Principles of AI Planning 16. Strong nondeterministic planning Albert-Ludwigs-Universität Freiburg Bernhard Nebel and Robert Mattmüller January 20th, 2017 ## Strong planning Concepts Algorithms Summary In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans. #### • ### Concepts Strong plans Images Weak preimages Strong preimages ### Algorithms Summary ## Concepts ### Strong plans Recall the definition of strong plans: #### Definition (strong plan) Let S be the set of states of a planning task Π . Then a strong plan for Π is a function $\pi:S_\pi\to O$ for some subset $S_\pi\subseteq S$ such that - \blacksquare $\pi(s)$ is applicable in s for all $s \in S_{\pi}$, - \blacksquare $S_{\pi}(s_0) \subseteq S_{\pi} \cup S_{\star}$ (π is closed), - \blacksquare $S_{\pi}(s') \cap S_{\star} \neq \emptyset$ for all $s' \in S_{\pi}(s_0)$ (π is proper), and - there is no state $s' \in S_{\pi}(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (π is acyclic). #### Strong plans #### Strong plans Algorithms #### Execution of a strong plan - Determine the current state s. - If *s* is a goal state then terminate. - Execute action $\pi(s)$. - Repeat from first step. ### Strong plans #### Strong plans Images Weak preimages Strong preimages ### Algorithms ### **Images** ## UNI FREIBU #### Image The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T. Concepts Images Weak preimag Algorithms ## Definition (image of a state) $$img_o(s) = \{s' \in S | s \xrightarrow{o} s'\} = app_o(s)$$ #### Definition (image of a set of states) $$img_o(T) = \bigcup_{s \in T} img_o(s)$$ #### Concepts Strong plans #### Images Strong preimages #### Algorithms ## Weak preimages # FREIBUR #### Weak preimage The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o. Concepts Strong plar Images Weak preimages Strong preimages Algorithms ## Weak preimages ## FREIB ### Definition (weak preimage of a state) wpreim $$g_o(s') = \{s \in S | s \xrightarrow{o} s'\}$$ #### Definition (weak preimage of a set of states) $$wpreimg_o(T) = \bigcup_{s \in T} wpreimg_o(s).$$ Strong pla Images Weak preimages Strong preimages Algorithms ### Strong preimages #### Strong preimage The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o. #### Concepts Strong plans Images Weak preimages Strong preimages #### Algorithms ### Strong preimages Strong preimages Algorithms Summary Definition (strong preimage of a set of states) $spreimg_o(T) = \{ s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T \}$ #### Concepts #### Algorithms Regression Efficient implementation regression Summary ## **Algorithms** ## Algorithms for strong planning FREIBU Dynamic programming (backward) Compute operator/distance/value for a state based on the operators/distances/values of its all successor states. - Zero actions needed for goal states. - If states with i actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified. Automatic reuse of plan suffixes already found. 2 Heuristic search (forward) Strong planning can be viewed as AND/OR graph search. OR nodes: Choice between operators AND nodes: Choice between effects Heuristic AND/OR search algorithms: AO*, Proof Number Search, ... Concepts #### Algorithms Efficient implementation regression #### Planning by dynamic programming If for all successors of state s with respect to operator o a plan exists, assign operator o to s. - Base case i = 0: In goal states there is nothing to do. - Inductive case $i \ge 1$: If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in img_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$. #### Backward distances If s is assigned a value on iteration $i \ge 1$, then the backward distance of s is i. The dynamic programming algorithm essentially computes the backward distances of states. Concept Algoritiiii Regression implementation regression Progression #### Backward distances # UNI #### Example #### Concepts #### Algorithms #### Regression implementation regression Progression #### **Backward distances** # FREIBU #### Definition (backward distance sets) Let G be a set of states and O a set of operators. The backward distance sets D_i^{bwd} for G and O consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O: $$D_0^{bwd} := G$$ $$D_i^{bwd} := D_{i-1}^{bwd} \cup \bigcup_{o \in O} spreimg_o(D_{i-1}^{bwd}) \text{ for all } i \ge 1$$ Concepts Algorithms Regression implementation or regression #### **Backward distances** UNI FREIBURG #### . . . #### Definition (backward distance) Let G be a set of states and O a set of operators, and let $D_0^{bwd}, D_1^{bwd}, \ldots$ be the backward distance sets for G and O. Then the backward distance of a state s for G and O is $$\delta_G^{bwd}(s) = \min\{i \in \mathbb{N} \mid s \in D_i^{bwd}\}$$ (where $\min \emptyset = \infty$). #### Concepte Algorithms #### Regression implementation or regression riogradulon ### Strong plans based on distances JNI Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set S and goal states S_* . #### Extraction of a strong plan from distance sets - Let $S' \subseteq S$ be those states having a finite backward distance for $G = S_*$ and O. - Let $s \in S'$ be a state with distance $i = \delta_G^{bwd}(s) \ge 1$. - Assign to $\pi(s)$ any operator $o \in O$ such that $img_o(s) \subseteq D_{i-1}^{bwd}$. Hence o decreases the backward distance by at least one. Then π is a strong plan for \mathscr{T} iff $I \in S'$. Question: What is the worst-case runtime of the algorithm? Question: What is the best-case runtime of the algorithm if most states have a finite backward distance? Concepts Algorithme Regression Efficient implementation or regression Cumman ## Making the algorithm a logic-based algorithm - UNI FREIBURG - An algorithm that represents the states explicitly stops being feasible at about 10⁸ or 10⁹ states. - For planning with bigger transition systems structural properties of the transition system have to be taken advantage of. - As before, representing state sets as propositional formulae (or BDDs) often allows taking advantage of the structural properties: a formula (or BDD) that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation. - In the following, we will present an algorithm using a boolean-formula representation (without going into the details of how to implement it using BDDs). Concepts Algorithm Regression Efficient implementation of regression ## Making the algorithm a logic-based algorithm Remark: The following algorithm assumes a propositional representation of the state space as opposed to a finite-domain representation. We have already seen how to translate an FDR encoding into a propositional encoding in Chapter 9 (cf. definition of the "induced propositional planning task"). Therefore, for the rest of the present section, we will assume without loss of generality that all $v \in V$ are propositional variables with domain $\mathcal{D}_V = \{0, 1\}$. Concepts Algorithms Efficient implementation of regression r rogrossion ## Breadth-first search with progression and state sets (deterministic case) ## UNI FREIBURG Efficient implementation of rearession ``` Progression breadth-first search ``` ``` def bfs-progression(V, I, O, \gamma): goal := formula-to-set(\gamma) reached := \{I\} loop: if reached \cap goal \neq \emptyset: return solution found new-reached := reached \cup \bigcup_{o \in O} img_o(reached) if new-reached = reached: return no solution exists reached := new-reached ``` → This can easily be transformed into a regression algorithm. ## Breadth-first search with regression and state sets (deterministic case) Efficient implementation of earession #### Regression breadth-first search ``` def bfs-regression(V, I, O, \gamma): init := I reached := formula-to-set(\gamma) loop: if init \in reached: return solution found new-reached := reached \cup \bigcup_{o \in O} wpreimg_o(reached) if new-reached = reached: return no solution exists reached := new-reached ``` This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case! ## Breadth-first search with regression and state sets (strong nondeterministic case) Efficient implementation of earession ``` Regression breadth-first search ``` ``` def bfs-regression(V, I, O, \gamma): init := I reached := formula-to-set(\gamma) loop: if init \in reached: return solution found new-reached := reached \cup \bigcup_{o \in O} spreimg_o(reached) if new-reached = reached: return no solution exists ``` Remark: Do you recognize the assignments $D_0^{bwd} := G$ and $D_i^{bwd} := D_{i-1}^{bwd} \cup \bigcup_{o \in O} spreimg_o(D_{i-1}^{bwd})$ for $i \ge 1$? reached := new-reached ## Breadth-first search with regression and state sets (strong nondeterministic case, symbolic) # JNI ``` Regression breadth-first search ``` ``` def bfs-regression(V, I, O, \gamma): init := I reached := \gamma loop: if init \models reached: return solution found new-reached := reached ∨ \bigvee_{o \in O} spreimgsymb_o(reached) if new-reached \equiv reached: return no solution exists reached := new-reached ``` How do we define spreimgsymb with logic (or BDD) operations? Concepts Algorithms Pograecion Efficient implementation of regression Progression ## Symbolic strong preimage computation Let φ be a logic formula and $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}$. We want: a symbolic preimage operation *spreimgsymb* such that if $\psi = spreimgsymb_o(\varphi)$, then $\llbracket \psi \rrbracket = \{ s \in S \mid s \models \psi \} = spreimg_o(\llbracket \varphi \rrbracket)$. In other words, we want the following diagram to commute: Concept Algorithms Regression implementation of regression FREIBU Let V be the set of state variables and $V' := \{v' | v \in V\}$ a set of primed copies of the variables in V. Intuition: - Variables in V describe the current state s. - \blacksquare Variables in V' describe the next state s'. We would like to define a formula $\tau_V(o)$ that describes the transitions labeled with o between states s (over V) and s' (over V') in terms of V and V'. Concept Algorithms Pograceion Efficient implementation of regression UNI FREIBURG Concepts Algorithms Regression implementation of regression Summary The formula $\tau_V(o)$ must express - the conditions for applicability of o, - how o changes state variables, and - which state variables o does not change. A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices. $\tau_V(o)$ for deterministic operators $o = \langle \chi, e \rangle$ $$\tau_{V}(o) = \chi \land \bigwedge_{v \in V} ((EPC_{v}(e) \lor (v \land \neg EPC_{\neg v}(e))) \leftrightarrow v')$$ $$\land \bigwedge_{v \in V} \neg (EPC_{v}(e) \land EPC_{\neg v}(e))$$ Assume that $e = \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d$ for $A = \{a_1, \dots, a_k\}$ and $D = \{d_1, \dots, d_l\}$ with $A \cap D = \emptyset$. Then this becomes simpler. $$\tau_V(o)$$ for STRIPS operators $o = \langle \chi, \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d \rangle$ $$\tau_V(o) = \chi \land \bigwedge_{a \in A} a' \land \bigwedge_{d \in D} \neg d' \land \bigwedge_{v \in V \setminus (A \cup D)} (v \leftrightarrow v')$$ Concepts Algorithms Regression Efficient implementation of regression Progression N EIBU For nondeterministic operators $o = \langle \chi, \{e_1, \dots, e_n\} \rangle$ with corresponding add and delete lists A_i and D_i of e_i such that $A_i \cap D_i = \emptyset$, $i = 1, \dots, n$, we get: $\tau_V(o)$ for nondeterministic operators $o = \langle \chi, \{e_1, \dots, e_n\} \rangle$ $$\tau_{V}(o) = \chi \wedge \bigvee_{i=1}^{n} \left(\bigwedge_{a \in A_{i}} a' \wedge \bigwedge_{d \in D_{i}} \neg d' \wedge \bigwedge_{v \in V \setminus (A_{i} \cup D_{i})} (v \leftrightarrow v') \right)$$ #### Example Let $V = \{a,b\}$, $V' = \{a',b'\}$, and $o = \langle \neg a, \{a,a \land \neg b\} \rangle$. Then $$\tau_V(o) = \neg a \wedge \Big(\Big(a' \wedge (b \leftrightarrow b') \Big) \vee (a' \wedge \neg b') \Big).$$ Concepts Algorithms Regression implementation of regression Progression ## Computing strong preimages #### Concepts A1 . . . 211 #### Algorithms Efficient implementation of regression riogrossion Summar #### Definition (substitution) Let φ, t_1, \dots, t_n be propositional formulas and v_1, \dots, v_n atomic propositions. We denote the formula obtained from φ by simultaneous replacement of all variables v_i by the corresponding formulas t_i , $i = 1, \ldots, n$, by $\varphi[t_1, \ldots, t_n/v_1, \ldots, v_n]$. ## Computing strong preimages #### Definition (existential abstraction) Let φ be a propositional formula and v_1, \ldots, v_n be atomic propositions. Then the existential abstraction of φ wrt. v_1, \ldots, v_n is recursively defined as follows: $$\exists v. \varphi := \varphi[\top/v] \lor \varphi[\bot/v]$$ For a set of variables $V = \{v_1, \dots, v_n\}$ we use the abbreviation $$\exists V. \varphi := \exists v_1 \dots \exists v_n. \varphi.$$ Note: Even with intermediate formula simplifications this can lead to an exponential blowup. BDDs can be useful here. Concepts Algorithms Regression Efficient implementation or regression Progression ## Computing strong preimages # FREBL #### Strong preimages $$\begin{aligned} spreimg_o(T) &= \{s \in S \mid \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T\} \\ &= \{s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ \{s' \in S \mid s \xrightarrow{o} s' \} \subseteq T\} \\ &= \{s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ (\forall s' \in S : s \xrightarrow{o} s' \Rightarrow s' \in T)\} \\ &= \{s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \\ (\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg (s' \in T))\} \end{aligned}$$ Concepts Algorithms Regression Efficient implementation of regression ## Computing strong preimages with boolean function operations $$spreimg_o(T) = \{ s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land (\neg \exists s' \in S : s \xrightarrow{o} s' \land \neg (s' \in T)) \}$$ #### Strong preimages with boolean functions For formula φ characterizing set T of strongly backward-reached states: $$spreimgsymb_o(\varphi) = \left(\exists V'.(\tau_V(o) \land \varphi[v'_1, \dots, v'_n/v_1, \dots, v_n])\right) \land \left(\neg \exists V'.(\tau_V(o) \land \neg \varphi[v'_1, \dots, v'_n/v_1, \dots, v_n])\right)$$ We can use this regression formula for efficient symbolic regression search. BDDs support all necessary operations (atomic propositions, \neg , \wedge , \vee , substitution, \exists , ...). Concepts Algorithms Regression Efficient implementation of regression Progression ## Computing strong preimages with boolean function operations ## EBL EBL #### Example Let $$V=\{a,b\},\ V'=\{a',b'\},$$ and $$o=\langle \neg a,\{a,a\wedge \neg b\}\rangle, \quad \text{i.e.,}$$ $$\tau_V(o)=\neg a\wedge \Big(\big(a'\wedge (b\leftrightarrow b')\big)\vee (a'\wedge \neg b')\Big).$$ Concepts Algorithms Regression Efficient implementation of regression Progression Summary Moreover, let $\varphi = a$. Then $$spreimgsymb_{o}(\varphi) = \exists a' \exists b'. \Big(\neg a \land \Big(\big(a' \land (b \leftrightarrow b') \big) \lor (a' \land \neg b') \Big) \land a' \Big) \land \\ \neg \exists a' \exists b'. \Big(\neg a \land \Big(\big(a' \land (b \leftrightarrow b') \big) \lor (a' \land \neg b') \Big) \land \neg a' \Big) \\ \equiv \neg a$$ ## Computing strong preimages with boolean function operations NI REBUR #### **Theorem** The previous definition of the symbolic preimage operator makes the following diagram commute: #### Concepts Algorithms Regression Efficient implementation of regression Progression Summary #### Proof. Homework # **Progression Search** - We saw a generalization of regression search to strong planning. - However, this search is uninformed (breadth-first search). - Is there an analogue to A* search for strong planning? - Yes: AO* search - Progression search (like A*) - Guided by a heuristic (like A*) - Guaranteed optimality (under certain conditions, like A*) #### Concepts #### Algorithm Regression regression Progression # AND/OR search January 20th, 2017 38 / 58 #### Concepts ### Algorithms Regression regression Progression # AND/OR search #### Concepts #### Algorithms Regression regression Progression # **Progression Search** - We describe AO* on a graph representation without intermediate nodes, i.e., as in the first figure. - There are different variants of AO*, depending on whether the graph that is being searched is an AND/OR tree, an AND/OR DAG, or a general, possibly cyclic, AND/OR graph. - The graphs we want to search, $\mathcal{T}(\Pi)$, are in general cyclic. - However, AO* becomes a bit more involved when dealing with cycles, so we only discuss AO* under the assumption of acyclicity and leave the generalization to cyclic state spaces as an exercise. Algorithms Progression #### Concepts #### Algorithms Regression Progression - The search is over $\mathcal{T}(\Pi)$. - For ease of presentation, we do not distinguish between states of $\mathcal{T}(\Pi)$ and search nodes. - Also, for ease of presentation, we do not handle the case that no strong plan exists. # Definition (solution graph) A solution graph for a nondeterministic transition system $\mathscr{T} = \langle S, L, T, s_0, S_\star \rangle$ is an acyclic subgraph of \mathscr{T} (viewed as a graph), $\mathscr{T}' = \langle S', L, T' \rangle$, such that - \blacksquare $s_0 \in S'$, - for each $s' \in S' \setminus S_{\star}$, there is exactly one label $I \in L$ s.t. - T' contains at least one outgoing transition from s' labeled with I, - T' contains all outgoing transitions from s' labeled with I (and S' contains the states reached via such transitions), - T' contains no outgoing transitions from s' labeled with any $\tilde{l} \neq l$, and - \blacksquare every directed path in \mathcal{T}' terminates at a goal state. #### Concepts #### Algorithn Regression Efficient Progression Conceptually, there are three graphs/transition systems: - The induced transitions system $\mathcal{T} = \mathcal{T}(\Pi)$, which only exists as a mathematical object, but is in general not made explicit completely during AO* search, - \blacksquare The current portion of \mathscr{T} explicitly represented by the search algorithm, \mathcal{T}_{e} , and - The current portion of \mathcal{T}_e considered by the algorithm as the cheapest/best current partial solution graph, \mathcal{I}_{n} . Progression # JNI REIBU # Definition (partial solution graph) A partial solution graph for a nondeterministic transition system $\mathscr{T} = \langle S, L, T, s_0, S_{\star} \rangle$ is an acyclic subgraph of \mathscr{T} (viewed as a graph), $\mathscr{T}_p = \langle S_p, L, T_p \rangle$, s.t. - \blacksquare $s_0 \in S_p$, - for each $s' \in S_p$ that is not an unexpanded leaf node in \mathscr{T}_p there is exactly one label $I \in L$ such that - T_p contains at least one outgoing transition from s' labeled with I. - T_p contains all outgoing transitions from s' labeled with I (and S_p contains the states reached via such transitions), - T_p contains no outgoing transitions from s' labeled with any $\tilde{l} \neq l$, and - every directed path in \mathcal{T}_p terminates at a goal state or an unexpanded leaf node in \mathcal{T}_p . Concepts Algorithr Regression regression Progression # JNI # Definition (cost of a partial solution graph) Let $h: S \to \mathbb{N} \cup \{\infty\}$ be a heuristic function for the state space S of \mathscr{T} , and let $\mathscr{T}_p = \langle S_p, L, T_p \rangle$ be a partial solution graph. The cost labeling of \mathscr{T}_p is the solution to the following system of equations over the states S_p of \mathscr{T}_p : $$f(s) = \begin{cases} 0 & \text{if } s \text{ is a goal state} \\ h(s) & \text{if } s \text{ is an unexpanded non-goal} \\ 1 + \max_{s \xrightarrow{o} s'} f(s') & \text{for the unique outgoing action} \\ o \text{ of } s \text{ in } \mathscr{T}_p, \text{ otherwise.} \end{cases}$$ The cost of \mathcal{T}_p is the cost labeling of its root. AO* search keeps track of a cheapest partial solution graph by marking for each expanded state s an outgoing action o minimizing $1 + \max_{s \xrightarrow{o} c'} f(s')$. Concept Algorithms Efficient implementation Progression # JNI REIBU ### Procedure ao-star **def** ao-star(\mathcal{T}): let \mathcal{T}_e and \mathcal{T}_p initially consist of the initial state s_0 . **while** \mathcal{T}_p has unexpanded non-goal node: expand an unexpanded non-goal node s of \mathscr{T}_p add new successor states to \mathscr{T}_{e} for all new states s' added to \mathcal{T}_e : $$f(s') \leftarrow h(s')$$ $Z \leftarrow s$ and its ancestors in \mathscr{T}_e along marked actions. **while** Z is not empty: remove from Z a state s w/o descendant in Z. $$f(s) \leftarrow \min_{o \text{ applicable in } s} (1 + \max_{s \stackrel{o}{\sim} s'} f(s')).$$ mark the best outgoing action for s (this may implicitly change \mathscr{T}_{D}). return an optimal solution graph. Concepts Algorithms Rogression implementation regression Progression # FREBL # Correctness (proof sketch) - Solution graphs directly correspond to strong plans. - Algorithm eventually terminates (finite number of possible node expansions). - Acyclicity guarantees that extraction of \mathcal{T}_p and dynamic programming back-propagation of f values always terminates. - Marking makes sure that existing solutions are eventually marked. Concepts Algorithms Regression implementation regression Progression #### **Details** - Pseudocode omits bookkeeping of solved states (can improve performance). - Choice of unexpanded non-goal node of best partial solution graph is unspecified. - Correctness/optimality not affected. - One possibility: choose node with lowest cost estimate. - Alternative: expand several nodes simultaneously. - Algorithm can be extended to deal with cycles in the AND/OR graph. #### Concepts Algorithme Regression nplementatior egression Progression # UNI FREIBURG # Example #### Concepts #### Algorithms Regression regression Progression # UNI FREIBUR # Example #### Concepts #### Algorithms Regression regression Progression # UNI FREIBUR # Example #### Concepts #### Algorithms Regression regression Progression # Example #### Concepts #### Algorithms Regression regression Progression # UNI FREIBUR # Example #### Concepts #### Algorithms Regression regression Progression UNI # Example #### Concepts #### Algorithms Regression regression Progression # UNI FREIBU # Example #### Concepts #### Algorithms Regression regression Progression # FREIBU #### Heuristic Evaluation Function - Desirable: informative, domain-independent heuristic to initialize cost estimates. - Heuristic should estimate (strong) goal distances. - Heuristic does not necessarily have to be admissible (unless we seek optimal solutions). - We can adapt many heurstics we already know from classical planning (details omitted). #### Concepts Algorithms Regression mplementation regression Progression Concepts Algorithms Summary # **Summary** - We have considered the special case of nondeterministic planning where - planning tasks are fully observable and - we are interested in strong plans. - We have introduced important concepts also relevant to other variants of nondeterministic planning such as - images and - weak and strong preimages. - We have discussed some basic classes of algorithms: - backward induction by dynamic programming, and - forward search in AND/OR graphs. Algorithms