Principles of AI Planning
 16. Strong nondeterministic planning

Bernhard Nebel and Robert Mattmüller

 January 20th, 2017
Strong planning

Concepts
Algorithms
Summary
In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

Concepts
Strong plans
Images
Weak preimages
Strong preimages

Concepts

Strong plans

Recall the definition of strong plans:

Definition (strong plan)

Let S be the set of states of a planning task Π. Then a strong Strong plans plan for Π is a function $\pi: S_{\pi} \rightarrow O$ for some subset $S_{\pi} \subseteq S$ such that
$\pi(s)$ is applicable in s for all $s \in S_{\pi}$,
$\square S_{\pi}\left(S_{0}\right) \subseteq S_{\pi} \cup S_{\star}$ (π is closed),

- $S_{\pi}\left(s^{\prime}\right) \cap S_{\star} \neq \emptyset$ for all $s^{\prime} \in S_{\pi}\left(s_{0}\right)$ (π is proper), and
- there is no state $s^{\prime} \in S_{\pi}\left(s_{0}\right)$ such that s^{\prime} is reachable from s^{\prime} following π in a strictly positive number of steps (π is acyclic).

Strong plans

Execution of a strong plan

1 Determine the current state s.
2 If s is a goal state then terminate.
3 Execute action $\pi(s)$.
4 Repeat from first step.

Strong plans

Concepts
Strong plans
Images
Weak preimages
Strong preimages

Strong plans

Concepts
Strong plans
Images
Weak preimages
Strong preimages
Algorithms
Summary

Strong plans

Concepts
Strong plans
Images
Weak preimages
Strong preimages
Algorithms
Summary

Strong plans

Concepts
Strong plans
Images
Weak preimages
Strong preimages
Algorithms
Summary
ourtig premages
(pick-up-from-table A)
(pick-up A B)

Images

Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

Images

Concepts
Strong plans
Images
Weak preimages

Definition (image of a state)

$$
\operatorname{img}_{o}(s)=\left\{s^{\prime} \in S \mid s \xrightarrow{o} s^{\prime}\right\}=a p p_{o}(s)
$$

Definition (image of a set of states)
 $i m g_{o}(T)=\bigcup_{s \in T} i m g_{o}(s)$

Weak preimage

The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

Strong plans

Weak preimages

Concepts
Strong plans
Images
Weak preimages

Definition (weak preimage of a state)

wpreimg $_{o}\left(s^{\prime}\right)=\left\{s \in S \mid s \xrightarrow{o} s^{\prime}\right\}$

Definition (weak preimage of a set of states)

wpreimg $_{o}(T)=\bigcup_{s \in T}$ wpreimg $_{o}(s)$.

Strong preimages

Strong preimage

The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is

Concepts
Strong plans
Images
Weak preimages
Strong preimages
Algorithms
Summary

Strong preimages

Definition (strong preimage of a set of states)

$$
\text { spreimg }_{o}(T)=\left\{s \in S \mid \exists s^{\prime} \in T: s \xrightarrow{o} s^{\prime} \wedge i m g_{o}(s) \subseteq T\right\}
$$

Algorithms

Algorithms for strong planning

1 Dynamic programming (backward)
Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.

1 Zero actions needed for goal states.
2 If states with i actions to goals are known, states with $\leq i+1$ actions to goals can be easily identified.

Automatic reuse of plan suffixes already found.
2 Heuristic search (forward)
Strong planning can be viewed as AND/OR graph search.
OR nodes: Choice between operators
AND nodes: Choice between effects
Heuristic AND/OR search algorithms: AO*, Proof Number Search, ...

Planning by dynamic programming

If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

- Base case $i=0:$ In goal states there is nothing to do.
- Inductive case $i \geq 1$: If $\pi(s)$ is still undefined and there is regression $o \in O$ such that for all $s^{\prime} \in i m g_{o}(s)$, the state s^{\prime} is a goal state or $\pi\left(s^{\prime}\right)$ was assigned in an earlier iteration, then assign $\pi(s)=0$.

Backward distances

If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i. The dynamic programming algorithm essentially computes the backward distances of states.

Backward distances

Concepts
Algorithms
Regression
Efficient
implementation of regression

Backward distances

Definition (backward distance sets)

Algorithms
Regression
Efficient
implementation of
regression
Progression
Summary states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O :

$$
\begin{aligned}
& D_{0}^{\text {bwd }}:=G \\
& D_{i}^{\text {bwd }}:=D_{i-1}^{\text {bwd }} \cup \bigcup_{o \in O} \operatorname{spreimg} g_{o}\left(D_{i-1}^{\text {bwd }}\right) \text { for all } i \geq 1
\end{aligned}
$$

Backward distances

Definition (backward distance)

Let G be a set of states and O a set of operators, and let $D_{0}^{b w d}, D_{1}^{b w d}, \ldots$ be the backward distance sets for G and O.

$$
\delta_{G}^{b w d}(s)=\min \left\{i \in \mathbb{N} \mid s \in D_{i}^{b w d}\right\}
$$

(where $\min \emptyset=\infty$).

Strong plans based on distances

Let $\Pi=\langle V, I, O, \gamma\rangle$ be a nondeterministic planning task with state set S and goal states S_{\star}.

Concepts

Extraction of a strong plan from distance sets

1 Let $S^{\prime} \subseteq S$ be those states having a finite backward distance for $G=S_{\star}$ and O.
2 Let $s \in S^{\prime}$ be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
3 Assign to $\pi(s)$ any operator $o \in O$ such that $i m g_{o}(s) \subseteq D_{i-1}^{\text {bwd }}$. Hence o decreases the backward distance by at least one.

Then π is a strong plan for \mathscr{T} iff $I \in S^{\prime}$.
Question: What is the worst-case runtime of the algorithm?
Question: What is the best-case runtime of the algorithm if most states have a finite backward distance?

Making the algorithm a logic-based algorithm

- An algorithm that represents the states explicitly stops being feasible at about 10^{8} or 10^{9} states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- As before, representing state sets as propositional formulae (or BDDs) often allows taking advantage of the structural properties: a formula (or BDD) that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.
- In the following, we will present an algorithm using a boolean-formula representation (without going into the details of how to implement it using BDDs).

Making the algorithm a logic-based algorithm

Concepts
Remark: The following algorithm assumes a propositional representation of the state space as opposed to a finite-domain representation. We have already seen how to translate an FDR encoding into a propositional encoding in Chapter 9 (cf. definition of the "induced propositional planning task").
Therefore, for the rest of the present section, we will assume without loss of generality that all $v \in V$ are propositional variables with domain $\mathscr{D}_{v}=\{0,1\}$.

Breadth-first search with progression and state sets (deterministic case)

def bfs-progression (V, I, O, γ) :
goal:
reach
loop:
if reached \cap goal $\neq \emptyset$: return solution found
new-reached $:=$ reached $\cup \bigcup_{o \in O}$ img $_{o}$ (reached)
if new-reached = reached: return no solution exists
reached := new-reached
\rightsquigarrow This can easily be transformed into a regression algorithm.

Breadth-first search with regression and state sets (deterministic case)

def bfs-regression($V, I, O, \gamma)$:
reached := formula-to-set (γ)

Regression
Efficient
implementation of regression
Progression
if init \in reached: return solution found
new-reached $:=$ reached $\cup \bigcup_{o \in O}$ wpreimg $_{o}$ (reached)
if new-reached = reached:
return no solution exists
reached := new-reached

- This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case!

Breadth-first search with regression and state sets (strong nondeterministic case)

Regression breadth-first search

def bfs-regression($V, I, O, \gamma)$:

$$
\begin{aligned}
& \text { init }:=\text { I } \\
& \text { reached }:=\text { formula-to-set }(\gamma)
\end{aligned}
$$

loop:
return solution found
new-reached $:=$ reached $\cup \bigcup_{o \in O}$ spreimg $_{o}($ reached) if new-reached = reached: return no solution exists reached := new-reached

Remark: Do you recognize the assignments $D_{0}^{\text {bwd }}:=G$ and $D_{i}^{\text {bwd }}:=D_{i-1}^{b w d} \cup \bigcup_{o \in O} \operatorname{spreimg}_{o}\left(D_{i-1}^{\text {bwd }}\right)$ for $i \geq 1$?

Breadth-first search with regression and state sets (strong nondeterministic case, symbolic)

Regression breadth-first search

def bfs-regression($V, I, O, \gamma)$:
init := I
reached := γ
loop:
if init $\mid=$ reached: return solution found
new-reached $:=$ reached \vee
$V_{o \in O}$ spreimgsymb。(reached)
if new-reached \equiv reached: return no solution exists
reached := new-reached

- How do we define spreimgsymb with logic (or BDD) operations?

Let φ be a logic formula and $\llbracket \varphi \rrbracket=\{s \in S \mid s=\varphi\}$.

We want: a symbolic preimage operation spreimgsymb such that if $\psi=$ spreimgsymb $_{o}(\varphi)$, then $\llbracket \psi \rrbracket=\{s \in S|s|=\psi\}=$ spreimg $_{o}(\llbracket \varphi \rrbracket)$.
In other words, we want the following diagram to commute:

Let V be the set of state variables and $V^{\prime}:=\left\{v^{\prime} \mid v \in V\right\}$ a set of primed copies of the variables in V. Intuition:

- Variables in V describe the current state s.

■ Variables in V^{\prime} describe the next state s^{\prime}.

We would like to define a formula $\tau_{V}(o)$ that describes the transitions labeled with o between states s (over V) and s^{\prime} (over V^{\prime}) in terms of V and V^{\prime}.

Transition formula for nondeterministic

 operatorsConcepts

The formula $\tau_{V}(o)$ must express

- the conditions for applicability of O,
- how o changes state variables, and
- which state variables o does not change.

A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices.

Transition formula for nondeterministic operators

$\tau_{V}(0)$ for deterministic operators $0=\langle\chi, e\rangle$

$$
\begin{aligned}
\tau_{V}(0)= & \chi \wedge \\
& \bigwedge_{V \in V}\left(\left(E P C_{V}(e) \vee\left(v \wedge \neg E P C_{\neg v}(e)\right)\right) \leftrightarrow v^{\prime}\right) \\
& \wedge \bigwedge_{v \in V} \neg\left(E P C_{v}(e) \wedge E P C_{\neg V}(e)\right)
\end{aligned}
$$

Assume that $e=\bigwedge_{a \in A} a \wedge \bigwedge_{d \in D} \neg d$ for $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $D=\left\{d_{1}, \ldots, d_{l}\right\}$ with $A \cap D=\emptyset$. Then this becomes simpler.

$\tau_{V}(0)$ for STRIPS operators $0=\left\langle\chi, \bigwedge_{a \in A} a \wedge \bigwedge_{d \in D} \neg d\right\rangle$

$$
\tau_{V}(0)=\chi \wedge \bigwedge_{a \in A} a^{\prime} \wedge \bigwedge_{d \in D} \neg d^{\prime} \wedge \bigwedge_{v \in V \backslash(A \cup D)}\left(v \leftrightarrow v^{\prime}\right)
$$

Transition formula for nondeterministic operators

For nondeterministic operators $0=\left\langle\chi,\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle$ with
corresponding add and delete lists A_{i} and D_{i} of e_{i} such that

Concepts
Algorithms
Regression
Efficient
implementation of regression
Progression
Summary

$$
\tau_{V}(o)=\chi \wedge \bigvee_{i=1}^{n}\left(\bigwedge_{a \in A_{i}} a^{\prime} \wedge \bigwedge_{d \in D_{i}} \neg d^{\prime} \wedge \bigwedge_{v \in V \backslash\left(A_{i} \cup D_{i}\right)}\left(v \leftrightarrow v^{\prime}\right)\right)
$$

Example

Let $V=\{a, b\}, V^{\prime}=\left\{a^{\prime}, b^{\prime}\right\}$, and $o=\langle\neg a,\{a, a \wedge \neg b\}\rangle$. Then

$$
\tau_{V}(o)=\neg a \wedge\left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(a^{\prime} \wedge \neg b^{\prime}\right)\right)
$$

Computing strong preimages

Definition (substitution)

Let $\varphi, t_{1}, \ldots, t_{n}$ be propositional formulas and v_{1}, \ldots, v_{n} atomic propositions.

We denote the formula obtained from φ by simultaneous replacement of all variables v_{i} by the corresponding formulas $t_{i}, i=1, \ldots, n$, by $\varphi\left[t_{1}, \ldots, t_{n} / v_{1}, \ldots, v_{n}\right]$.

Computing strong preimages

Definition（existential abstraction）

$$
\exists v . \varphi:=\varphi[\top / v] \vee \varphi[\perp / v]
$$

For a set of variables $V=\left\{v_{1}, \ldots, v_{n}\right\}$ we use the abbreviation

$$
\exists V . \varphi:=\exists v_{1} \ldots \exists v_{n} \cdot \varphi .
$$

Note：Even with intermediate formula simplifications this can lead to an exponential blowup．BDDs can be useful here．

Computing strong preimages

Strong preimages

Concepts
Algorithms
Regression

$$
\begin{aligned}
\text { spreimg }_{o}(T)= & \left\{s \in S \mid \exists s^{\prime} \in T: s \xrightarrow{\circ} s^{\prime} \wedge i m g_{o}(s) \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s \xrightarrow{\circ} s^{\prime} \wedge s^{\prime} \in T\right) \wedge\right. \\
& \left.\left\{s^{\prime} \in S \mid s \xrightarrow{\circ} s^{\prime}\right\} \subseteq T\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s \xrightarrow{o} s^{\prime} \wedge s^{\prime} \in T\right) \wedge\right. \\
& \left.\left(\forall s^{\prime} \in S: s \xrightarrow{\circ} s^{\prime} \Rightarrow s^{\prime} \in T\right)\right\} \\
= & \left\{s \in S \mid\left(\exists s^{\prime} \in S: s \xrightarrow{\circ} s^{\prime} \wedge s^{\prime} \in T\right) \wedge\right. \\
& \left.\left(\neg \exists s^{\prime} \in S: s \xrightarrow{o} s^{\prime} \wedge \neg\left(s^{\prime} \in T\right)\right)\right\}
\end{aligned}
$$

Computing strong preimages with boolean function operations

$$
\begin{aligned}
\text { spreimg }_{o}(T)=\{s \in S \mid & \left(\exists s^{\prime} \in S: s \xrightarrow{\circ} s^{\prime} \wedge s^{\prime} \in T\right) \wedge \\
& \left.\left(\neg \exists s^{\prime} \in S: s \xrightarrow{\circ} s^{\prime} \wedge \neg\left(s^{\prime} \in T\right)\right)\right\}
\end{aligned}
$$

Strong preimages with boolean functions

For formula φ characterizing set T of strongly backward-reached states:

$$
\begin{aligned}
\text { spreimgsymb }_{o}(\varphi)= & \left(\exists V^{\prime} .\left(\tau_{\vee}(0) \wedge \varphi\left[v_{1}^{\prime}, \ldots, v_{n}^{\prime} / v_{1}, \ldots, v_{n}\right]\right)\right) \wedge \\
& \left(\neg \exists V^{\prime} .\left(\tau_{V}(0) \wedge \neg \varphi\left[v_{1}^{\prime}, \ldots, v_{n}^{\prime} / v_{1}, \ldots, v_{n}\right]\right)\right)
\end{aligned}
$$

We can use this regression formula for efficient symbolic regression search. BDDs support all necessary operations (atomic propositions, \neg, \wedge, \vee, substitution, \exists, \ldots).

Computing strong preimages with boolean function operations

Example

Let $V=\{a, b\}, V^{\prime}=\left\{a^{\prime}, b^{\prime}\right\}$, and

$$
\begin{aligned}
0 & =\langle\neg a,\{a, a \wedge \neg b\}\rangle, \quad \text { i.e., } \\
\tau_{V}(o) & =\neg a \wedge\left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(a^{\prime} \wedge \neg b^{\prime}\right)\right) .
\end{aligned}
$$

Moreover, let $\varphi=a$. Then
spreimgsymb $_{\circ}(\varphi)=\exists a^{\prime} \exists b^{\prime} .\left(\neg a \wedge\left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(a^{\prime} \wedge \neg b^{\prime}\right)\right) \wedge a^{\prime}\right)$

$$
\begin{aligned}
& \neg \exists a^{\prime} \exists b^{\prime} .\left(\neg a \wedge\left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(a^{\prime} \wedge \neg b^{\prime}\right)\right) \wedge \neg a^{\prime}\right) \\
& \equiv \neg a
\end{aligned}
$$

Computing strong preimages with boolean function operations

Theorem

The previous definition of the symbolic preimage operator makes the following diagram commute:

Proof.

Homework

Progression Search

- We saw a generalization of regression search to strong planning.
- However, this search is uninformed (breadth-first search).
- Is there an analogue to A^{*} search for strong planning?
- Yes: AO* search
- Progression search (like A*)
- Guided by a heuristic (like A*)
- Guaranteed optimality (under certain conditions, like A^{*})

AND/OR search

Algorithms
Regression
Efficient
implementation of regression Progression

AND/OR search

Concepts
Algorithms
Regression
Efficient
implementation of regression
Progression

Progression Search

- We describe AO^{*} on a graph representation without intermediate nodes, i.e., as in the first figure.
- There are different variants of AO*, depending on whether the graph that is being searched is an AND/OR tree, an

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression graph.

- The graphs we want to search, $\mathscr{T}(\Pi)$, are in general cyclic.
- However, AO^{*} becomes a bit more involved when dealing with cycles, so we only discuss AO^{*} under the assumption of acyclicity and leave the generalization to cyclic state spaces as an exercise.

AO* Search

Concepts
Algorithms
Regression
Efficient

- The search is over $\mathscr{T}(\Pi)$.
implementation of regression
- For ease of presentation, we do not distinguish between states of $\mathscr{T}(\Pi)$ and search nodes.
- Also, for ease of presentation, we do not handle the case that no strong plan exists.

AO* Search

Definition (solution graph)

A solution graph for a nondeterministic transition system $\mathscr{T}=\left\langle S, L, T, s_{0}, S_{\star}\right\rangle$ is an acyclic subgraph of \mathscr{T} (viewed as a graph), $\mathscr{T}^{\prime}=\left\langle S^{\prime}, L, T^{\prime}\right\rangle$, such that
$s_{0} \in S^{\prime}$,
\square for each $s^{\prime} \in S^{\prime} \backslash S_{\star}$, there is exactly one label $I \in L$ s.t.

- T^{\prime} contains at least one outgoing transition from s^{\prime} labeled with I,
- T^{\prime} contains all outgoing transitions from s^{\prime} labeled with / (and S^{\prime} contains the states reached via such transitions),
- T^{\prime} contains no outgoing transitions from s^{\prime} labeled with any $\tilde{I} \neq I$, and
- every directed path in \mathscr{T}^{\prime} terminates at a goal state.

Conceptually, there are three graphs/transition systems:

- The induced transitions system $\mathscr{T}=\mathscr{T}(\Pi)$, which only exists as a mathematical object, but is in general not made explicit completely during AO* search,

■ The current portion of \mathscr{T} explicitly represented by the search algorithm, \mathscr{T}, and

- The current portion of \mathscr{T}_{e} considered by the algorithm as the cheapest/best current partial solution graph, \mathscr{T}_{p}.

AO* Search

Definition (partial solution graph)

A partial solution graph for a nondeterministic transition
$s_{0} \in S_{p}$,
for each $s^{\prime} \in S_{p}$ that is not an unexpanded leaf node in \mathscr{T}_{p} regression there is exactly one label $I \in L$ such that

- T_{p} contains at least one outgoing transition from s^{\prime} labeled with I,
- T_{p} contains all outgoing transitions from s^{\prime} labeled with / (and S_{p} contains the states reached via such transitions),
- T_{p} contains no outgoing transitions from s^{\prime} labeled with any $\tilde{I} \neq I$, and
- every directed path in \mathscr{T}_{p} terminates at a goal state or an unexpanded leaf node in \mathscr{T}_{p}.

AO* Search

Definition (cost of a partial solution graph)

Let $h: S \rightarrow \mathbb{N} \cup\{\infty\}$ be a heuristic function for the state space S of \mathscr{T}, and let $\mathscr{T}_{p}=\left\langle S_{p}, L, T_{p}\right\rangle$ be a partial solution graph. The cost labeling of \mathscr{T}_{p} is the solution to the following system of equations over the states S_{p} of \mathscr{T}_{p} :

$$
f(s)= \begin{cases}0 & \text { if } s \text { is a goal state } \\ h(s) & \text { if } s \text { is an unexpanded non-goal } \\ 1+\max _{s \rightarrow s^{\prime}}^{o^{\prime}} f\left(s^{\prime}\right) & \text { for the unique outgoing action } \\ & o \text { of } s \text { in } \mathscr{T}_{p}, \text { otherwise. }\end{cases}
$$

The cost of \mathscr{T}_{p} is the cost labeling of its root.
AO* search keeps track of a cheapest partial solution graph by marking for each expanded state s an outgoing action o minimizing $1+\max _{s \rightarrow{ }_{s}{ }^{\circ}} f\left(s^{\prime}\right)$.

AO* Search

Procedure ao-star

def ao-star($\mathscr{T})$:
let \mathscr{T}_{e} and \mathscr{T}_{p} initially consist of the initial state s_{0}. for all new states s^{\prime} added to \mathscr{T}_{e} : $f\left(s^{\prime}\right) \leftarrow h\left(s^{\prime}\right)$
$Z \leftarrow s$ and its ancestors in \mathscr{T}_{e} along marked actions.
while Z is not empty:
remove from Z a state s w/o descendant in Z.
$\left.f(s) \leftarrow \min _{o \text { applicable in } s\left(1+\max _{s}{ }_{s}{ }^{\circ} s^{\prime}\right.} f\left(s^{\prime}\right)\right)$. mark the best outgoing action for s
(this may implicitly change \mathscr{T}_{p}).
return an optimal solution graph.

Correctness (proof sketch)

- Solution graphs directly correspond to strong plans.
- Algorithm eventually terminates (finite number of possible
- Acyclicity guarantees that extraction of \mathscr{T}_{p} and dynamic programming back-propagation of f values always terminates.
- Marking makes sure that existing solutions are eventually marked.

AO* Search

Details

- Choice of unexpanded non-goal node of best partial

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression
Summary

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression
Summary

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression
Summary

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression
Progression

AO* Search

Concepts
Algorithms
Regression
Efficient
implementation of regression

Progression
Summary

Heuristic Evaluation Function

- Desirable: informative, domain-independent heuristic to initialize cost estimates.
- Heuristic should estimate (strong) goal distances.
- Heuristic does not necessarily have to be admissible (unless we seek optimal solutions).
- We can adapt many heurstics we already know from classical planning (details omitted).

Concepts

Summary

- We have considered the special case of nondeterministic planning where
- planning tasks are fully observable and
- we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as
- images and
- weak and strong preimages.
- We have discussed some basic classes of algorithms:
- backward induction by dynamic programming, and
- forward search in AND/OR graphs.

