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In this chapter, we will consider the simplest case of
nondeterministic planning by restricting attention to strong
plans.
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Recall the definition of strong plans:

Definition (strong plan)
Let S be the set of states of a planning task Π. Then a strong
plan for Π is a function π : Sπ → O for some subset Sπ ⊆ S
such that

π(s) is applicable in s for all s ∈ Sπ ,
Sπ (s0)⊆ Sπ ∪S? (π is closed),
Sπ (s′)∩S? 6= /0 for all s′ ∈ Sπ (s0) (π is proper), and
there is no state s′ ∈ Sπ (s0) such that s′ is reachable from
s′ following π in a strictly positive number of steps (π is
acyclic).
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Execution of a strong plan
1 Determine the current state s.
2 If s is a goal state then terminate.
3 Execute action π(s).
4 Repeat from first step.
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Image
The image of a set T of states with respect to an operator o is
the set of those states that can be reached by executing o in a
state in T .

T imgo(T )
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Definition (image of a state)
imgo(s) = {s′ ∈ S|s o−→ s′} = appo(s)

Definition (image of a set of states)
imgo(T ) =

⋃
s∈T imgo(s)
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Weak preimage
The weak preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T
can be reached by executing o.

wpreimgo(T ) T
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Definition (weak preimage of a state)
wpreimgo(s′) = {s ∈ S|s o−→ s′}

Definition (weak preimage of a set of states)
wpreimgo(T ) =

⋃
s∈T wpreimgo(s).
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Strong preimage
The strong preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T is
always reached when executing o.

spreimgo(T ) T
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Definition (strong preimage of a set of states)
spreimgo(T ) = {s ∈ S | ∃s′ ∈ T : s o−→ s′∧ imgo(s)⊆ T}
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Algorithms for strong planning

1 Dynamic programming (backward)
Compute operator/distance/value for a state based on the
operators/distances/values of its all successor states.

1 Zero actions needed for goal states.
2 If states with i actions to goals are known, states with
≤ i +1 actions to goals can be easily identified.

Automatic reuse of plan suffixes already found.
2 Heuristic search (forward)

Strong planning can be viewed as AND/OR graph search.
OR nodes: Choice between operators
AND nodes: Choice between effects
Heuristic AND/OR search algorithms:
AO*, Proof Number Search, . . .
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Planning by dynamic programming
If for all successors of state s with respect to operator o a plan
exists, assign operator o to s.

Base case i = 0: In goal states there is nothing to do.
Inductive case i ≥ 1: If π(s) is still undefined and there is
o ∈O such that for all s′ ∈ imgo(s), the state s′ is a goal
state or π(s′) was assigned in an earlier iteration, then
assign π(s) = o.

Backward distances
If s is assigned a value on iteration i ≥ 1, then the backward
distance of s is i. The dynamic programming algorithm
essentially computes the backward distances of states.
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Example

distance to G

∞ 3 2 1 0
G
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Definition (backward distance sets)
Let G be a set of states and O a set of operators.
The backward distance sets Dbwd

i for G and O consist of those
states for which there is a guarantee of reaching a state in G
with at most i operator applications using operators in O:

Dbwd
0 := G

Dbwd
i := Dbwd

i−1 ∪
⋃
o∈O

spreimgo(Dbwd
i−1 ) for all i ≥ 1
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Definition (backward distance)
Let G be a set of states and O a set of operators, and let
Dbwd
0 ,Dbwd

1 , . . . be the backward distance sets for G and O.
Then the backward distance of a state s for G and O is

δ
bwd
G (s) = min{i ∈ N |s ∈ Dbwd

i }

(where min /0 = ∞).
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Strong plans based on distances

Let Π = 〈V , I,O,γ〉 be a nondeterministic planning task with
state set S and goal states S?.

Extraction of a strong plan from distance sets
1 Let S′ ⊆ S be those states having a finite backward

distance for G = S? and O.
2 Let s ∈ S′ be a state with distance i = δ bwd

G (s)≥ 1.
3 Assign to π(s) any operator o ∈O such that

imgo(s)⊆ Dbwd
i−1 . Hence o decreases the backward

distance by at least one.

Then π is a strong plan for T iff I ∈ S′.

Question: What is the worst-case runtime of the algorithm?
Question: What is the best-case runtime of the algorithm
Question: if most states have a finite backward distance?
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Making the algorithm a logic-based algorithm

An algorithm that represents the states explicitly stops
being feasible at about 108 or 109 states.
For planning with bigger transition systems structural
properties of the transition system have to be taken
advantage of.
As before, representing state sets as propositional
formulae (or BDDs) often allows taking advantage of the
structural properties: a formula (or BDD) that represents a
set of states or a transition relation that has certain
regularities may be very small in comparison to the set or
relation.
In the following, we will present an algorithm using a
boolean-formula representation (without going into the
details of how to implement it using BDDs).
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Making the algorithm a logic-based algorithm

Remark: The following algorithm assumes a propositional
representation of the state space as opposed to a finite-domain
representation. We have already seen how to translate an
FDR encoding into a propositional encoding in Chapter 9 (cf.
definition of the “induced propositional planning task”).
Therefore, for the rest of the present section, we will assume
without loss of generality that all v ∈ V are propositional
variables with domain Dv = {0,1}.
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Breadth-first search with progression and
state sets (deterministic case)

Progression breadth-first search
def bfs-progression(V , I, O, γ):

goal := formula-to-set(γ)
reached := {I}
loop:

if reached∩goal 6= /0:
return solution found

new-reached := reached∪
⋃

o∈O imgo(reached)
if new-reached = reached:

return no solution exists
reached := new-reached

 This can easily be transformed into a regression algorithm.

January 20th, 2017 B. Nebel, R. Mattmüller – AI Planning 22 / 58



Concepts

Algorithms
Regression

Efficient
implementation of
regression

Progression

Summary

Breadth-first search with regression and state
sets (deterministic case)

Regression breadth-first search
def bfs-regression(V , I, O, γ):

init := I
reached := formula-to-set(γ)
loop:

if init ∈ reached:
return solution found

new-reached := reached∪
⋃

o∈Owpreimgo(reached)
if new-reached = reached:

return no solution exists
reached := new-reached

This algorithm is very similar to the dynamic programming
algorithm for the nondeterministic case!
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Breadth-first search with regression and state
sets (strong nondeterministic case)

Regression breadth-first search
def bfs-regression(V , I, O, γ):

init := I
reached := formula-to-set(γ)
loop:

if init ∈ reached:
return solution found

new-reached := reached∪
⋃

o∈O spreimgo(reached)
if new-reached = reached:

return no solution exists
reached := new-reached

Remark: Do you recognize the assignments Dbwd
0 := G and

Dbwd
i := Dbwd

i−1 ∪
⋃

o∈O spreimgo(Dbwd
i−1 ) for i ≥ 1?
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Breadth-first search with regression and state
sets (strong nondeterministic case, symbolic)

Regression breadth-first search
def bfs-regression(V , I, O, γ):

init := I
reached := γ

loop:
if init |= reached:

return solution found
new-reached := reached∨∨

o∈O spreimgsymbo(reached)
if new-reached≡ reached:

return no solution exists
reached := new-reached

How do we define spreimgsymb with logic (or BDD)
operations?
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Symbolic strong preimage computation

Let ϕ be a logic formula and JϕK = {s ∈ S |s |= ϕ}.

We want: a symbolic preimage operation spreimgsymb such
that if ψ = spreimgsymbo(ϕ), then
JψK = {s ∈ S |s |= ψ} = spreimgo(JϕK).

In other words, we want the following diagram to commute:

ψ ϕ

JψK JϕK

spreimgsymbo(·)

J·K J·K

spreimgo(·)
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Transition formula for nondeterministic
operators

Let V be the set of state variables and V ′ := {v ′ |v ∈ V} a set
of primed copies of the variables in V . Intuition:

Variables in V describe the current state s.
Variables in V ′ describe the next state s′.

We would like to define a formula τV (o) that describes the
transitions labeled with o between states s (over V ) and s′
(over V ′) in terms of V and V ′.
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Transition formula for nondeterministic
operators

The formula τV (o) must express
the conditions for applicability of o,
how o changes state variables, and
which state variables o does not change.

A significant difficulty lies in the third requirement because
different variables may be affected depending on
nondeterministic choices.
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Transition formula for nondeterministic
operators

τV (o) for deterministic operators o = 〈χ,e〉

τV (o) = χ ∧
∧
v∈V

((EPCv (e)∨ (v ∧¬EPC¬v (e)))↔ v ′)

∧
∧
v∈V
¬(EPCv (e)∧EPC¬v (e))

Assume that e =
∧

a∈Aa∧
∧

d∈D¬d for A = {a1, . . . ,ak} and
D = {d1, . . . ,dl} with A∩D = /0. Then this becomes simpler.

τV (o) for STRIPS operators o = 〈χ,
∧

a∈Aa∧
∧

d∈D¬d〉

τV (o) = χ ∧
∧
a∈A

a′∧
∧
d∈D
¬d ′∧

∧
v∈V\(A∪D)

(v↔ v ′)
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Transition formula for nondeterministic
operators

For nondeterministic operators o = 〈χ,{e1, . . . ,en}〉 with
corresponding add and delete lists Ai and Di of ei such that
Ai ∩Di = /0, i = 1, . . . ,n, we get:

τV (o) for nondeterministic operators o = 〈χ,{e1, . . . ,en}〉

τV (o) = χ ∧
n∨
i=1

( ∧
a∈Ai

a′∧
∧
d∈Di

¬d ′∧
∧

v∈V\(Ai∪Di )
(v↔ v ′)

)

Example
Let V = {a,b}, V ′ = {a′,b′}, and o = 〈¬a,{a,a∧¬b}〉. Then

τV (o) = ¬a∧
((

a′∧ (b↔ b′)
)
∨ (a′∧¬b′)

)
.
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Computing strong preimages

Definition (substitution)
Let ϕ, t1, . . . , tn be propositional formulas and v1, . . . ,vn atomic
propositions.

We denote the formula obtained from ϕ by simultaneous
replacement of all variables vi by the corresponding formulas
ti , i = 1, . . . ,n, by ϕ [t1, . . . , tn/v1, . . . ,vn].
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Computing strong preimages

Definition (existential abstraction)
Let ϕ be a propositional formula and v1, . . . ,vn be atomic
propositions. Then the existential abstraction of ϕ wrt.
v1, . . . ,vn is recursively defined as follows:

∃v.ϕ := ϕ [>/v]∨ϕ [⊥/v]

For a set of variables V = {v1, . . . ,vn} we use the abbreviation

∃V .ϕ := ∃v1 . . .∃vn.ϕ.

Note: Even with intermediate formula simplifications this can
lead to an exponential blowup. BDDs can be useful here.
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Computing strong preimages

Strong preimages

spreimgo(T ) = {s ∈ S | ∃s′ ∈ T : s o−→ s′∧ imgo(s)⊆ T}

= {s ∈ S | (∃s′ ∈ S : s o−→ s′∧s′ ∈ T )∧

{s′ ∈ S | s o−→ s′} ⊆ T}

= {s ∈ S | (∃s′ ∈ S : s o−→ s′∧s′ ∈ T )∧

(∀s′ ∈ S : s o−→ s′⇒ s′ ∈ T )}

= {s ∈ S | (∃s′ ∈ S : s o−→ s′∧s′ ∈ T )∧

(¬∃s′ ∈ S : s o−→ s′∧¬(s′ ∈ T ))}
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Computing strong preimages with boolean
function operations

spreimgo(T ) = {s ∈ S | (∃s′ ∈ S : s o−→ s′∧s′ ∈ T )∧

(¬∃s′ ∈ S : s o−→ s′∧¬(s′ ∈ T ))}

Strong preimages with boolean functions
For formula ϕ characterizing set T of strongly
backward-reached states:

spreimgsymbo(ϕ) =
(
∃V ′.(τV (o)∧ϕ [v ′1, . . . ,v ′n/v1, . . . ,vn])

)
∧(

¬∃V ′.(τV (o)∧¬ϕ [v ′1, . . . ,v ′n/v1, . . . ,vn])
)

We can use this regression formula for efficient symbolic
regression search. BDDs support all necessary operations
(atomic propositions, ¬, ∧, ∨, substitution, ∃, . . . ).
January 20th, 2017 B. Nebel, R. Mattmüller – AI Planning 34 / 58
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Computing strong preimages with boolean
function operations

Example
Let V = {a,b}, V ′ = {a′,b′}, and

o = 〈¬a,{a,a∧¬b}〉, i.e.,

τV (o) = ¬a∧
((

a′∧ (b↔ b′)
)
∨ (a′∧¬b′)

)
.

Moreover, let ϕ = a. Then

spreimgsymbo(ϕ) = ∃a′∃b′.
(
¬a∧

((
a′∧ (b↔ b′)

)
∨ (a′∧¬b′)

)
∧a′

)
∧

¬∃a′∃b′.
(
¬a∧

((
a′∧ (b↔ b′)

)
∨ (a′∧¬b′)

)
∧¬a′

)
≡ ¬a
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Computing strong preimages with boolean
function operations

Theorem
The previous definition of the symbolic preimage operator
makes the following diagram commute:

ψ ϕ

JψK JϕK

spreimgsymbo(·)

J·K J·K

spreimgo(·)

Proof.
Homework
January 20th, 2017 B. Nebel, R. Mattmüller – AI Planning 36 / 58
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Progression Search

We saw a generalization of regression search to strong
planning.
However, this search is uninformed (breadth-first search).
Is there an analogue to A* search for strong planning?
Yes: AO* search

Progression search (like A*)
Guided by a heuristic (like A*)
Guaranteed optimality (under certain conditions, like A*)
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AND/OR search

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20January 20th, 2017 B. Nebel, R. Mattmüller – AI Planning 38 / 58
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AND/OR search

OR

OR OR OR OR

s1 s2 s3 s4
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Progression Search

We describe AO* on a graph representation without
intermediate nodes, i.e., as in the first figure.
There are different variants of AO*, depending on whether
the graph that is being searched is an AND/OR tree, an
AND/OR DAG, or a general, possibly cyclic, AND/OR
graph.
The graphs we want to search, T (Π), are in general
cyclic.
However, AO* becomes a bit more involved when dealing
with cycles, so we only discuss AO* under the assumption
of acyclicity and leave the generalization to cyclic state
spaces as an exercise.
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AO* Search

The search is over T (Π).
For ease of presentation, we do not distinguish between
states of T (Π) and search nodes.
Also, for ease of presentation, we do not handle the case
that no strong plan exists.
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AO* Search

Definition (solution graph)
A solution graph for a nondeterministic transition system
T = 〈S,L,T ,s0,S?〉 is an acyclic subgraph of T (viewed as a
graph), T ′ = 〈S′,L,T ′〉, such that

s0 ∈ S′,
for each s′ ∈ S′ \S?, there is exactly one label l ∈ L s.t.

T ′ contains at least one outgoing transition from s′ labeled
with l,
T ′ contains all outgoing transitions from s′ labeled with l
(and S′ contains the states reached via such transitions),
T ′ contains no outgoing transitions from s′ labeled with
any l̃ 6= l, and

every directed path in T ′ terminates at a goal state.
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AO* Search

Conceptually, there are three graphs/transition systems:
The induced transitions system T = T (Π), which only
exists as a mathematical object, but is in general not
made explicit completely during AO* search,
The current portion of T explicitly represented by the
search algorithm, Te, and
The current portion of Te considered by the algorithm as
the cheapest/best current partial solution graph, Tp.
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AO* Search

Definition (partial solution graph)
A partial solution graph for a nondeterministic transition
system T = 〈S,L,T ,s0,S?〉 is an acyclic subgraph of T
(viewed as a graph), Tp = 〈Sp,L,Tp〉, s.t.

s0 ∈ Sp,
for each s′ ∈ Sp that is not an unexpanded leaf node in Tp
there is exactly one label l ∈ L such that

Tp contains at least one outgoing transition from s′
labeled with l,
Tp contains all outgoing transitions from s′ labeled with l
(and Sp contains the states reached via such transitions),
Tp contains no outgoing transitions from s′ labeled with
any l̃ 6= l, and

every directed path in Tp terminates at a goal state or an
unexpanded leaf node in Tp.
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AO* Search

Definition (cost of a partial solution graph)
Let h : S→ N∪{∞} be a heuristic function for the state space
S of T , and let Tp = 〈Sp,L,Tp〉 be a partial solution graph.
The cost labeling of Tp is the solution to the following system
of equations over the states Sp of Tp:

f (s) =


0 if s is a goal state
h(s) if s is an unexpanded non-goal
1+max

s
o−→s′

f (s′) for the unique outgoing action
o of s in Tp, otherwise.

The cost of Tp is the cost labeling of its root.
AO* search keeps track of a cheapest partial solution graph by
marking for each expanded state s an outgoing action o
minimizing 1+max

s
o−→s′

f (s′).
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AO* Search

Procedure ao-star
def ao-star(T ):

let Te and Tp initially consist of the initial state s0.
while Tp has unexpanded non-goal node:

expand an unexpanded non-goal node s of Tp
add new successor states to Te
for all new states s′ added to Te:

f (s′)← h(s′)
Z ← s and its ancestors in Te along marked actions.
while Z is not empty:

remove from Z a state s w/o descendant in Z .
f (s)←mino applicable in s(1+max

s
o−→s′

f (s′)).
mark the best outgoing action for s
(this may implicitly change Tp).

return an optimal solution graph.
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AO* Search

Correctness (proof sketch)
Solution graphs directly correspond to strong plans.
Algorithm eventually terminates (finite number of possible
node expansions).
Acyclicity guarantees that extraction of Tp and dynamic
programming back-propagation of f values always
terminates.
Marking makes sure that existing solutions are eventually
marked.
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Details
Pseudocode omits bookkeeping of solved states (can
improve performance).
Choice of unexpanded non-goal node of best partial
solution graph is unspecified.

Correctness/optimality not affected.
One possibility: choose node with lowest cost estimate.
Alternative: expand several nodes simultaneously.

Algorithm can be extended to deal with cycles in the
AND/OR graph.
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Heuristic Evaluation Function
Desirable: informative, domain-independent heuristic to
initialize cost estimates.
Heuristic should estimate (strong) goal distances.
Heuristic does not necessarily have to be admissible
(unless we seek optimal solutions).
We can adapt many heurstics we already know from
classical planning (details omitted).
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We have considered the special case of nondeterministic
planning where

planning tasks are fully observable and
we are interested in strong plans.

We have introduced important concepts also relevant to
other variants of nondeterministic planning such as

images and
weak and strong preimages.

We have discussed some basic classes of algorithms:
backward induction by dynamic programming, and
forward search in AND/OR graphs.
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