
Principles of AI Planning
12. Planning with State-Dependent Action Costs

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
December 16th, 2016

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Background

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 2 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Motivation

We now know the basics of classical planning.
Where to go from here? Possible routes:

Algorithms: techniques orthogonal to heuristic search
(partial-order reduction, symmetry reduction,
decompositions, . . .)
 later
Algorithms: techniques other than heuristic search
(SAT/SMT planning, . . .)
 beyond the scope of this course
Settings beyond classical planning (nondeterminism,
partial observability, numeric planning, . . .)
 later
A slight extension to the expressiveness of classical
planning tasks
 this chapter

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 3 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

What are State-Dependent Action Costs?

London@(0,0)

Freiburg

Madrid

Paris

Istanbul

14
5 10 32

Action costs: unit constant state-dependent

cost(fly(Madrid,London)) = 1, cost(fly(Paris,London)) = 1,
cost(fly(Freiburg,London)) = 1, cost(fly(Istanbul,London)) = 1.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 4 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Why Study State-Dependent Action Costs?

In classical planning: actions have unit costs.
Each action a costs 1.

Simple extension: actions have constant costs.
Each action a costs some costa ∈ N.
Example: Flying between two cities costs amount
proportional to distance.
Still easy to handle algorithmically,
e. g. when computing g and h values.

Further extension: actions have state-dependent costs.
Each action a has cost function costa : S→ N.
Example: Flying to a destination city costs amount
proportional to distance, depending on the current city.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 5 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Why Study State-Dependent Action Costs?

Human perspective:
“natural”, “elegant”, and “higher-level”
modeler-friendly less error-prone?

Machine perspective:
more structured exploit structure in algorithms?
fewer redundancies, exponentially more compact

Language support:
numeric PDDL, PDDL 3
RDDL, MDPs (state-dependent rewards!)

Applications:
modeling preferences and soft goals
application domains such as PSR

(Abbreviation: SDAC = state-dependent action costs)
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 6 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Handling State-Dependent Action Costs

Good news:
Computing g values in forward search still easy.
(When expanding state s with action a, we know costa(s).)

Challenge:
But what about SDAC-aware h values
(relaxation heuristics, abstraction heuristics)?
Or can we simply compile SDAC away?

This chapter:
Proposed answers to these challenges.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 7 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

Handling State-Dependent Action Costs

Roadmap:
1 Look at compilations.
2 This leads to edge-valued multi-valued decision diagrams

(EVMDDs) as data structure to represent cost functions.
3 Based on EVMDDs, formalize and discuss:

compilations
relaxation heuristics
abstraction heuristics

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs

Definition
A SAS+ planning task with state-dependent action costs or
SDAC planning task is a tuple Π = 〈V , I,O,γ, (costa)a∈O〉 where
〈V , I,O,γ〉 is a (regular) SAS+ planning task with state set S
and costa : S→ N is the cost function of a for all a ∈O.

Assumption: For each a ∈O, the set of variables occuring in
the precondition of a is disjoint from the set of variables on
which the cost function costa depends.
(Question: Why is this assumption unproblematic?)
Definitions of plans etc. stay as before. A plan is optimal if it
minimizes the sum of action costs from start to goal.
For the rest of this chapter, we consider the following running
example.
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 9 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Running Example

Example (Household domain)
Actions:

vacuumFloor = 〈>, floorClean〉
washDishes = 〈>, dishesClean〉

doHousework = 〈>, floorClean∧dishesClean〉

Cost functions:

costvacuumFloor = [¬floorClean] ·2
costwashDishes = [¬dishesClean] · (1+2 · [¬haveDishwasher])
costdoHousework = costvacuumFloor +costwashDishes

(Question: How much can applying action washDishes cost?)
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 10 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilations

Different ways of compiling SDAC away:
Compilation I: “Parallel Action Decomposition”
Compilation II: “Purely Sequential Action Decomposition”
Compilation III: “EVMDD-Based Action Decomposition”

(combination of Compilations I and II)

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 11 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation I: “Parallel Action Decomposition”

Example
dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

washDishes(dC, hD) = 〈 dC∧ hD, dC〉, cost = 0
washDishes(dC,¬hD) = 〈 dC∧¬hD, dC〉, cost = 0
washDishes(¬dC, hD) = 〈¬dC∧ hD, dC〉, cost = 1
washDishes(¬dC,¬hD) = 〈¬dC∧¬hD, dC〉, cost = 3

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 12 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation I: “Parallel Action Decomposition”

Compilation I
Transform each action into multiple actions:

one for each partial state relevant to cost function
add partial state to precondition
use cost for partial state as constant cost

Properties:
" always possible
% exponential blow-up

Question: Exponential blow-up avoidable? Compilation II

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 13 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Example
Assume we own a dishwasher:

costdoHousework = 2 · [¬floorClean] + [¬dishesClean]

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

doHousework1(fC) = 〈 fC, fC〉, cost = 0
doHousework1(¬fC) = 〈¬fC, fC〉, cost = 2
doHousework2(dC) = 〈 dC, dC〉, cost = 0
doHousework2(¬dC) = 〈¬dC, dC〉, cost = 1

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 14 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Compilation II
If costs are additively decomposable:

high-level actions ≈ macro actions
decompose into sequential micro actions

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 15 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Properties:
" linear blow-up
% not always possible
a plan lengths not preserved

E. g., in a state where ¬fC and ¬dC hold, an application of

doHousework

in the SDAC setting is replaced by an application of the
action sequence

doHousework1(¬fC),doHousework2(¬dC)

in the compiled setting.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 16 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation II: “Purely Sequential Action Decomposition”

Properties (ctd.):
a plan costs preserved
a blow-up in search space

E. g., in a state where ¬fC and ¬dC hold, should we apply
doHousework1(¬fC) or doHousework2(¬dC) first?
 impose action ordering!

a attention: we should apply all partial effects at end!
Otherwise, an effect of an earlier action in the compilation
might affect the cost of a later action in the compilation.

Question: Can this always work (kind of)? Compilation III

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Example
costdoHousework = [¬floorClean] ·2+

[¬dishesClean] · (1+2 · [¬haveDishwasher])

floorClean: 0

¬floorClean: 2

dishesClean, haveDishwasher: 0

dishesClean, ¬haveDishwasher: 0

¬dishesClean, haveDishwasher: 1

¬dishesClean, ¬haveDishwasher: 3

Simplify right-hand part of diagram:
Branch over single variable at a time.
Exploit: haveDishwasher irrelevant if dishesClean is
true.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 18 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Example (ctd.)

floorClean: 0

¬floorClean: 2

dishesClean: 0

¬dishesClean: 1

haveDishwasher: 0

¬haveDishwasher: 2

Later:
Compiled actions
Auxiliary variables to enforce action ordering

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 19 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Compilation III
exploit as much additive decomposability as possible
multiply out variable domains where inevitable
Technicalities:

fix variable ordering
perform Shannon and isomorphism reduction
(cf. theory of BDDs)

Properties:
" always possible
a worst-case exponential blow-up, but as good as it gets
a as with Compilation II: plan lengths not preserved, plan

costs preserved
a as with Compilation II: action ordering, all effects at end!

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 20 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

State-Dependent Action Costs
Compilation III: “EVMDD-Based Action Decomposition”

Compilation III provides optimal combination of sequential and
parallel action decomposition, given fixed variable ordering.

Question: How to find such decompositions automatically?

Answer: Figure for Compilation III basically a reduced ordered
edge-valued multi-valued decision diagram (EVMDD)!

[Lai et al., 1996; Ciardo and Siminiceanu, 2002]

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 21 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

EVMDDs:
Decision diagrams for arithmetic functions
Decision nodes with associated decision variables
Edge weights: partial costs contributed by facts
Size of EVMDD compact in many “typical”, well-behaved
cases (Question: For example?)

Properties:
" satisfy all requirements for Compilation III,

even (almost) uniquely determined by them
" already have well-established theory and tool support
" detect and exhibit additive structure in arithmetic functions

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 22 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Consequence:
represent cost functions as EVMDDs
exploit additive structure exhibited by them
draw on theory and tool support for EVMDDs

Two perspectives on EVMDDs:
graphs specifying how to decompose action costs
data structures encoding action costs

(used independently from compilations)

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 23 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Example (EVMDD Evaluation)
costa = xy2 +z +2 Dx = Dz = {0,1}, Dy = {0,1,2}

x

y

z

0

2

0

0
0
1

4

2

1
1

0

0

1

1

0

0

Directed acyclic graph
Dangling incoming edge
Single terminal node 0
Decision nodes with:

decision variables
edge label
edge weights

We see: z independent
from rest, y only matters if
x 6= 0.

s = {x 7→ 1, y 7→ 2, z 7→ 0}
costa(s) = 2+0+4+0 = 6December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 24 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDDs
Edge-Valued Multi-Valued Decision Diagrams

Properties of EVMDDs:

" Existence for finitely many finite-domain variables
" Uniqueness/canonicity if reduced and ordered
" Basic arithmetic operations supported

(Lai et al., 1996; Ciardo and Siminiceanu, 2002)

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 25 / 76

Background
State-Dependent
Action Costs

Edge-Valued
Multi-Valued
Decision Diagrams

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDDs
Arithmetic operations on EVMDDs

Given arithmetic operator ⊗ ∈ {+,−, ·, . . .}, EMVDDs E1, E2.
Compute EVMDD E = E1⊗E2.

Implementation: procedure apply(⊗,E1,E2):
Base case: single-node EVMDDs encoding constants
Inductive case: apply ⊗ recursively:

push down edge weights
recursively apply ⊗ to corresponding children
pull up excess edge weights from children

Time complexity [Lai et al., 1996]:
additive operations: product of input EVMDD sizes
in general: exponential

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 26 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

Compilation

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 27 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Idea: each edge in the EVMDD becomes a new micro action
with constant cost corresponding to the edge constraint,
precondition that we are currently at its start EVMDD node,
and effect that we are currently at its target EVMDD node.

Example (EVMDD-based action compilation)
Let a = 〈χ,e〉, costa = xy2 +z +2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 28 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0
1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

aχ = 〈χ ∧σ = 0∧α = 0,
σ := 1∧α := 1〉, cost = 2

a1,x=0 = 〈α = 1∧x = 0, α := 3〉, cost = 0

a1,x=1 = 〈α = 1∧x = 1, α := 2〉, cost = 0

a2,y=0 = 〈α = 2∧y = 0, α := 3〉, cost = 0

a2,y=1 = 〈α = 2∧y = 1, α := 3〉, cost = 1

a2,y=2 = 〈α = 2∧y = 2, α := 3〉, cost = 4

a3,z=0 = 〈α = 3∧z = 0, α := 4〉, cost = 0

a3,z=1 = 〈α = 3∧z = 1, α := 4〉, cost = 1
ae = 〈α = 4, e∧σ := 0∧α := 0〉, cost = 0

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 29 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Definition (EVMDD-based action compilation)
Let Π = 〈V , I,O,γ, (costa)a∈O〉 be an SDAC planning task, and
for each action a ∈O, let Ea be an EVMDD that encodes the
cost function costa.
Let EAC(a) be the set of actions created from a using Ea
similar to the previous example. Then the EVMDD-based
action compilation of Π using Ea, a ∈O, is the task
Π′ = EAC(Π) = 〈V ′, I′,O′,γ ′〉, where

V ′ = V ∪{σ}∪{αa |a ∈O},
I′ = I∪{σ 7→ 0}∪{αa 7→ 0 |a ∈O},
O′ =

⋃
a∈OEAC(a), and

γ ′ = γ ∧ (σ = 0)∧
∧

a∈O(αa = 0).

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 30 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Let Π be an SDAC task and Π′ = EAC(Π) its EVMDD-based
action compilation (for appropriate EVMDDs Ea).

Proposition
Π′ has only state-independent costs.

Proof.
By construction.

Proposition
The size ‖Π′‖ is in the order O(‖Π‖ ·maxa∈O ‖Ea‖), i. e.
polynomial in the size of Π and the largest used EVMDD.

Proof.
By construction.
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 31 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Let Π be an SDAC task and Π′ = EAC(Π) its EVMDD-based
action compilation (for appropriate EVMDDs Ea).

Proposition
Π and Π′ admit the same plans (up to replacement of actions
by action sequences). Optimal plan costs are preserved.

Proof.
Let π = a1, . . . ,an be a plan for Π, and let s0, . . . ,sn be the
corresponding state sequence such that ai is applicable in si−1
and leads to si for all i = 1, . . . ,n.
For each i = 1, . . . ,n, let Eai be the EVMDD used to compile ai .
State si−1 determines a unique path through the EVMDD Eai ,
which uniquely corresponds to an action sequence a0i , . . . ,a

ki
i

(for some ki ∈ N; including aχ

i and aei).
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 32 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Proof (ctd.)
By construction, cost(a0i) + · · ·+cost(akii) = costai (si−1).
Moreover, the sequence a0i , . . . ,a

ki
i is applicable in

si−1∪{σ 7→ 0}∪{αa 7→ 0 |a ∈O} and leads to
si ∪{σ 7→ 0}∪{αa 7→ 0 |a ∈O}.
Therefore, by induction, π ′ = a01, . . . ,a

k1
1 , . . . ,a0n, . . . ,a

kn
n is

applicable in s0∪{σ 7→ 0}∪{αa 7→ 0 |a ∈O} (and leads to a
goal state). Moreover,
cost(π ′) = cost(a01)+ · · ·+cost(ak11)+ · · ·+cost(a0n)+ · · ·+cost(aknn) =
costa1(s0) + · · ·+costan(sn−1) = cost(π).
Still to show: Π′ admits no other plans. It suffices to see that
the semaphore σ prohibits interleaving more than one EVMDD
evaluation, and that each αa makes sure that the EVMDD for a
is traversed in the unique correct order.
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 33 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Example
Let Π = 〈V , I,O,γ〉 with V = {x,y,z,u}, Dx = Dz = {0,1},
Dy = Du = {0,1,2}, I = {x 7→ 1,y 7→ 2,z 7→ 0,u 7→ 0},
O = {a,b}, and γ = (u = 2) with

a = 〈u = 0,u := 1〉, costa = xy2 +z +2,
b = 〈u = 1,u := 2〉, costb = z +1.

Optimal plan for Π:

π = a,b with cost(π) = 6+1 = 7.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 34 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Example (Ctd.)
Compilation of a:

x

y

z

0

2

0

0
0
1

4

2
1
1

0

0

1

1

0

0

αa = 0

αa = 1

αa = 2

αa = 3

αa = 4

aχ = 〈u = 0∧σ = 0∧αa = 0,
σ := 1∧αa := 1〉, cost = 2

a1,x=0 = 〈αa = 1∧x = 0, αa := 3〉, cost = 0

a1,x=1 = 〈αa = 1∧x = 1, αa := 2〉, cost = 0

a2,y=0 = 〈αa = 2∧y = 0, αa := 3〉, cost = 0

a2,y=1 = 〈αa = 2∧y = 1, αa := 3〉, cost = 1

a2,y=2 = 〈αa = 2∧y = 2, αa := 3〉, cost = 4

a3,z=0 = 〈αa = 3∧z = 0, αa := 4〉, cost = 0

a3,z=1 = 〈αa = 3∧z = 1, αa := 4〉, cost = 1
ae = 〈αa = 4, u := 1∧σ := 0∧αa := 0〉, cost = 0

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 35 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

EVMDD-Based Action Compilation

Example (Ctd.)
Compilation of b:

z

0

1

1

1

0

0

αb = 0

αb = 1

αb = 2

bχ = 〈u = 1∧σ = 0∧αb = 0,
σ := 1∧αb := 1〉, cost = 1

b1,z=0 = 〈αb = 1∧z = 0, αb := 2〉, cost = 0

b1,z=1 = 〈αb = 1∧z = 1, αb := 2〉, cost = 1
be = 〈αb = 2, u := 2∧σ := 0∧αb := 0〉, cost = 0

Optimal plan for Π′ (with cost(π ′) = 6+1 = 7 = cost(π)):

π
′ = aχ ,a1,x=1,a2,y=2,a3,z=0,ae︸ ︷︷ ︸

cost=2+0+4+0+0=6

,bχ ,b1,z=0,be︸ ︷︷ ︸
cost=1+0+0=1

.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 36 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

Planning with State-Dependent Action Costs

Okay. We can compile SDAC away somewhat efficiently.
Is this the end of the story?
No! Why not?

Tighter integration of SDAC into planning process might
be beneficial.
Analysis of heuristics for SDAC might improve our
understanding.

Consequence: Let’s study heuristics for SDAC in
uncompiled setting.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 37 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxations

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 38 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxation Heuristics

We know: Delete-relaxation heuristics informative in classical
planning.

Question: Are they also informative in SDAC planning?

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 39 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxation Heuristics

Assume we want to compute the additive heuristic hadd in
a task with state-dependent action costs.
But what does an action a cost in a relaxed state s+?
And how to compute that cost?

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 40 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxed SAS+ Tasks

Delete relaxation in SAS+ tasks works as follows:
Operators are already in effect normal form.
We do not need to impose a positive normal form,
because all conditions are conjunctions of facts, and facts
are just variable-value pairs and hence always positive.
Hence a+ = a for any operator a, and Π+ = Π.
For simplicity, we identify relaxed states s+ with their
on-sets on(s+).
Then, a relaxed state s+ is a set of facts (v,d) with v ∈ V
and d ∈Dv including at least one fact (v,d) for each
v ∈ V (but possibly more than one, which is what makes it
a relaxed state).

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 41 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxed SAS+ Tasks

A relaxed operator a is applicable in a relaxed state s+ if
all precondition facts of a are contained in s+.
Relaxed states accumulate facts reached so far.
Applying a relaxed operator a to a relaxed state s+ adds to
s+ those facts made true by a.

Example
Relaxed operator a+ = 〈x = 2,y := 1∧z := 0〉 is applicable in
relaxed state s+ = {(x,0), (x,2), (y,0), (z,1)}, because
precondition (x,2) ∈ s+, and leads to successor
(s+)′ = s+∪{(y,1), (z,0)}.

Relaxed plans, dominance, monotonicity etc. as before. The
above definition generalizes the one for propositional tasks.
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 42 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Action Costs in Relaxed States

Example
Assume s+ is the relaxed state with

s+ = {(x,0), (x,1), (y,1), (y,2), (z,0)}.

What should action a with costa = xy2 +z +2 cost in s+?

s+ t+
a [?]

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 43 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Action Costs in Relaxed States

Idea: We should assume the cheapest way of applying o+ in s+

to guarantee admissibility of h+.
(Allow at least the behavior of the unrelaxed setting at no
higher cost.)

Example

s+ t+

a+ [2]

x = 0,y = 1,z = 0 a [2]

x = 0,y = 2,z = 0 a [2]

x = 1,y = 1,z = 0 a [3]

x = 1,y = 2,z = 0 a [6]

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 44 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Action Costs in Relaxed States

Idea: We should assume the cheapest way of applying o+ in s+

to guarantee admissibility of h+.
(Allow at least the behavior of the unrelaxed setting at no
higher cost.)

Example

s+ t+
a+ [2]

x = 0,y = 1,z = 0 a [2]

x = 0,y = 2,z = 0 a [2]

x = 1,y = 1,z = 0 a [3]

x = 1,y = 2,z = 0 a [6]

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 44 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Action Costs in Relaxed States

Definition
Let V be a set of FDR variables, s : V →

⋃
v∈V Dv an unrelaxed

state over V , and s+ ⊆ {(v,d) |v ∈ V ,d ∈Dv} a relaxed state
over V . We call s consistent with s+ if {(v,s(v)) |v ∈ V} ⊆ s+.

Definition
Let a ∈O be an action with cost function costa, and s+ a
relaxed state. Then the relaxed cost of a in s+ is defined as

costa(s+) = min
s∈S consistent with s+

costa(s).

(Question: How many states s are consistent with s+?)

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 45 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Action Costs in Relaxed States

Problem with this definition: There are generally exponentially
many states s consistent with s+ to minimize over.

Central question: Can we still do this minimization efficiently?

Answer: Yes, at least efficiently in the size of an EVMDD
encoding costa.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 46 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Cost Computation for Relaxed States

Example
Relaxed state s+ = {(x,0), (x,1), (y,1), (y,2), (z,0)}.

x

y

z

0

2

0

0
0
1

4

2

1
1

0

0

1

1

0

0

Computing costa(s+) =
minimizing over costa(s) for all s
consistent with s+ =
minimizing over all start-end-paths
in EVMDD following only edges
consistent with s+.
Observation: Minimization over
exponentially many paths can be
replaced by top-sort traversal of
EVMDD, minimizing over incoming
arcs consistent with s+ at all nodes!

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 47 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Cost Computation for Relaxed States

Example
Relaxed state s+ = {(x,0), (x,1), (y,1), (y,2), (z,0)}.

x

y

z

0

2

0

0
0
1

4

2

1
1

0

0

1

1

0

0

2 2

2

2
2

3 6 2

2

2

costa(s+) = 2
Cost-minimizing s consistent with
s+: s(x) = s(z) = 0, s(y) ∈ {1,2}.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 47 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Cost Computation for Relaxed States

Theorem
A top-sort traversal of the EVMDD for costa, adding edge
weights and minimizing over incoming arcs consistent with s+

at all nodes, computes costa(s+) and takes time in the order of
the size of the EVMDD.

Proof.
Homework?

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 48 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxation Heuristics

The following definition is equivalent to the RPG-based one.

Definition (Classical additive heuristic hadd)

hadd(s) = hadds (GoalFacts)

hadds (Facts) = ∑
fact∈Facts

hadds (fact)

hadds (fact) =

{
0 if fact ∈ s

min
achiever a of fact

[hadds (pre(a)) +costa] otherwise

Question: How to generalize hadd to SDAC?

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 49 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxations with SDAC

Example

a = 〈>, x =1〉 costa = 2−2y
b = 〈>, y =1〉 costb = 1

s = {x 7→ 0,y 7→ 0}
hadds (y =1) =1
hadds (x =1) = ?

00 10
a : 2

00 01 11
b : 1 a : 0 ⇒ cheaper!

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 50 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxations with SDAC

(Here, we need the assumption that no variable occurs both in
the cost function and the precondition of the same action):

Definition (Additive heuristic hadd for SDAC)

hadds (fact) =

{
0 if fact ∈ s

min
achiever a of fact

[hadds (pre(a)) +costa] otherwise

hadds (fact) =

{
0 if fact ∈ s

min
achiever a of fact

[hadds (pre(a)) +Costsa] otherwise

Costsa = min
ŝ∈Sa

[costa(ŝ) +hadds (ŝ)]

Sa: set of partial states over variables in cost function

|Sa| exponential in number of variables in cost function
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 51 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Relaxations with SDAC

Theorem
Let Π be an SDAC planning task, let Π′ be an EVMDD-based
action compilation of Π, and let s be a state of Π. Then the
classical hadd heuristic in Π′ gives the same value for
s∪{σ 7→ 0}∪{αa 7→ 0 |a ∈O} as the generalization of hadd to
SDAC tasks defined above gives for s in Π.

Computing hadd for SDAC:
Option 1: Compute classical hadd on compiled task.
Option 2: Compute Costsa directly. How?

Plug EVMDDs as subgraphs into RPG
 efficient computation of hadd

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 52 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

RPG Compilation

Remark: We can use EVMDDs to compute Ca
s and hence the

generalized additive heuristic directly, by embedding them into
the relaxed planning task.

We just briefly show the example, without going into too much
detail.

Idea: Augment EVMDD with input nodes representing hadd
values from the previous RPG layer.

Use augmented diagrams as RPG subgraphs.
Allows efficient computation of hadd.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 53 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Option 2: RPG Compilation Option 2:
Computing Costsa

Input

x

y

z

0, Output

x =0
10

x =1
0

y =0
6

y =1
∞

y =2
1

z=0
2

z=1
2

∨
2

∨2∨12

∨
7

∨9

∧ +22

∧ +012 ∧ +02

∧ +0
8

∧ +1
∞

∧ +4
7

∧+0
18

∧+0
∞

∧+0
13

∧+0
9

∧+1
10

Evaluate nodes:
costa = xy2 +z +2
variable nodes become
∨-nodes
weights become
∧-nodes
Augment with input
nodes
Ensure complete
evaluation
Insert hadd values
∧: ∑(parents) + weight
∨: min(parents)
Costsa =
min
ŝ∈Sa

[costa(ŝ) +hadds (ŝ)]

costa = xy2 +z +2
ŝ = {x 7→ 1,y 7→ 2,z 7→ 0}

costa(ŝ) = 1 ·22 +0+2 = 6
= 2+0+4+0

hadds (ŝ) = 0+1+2 = 3
Costsa = 6+3 = 9

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 54 / 76

Background

Compilation

Relaxations
Delete Relaxations
in SAS+

Costs in Relaxed
States

Additive Heuristic

Relaxed Planning
Graph

Abstractions

Practice

Summary

References

Additive Heuristic

Use above construction as subgraph of RPG in each
layer, for each action (as operator subgraphs).
Add AND nodes conjoining these subgraphs with
operator precondition graphs.
Link EVMDD outputs to next proposition layer.

Theorem
Let Π be an SDAC planning task. Then the classical additive
RPG evaluation of the RPG constructed using EVMDDs as
above computes the generalized additive heuristic hadd defined
before.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 55 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Abstractions

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 56 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Abstraction Heuristics for SDAC

Question: Why consider abstraction heuristics?

Answer:
admissibility
 optimality

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 57 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Abstraction Heuristics for SDAC

a : 1

a : 2

a : 1

Question: What are the abstract action costs?
Answer: For admissibility, abstract cost of a should be

costa(sabs) = min
concrete state s
abstracted to sabs

costa(s).

Problem: exponentially many states in minimization
Aim: Compute costa(sabs) efficiently
(given EVMDD for costa(s)).
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 58 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Cartesian Abstractions

We will see: possible if the abstraction is Cartesian or coarser.
(Includes projections and domain abstractions.)

Definition (Cartesian abstraction)
A set of states sabs is Cartesian if it is of the form

D1×·· ·×Dn,

where Di ⊆Di for all i = 1, . . . ,n.
An abstraction is Cartesian if all abstract states are Cartesian
sets.

[Seipp and Helmert, 2013]

Intuition: Variables are abstracted independently.
 exploit independence when computing abstract costs!
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 59 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Cartesian Abstractions

Example (Cartesian abstraction)

Cartesian abstraction over x, y
Cost x +y +1
(edges consistent with
sabs)

sabs

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

cost = 4 cost = 5

x

y

0

1

0

0

1

1

2

2

2

2

1
1

0

0

min = 1

min = 3

min = 4

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 60 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Cartesian Abstractions

Why does the topsort EVMDD traversal (cheapest path
computation) correctly compute costa(sabs)?
Short answer: The exact same thing as with relaxed states,
because relaxed states are Cartesian sets!
Longer answer:

1 For each Cartesian state sabs and each variable v,
each value d ∈Dv is either consistent with sabs or not.

2 This implies: at all decision nodes associated with variable
v, some outgoing edges are enabled, others are disabled.
This is independent from all other decision nodes.

3 This allows local minimizations over linearly many edges
instead of global minimization over exponentially many
paths in the EVMDD when computing minimum costs.

 polynomial in EVMDD size!
December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 61 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Cartesian Abstractions
Not Cartesian!

If abstraction not Cartesian: two variables can be
independent in cost function (compact EVMDD), but
dependent in abstraction.

 cannot consider independent parts of EVMDD separately.

Example (Non-Cartesian abstraction)
cost : x +y +1, cost(sabs) = 2, local minim.: 1 underestimate!

sabs = (x 6= y)

00 01 02

10 11 12

20 21 22

x = 0

x = 1

x = 2

y = 0 y = 1 y = 2

x

y

0

1

0

0

1

1

2

2

2

2

1
1

0

0

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 62 / 76

Background

Compilation

Relaxations

Abstractions
Cartesian
Abstractions

Practice

Summary

References

Counterexample-Guided Abstraction
Refinement

Wanted: principled way of computing Cartesian abstractions.
 Counterexample-Guided Abstraction Refinement (CEGAR)
(details omitted)

Initial
abstraction

Search
plan

Analyze
plan

Refine
abstraction

no plan
unsolvable

plan

no flaws
plan found

flaws

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 63 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

Practice

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 64 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

EVMDD Libraries
MEDDLY

MEDDLY: Multi-terminal and Edge-valued
Decision Diagram LibrarY

Authors: Junaid Babar and Andrew Miner
Language: C++
License: open source (LGPLv3)
Advantages:

many different types of decision diagrams
mature and efficient

Disadvantages:
documentation

Code: http://meddly.sourceforge.net

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 65 / 76

http://meddly.sourceforge.net

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

EVMDD Libraries
pyevmdd

pyevmdd: EVMDD library for Python
Authors: RM and Florian Geißer
Language: Python
License: open source (GPLv3)
Disadvantages:

restricted to EVMDDs
neither mature nor optimized

Purpose: our EVMDD playground
Code:
https://github.com/robertmattmueller/pyevmdd

Documentation:
http://pyevmdd.readthedocs.io/en/latest/

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 66 / 76

https://github.com/robertmattmueller/pyevmdd
http://pyevmdd.readthedocs.io/en/latest/

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

PDDL Representation

Usual way of representing costs in PDDL:
effects (increase (total-cost) (<expression>))

metric (minimize (total-cost))

Custom syntax (non-standard PDDL):
Besides :parameters, :precondition, and :effect,
actions may have field
:cost (<expression>)

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 67 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

Gripper Colored Gripper

initial state goal state

Colored rooms and balls
Cost of move increases if ball color differs from room color
Goal did not change!

cost(move) = ∑
room

∑
ball

(at(ball,room)∧ (red(ball))∧ (blue(room))

+ ∑
room

∑
ball

(at(ball,room)∧ (blue(ball))∧ (red(room))

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 68 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

EVMDD-Based Action Compilation

Idea: each edge in the EVMDD becomes a new micro action
with constant cost corresponding to the edge constraint,
precondition that we are currently at its start EVMDD node,
and effect that we are currently at its target EVMDD node.

Example (EVMDD-based action compilation)
Let a = 〈χ,e〉, costa = xy2 +z +2.
Auxiliary variables:

One semaphore variable σ with Dσ = {0,1}
for entire planning task.
One auxiliary variable α = αa with Dαa = {0,1,2,3,4}
for action a.

Replace a by new auxiliary actions (similarly for other actions).

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 69 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

EVMDD-Based Action Compilation

Example (EVMDD-based action compilation, ctd.)

x

y

z

0

2

0

0
0
1

4

2

1
1

0

0

1

1

0

0

α = 0

α = 1

α = 2

α = 3

α = 4

aχ = 〈χ ∧σ = 0∧α = 0,
σ := 1∧α := 1〉, cost = 2

a1,x=0 = 〈α = 1∧x = 0, α := 3〉, cost = 0

a1,x=1 = 〈α = 1∧x = 1, α := 2〉, cost = 0

a2,y=0 = 〈α = 2∧y = 0, α := 3〉, cost = 0

a2,y=1 = 〈α = 2∧y = 1, α := 3〉, cost = 1

a2,y=2 = 〈α = 2∧y = 2, α := 3〉, cost = 4

a3,z=0 = 〈α = 3∧z = 0, α := 4〉, cost = 0

a3,z=1 = 〈α = 3∧z = 1, α := 4〉, cost = 1
ae = 〈α = 4, e∧σ := 0∧α := 0〉, cost = 0

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 70 / 76

Background

Compilation

Relaxations

Abstractions

Practice
Libraries

PDDL

Summary

References

EVMDD-Based Action Compilation Tool

Disclaimer:
Not completely functional
Still some bugs

Uses pyevmdd
Language: Python
License: open source
Code: https:
//github.com/robertmattmueller/sdac-compiler

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 71 / 76

https://github.com/robertmattmueller/sdac-compiler
https://github.com/robertmattmueller/sdac-compiler

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

Summary

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 72 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

SDAC Planning and EVMDDs
Conclusion

Summary:
State-dependent actions costs practically relevant.
EVMDDs exhibit and exploit structure in cost functions.
Graph-based representations of arithmetic functions.
Edge values express partial cost contributed by facts.
Size of EVMDD is compact in many “typical” cases.
Can be used to compile tasks with state-dependent costs
to tasks with state-independent costs.
Alternatively, can be embedded into the RPG to compute
forward-cost heuristics directly.
For hadd, both approaches give the same heuristic values.
Abstraction heuristics can also be generalized to
state-dependent action costs.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 73 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

SDAC Planning and EVMDDs
Conclusion

Future Work and Work in Progress:
Investigation of other delete-relaxation heuristics for tasks
with state-dependent action costs.
Investigation of static and dynamic EVMDD variable
orders.
Application to cost partitioning, to planning with
preferences, . . .
Better integration of SDAC in PDDL.
Tool support.
Benchmarks.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 74 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

References

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 75 / 76

Background

Compilation

Relaxations

Abstractions

Practice

Summary

References

SDAC Planning and EVMDDs
References

Ciardo and Siminiceanu, Using edge-valued decision
diagrams for symbolic generation of shortest paths, in
Proc. 4th Intl. Conference on Formal Methods in
Computer-Aided Design (FMCAD 2002), pp. 256–273,
2002.
Geißer, Keller, and Mattmüller, Delete relaxations for
planning with state-dependent action costs, in Proc.
24th Intl. Joint Conference on Artificial Intelligence (IJCAI
2015), pp. 1573–1579, 2015.

Geißer, Keller, and Mattmüller, Abstractions for planning
with state-dependent action costs, in Proc. 26th Intl.
Conference on Automated Planning and Scheduling
(ICAPS 2016), pp. 140–148, 2016.

December 16th, 2016 B. Nebel, R. Mattmüller – AI Planning 76 / 76

	Background
	State-Dependent Action Costs
	Edge-Valued Multi-Valued Decision Diagrams

	Compilation
	Relaxations
	Delete Relaxations in SAS+
	Action Costs in Relaxed States
	Additive Heuristic
	Relaxed Planning Graph

	Abstractions
	Cartesian Abstractions

	Practice
	Libraries
	PDDL

	Summary
	References

