(A \) a set of agents and \(M = \langle S, R, V \rangle \) an epistemic model and \(B \subseteq A \). Then the truth of an \(L_{K,C} \) formula \(\phi \) in \(\langle M, s \rangle \) is defined as for \(L_K \), with an additional clause for common knowledge.

\(\langle M, s \rangle \models C_B \phi \iff \langle M, t \rangle \models \phi \forall t \in S \text{ with } (s, t) \in E^\ast (C_B) = R^C_B \).
Example 1 $\mathcal{M}, w \models C_{ab} p$

$\mathcal{M}, w \not\models C_{abc} p$

![Figure 2: Example 1](image)

Additional axioms for common knowledge:

$C_B (\phi \rightarrow \psi) \rightarrow (C_B \phi \rightarrow C_B \psi)$ (Dist)

$C_B \phi \rightarrow (\phi \land E_B C_B \phi)$ (Mix)

$C_B (\phi \rightarrow E_B \phi) \rightarrow (\phi \rightarrow C_B \phi)$ (Ind)

From ϕ, infer $C_B \phi$ (Nec)

Together with S5 axioms and rules: sound and complete w.r.t. epistemic models with common knowledge.

2.5 Model checking

Local MC for $L_K C$ formulas: Given a finite Kripke model $\mathcal{M} = (S, R, V)$, an $L_K C$ formulas ϕ and a state s, determine whether s satisfies ϕ:

you only care about state s. The rest of S may be given only implicitly.

Global MC for $L_K C$ formulas: Given a finite Kripke model $\mathcal{M}_K C$, an $L_K C$ formula ϕ, determine the set of states where ϕ is satisfied.

We care about all states.

Especially easy if S is given explicitly.

Algorithmically often done semantically.

Idea: For all subformulas ψ of ϕ, determine the sets of states where ψ is true, inductively from small to large subformulas.

Definition 5 Subformulas

Let ϕ be a formula in the $L_K C$ language. Then the set of subf(ϕ) of subformulas is
defined recursively as follows:

\[\text{subf}(p) = p \text{ for atomic propositions } p \in P \]
\[\text{subf}(\neg \phi) = \{ \neg \phi \} \cup \text{subf}(\phi) \]
\[\text{subf}(\phi \lor \psi) = \{ \phi \lor \psi \} \cup \text{subf}(\phi) \cup \text{subf}(\psi) \]
\[\text{subf}(K_a \phi) = \{ K_a \phi \} \cup \text{subf}(\phi) \]
\[\text{subf}(C_B \phi) = \{ C_B \phi \} \cup \text{subf}(\phi) \]

If \(\psi \in \text{subf}(\phi) \setminus \{ \phi \} \) then \(\psi \) is called a proper subformula of \(\phi \).

Definition 6 Let \(a \) be an agent and \(S' \subseteq S \). Then the strong preimage of \(S \); w.r.t \(a \) is:

\[\text{spreimg}_a(S) = \{ s \in S | \text{for } s' \in S \text{ with } (s, s') \in R_a: s' \in S' \} \]

Notation:
Let \(\llbracket \phi \rrbracket = \{ s \in S | s \models \phi \} \) be the set of states where \(\phi \) is true.

MC algorithm
Let \(M = (S, R, V) \) be an (epistemic) Kripke model and \(\phi \in L_KC \) a formula. Let \(\phi_1, \ldots, \phi_n \) be the subformulas of \(\phi \) ordered from small to large. Then:
Algorithm 1 Model checking

switch ϕ_i do
 case p
 $\llbracket p \rrbracket := V(p)$
 case $\neg \phi'$
 $\llbracket \phi_i \rrbracket := S \setminus \llbracket \phi' \rrbracket$
 case $\phi' \lor \phi''$
 $\llbracket \phi_i \rrbracket := \llbracket \phi' \rrbracket \cup \llbracket \phi'' \rrbracket$
 case $\phi' \land \phi''$
 $\llbracket \phi_i \rrbracket := \llbracket \phi' \rrbracket \cap \llbracket \phi'' \rrbracket$
 case $K_a \phi'$
 $\llbracket \phi_i \rrbracket := \text{spreimg}_a(\llbracket \phi' \rrbracket)$
 case $C_a \phi'$
 Let $S_1 = \llbracket \phi' \rrbracket$
 Let $S_2 = S_1 \cap \bigcap_{b \in B} \text{spreimg}(S_1)$
 $j := 1$
 while $S_j \neq S_{j+1}$ do
 $j := j + 1$
 $S_{j+1} := S_j \cap \bigcap_{b \in B} \text{spreimg}(S_j)$
 end while
 Then $\llbracket \phi_i \rrbracket := S_{j+1}$
end switch
Intuition behind the $C_B \phi'$ case:

$$[[E_B \Phi']] = [[[E_B^{+1} \Phi'] = [C_B \phi']]]$$

Example 2 $[[\neg B_b (K_a p \land q)]]$?

$[p] = \{S_1, S_2, S_3, S_5, S_6\}$

$[q] = \{S_2, S_3, S_4, S_5, S_6\}$

$[K_a p] = \{S_1, S_2, S_3\}$

$[K_a \land q] = \{S_2, S_3\}$

$[K_b (K_a p \land q)]] = \emptyset$

$[[\neg B_b (K_a p \land q)]] = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

Figure 3: Example 2
Example 3 $\llbracket C_{ab}p \rrbracket$?

$\llbracket p \rrbracket = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\} = S_1$

$S_2 = S_1 \cap (\text{spreimg}_a(S_1) \cap \text{spreimg}_a(S_2))$

$= S_1 \cap (S_1 \cap \{s_1, \ldots, s_6\})$

$= \{s_1, \ldots, s_6\}$

$S_3 = \ldots = \{s_1, \ldots, s_5\}$

$S_4 = S_3 = \llbracket C_{ab}p \rrbracket = \{s_1, \ldots, s_5\}$