
Principles of AI Planning
11. Planning as search: pattern database heuristics

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
December 7th, 2016

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

1 Pattern databases heuristics

Projections and pattern database heuristics
Examples
Overview

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 3 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Pattern database heuristics

The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.
PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).
The first use for domain-independent planning
is due to Edelkamp (2001).
Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern
databases more effectively, how to find good patterns, etc.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 4 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Pattern database heuristics informally

Pattern databases: informally
A pattern database heuristic for a planning task is an
abstraction heuristic where

some aspects of the task are represented in the
abstraction with perfect precision, while
all other aspects of the task are not represented at all.

Example (15-puzzle)
Choose a subset T of tiles (the pattern).
Faithfully represent the locations of T in the abstraction.
Assume that all other tiles and the blank can be anywhere
in the abstraction.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 5 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Projections

Formally, pattern database heuristics are induced abstractions
of a particular class of homomorphisms called projections.

Definition (projections)
Let Π be an FDR planning task with variable set V and state
set S. Let P ⊆ V , and let S′ be the set of states over P.
The projection πP : S→ S′ is defined as πP(s) := s|P
(with s|P(v) := s(v) for all v ∈ P).
We call P the pattern of the projection πP.

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 6 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Pattern database heuristics

Abstraction heuristics for projections are called pattern
database (PDB) heuristics.

Definition (pattern database heuristic)
The abstraction heuristic induced by πP is called a
pattern database heuristic or PDB heuristic.
We write hP as a short-hand for hπP .

Why are they called pattern database heuristics?
Heuristic values for PDB heuristics are traditionally stored
in a 1-dimensional table (array) called a pattern database
(PDB). Hence the name “PDB heuristic”.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 7 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Example: transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:
state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Example: projection

Abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 9 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Example: projection (2)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 10 / 70

PDB
heuristics
Projections

Examples

Overview

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Chapter overview

In the rest of this chapter, we will discuss:
how to implement PDB heuristics
how to effectively make use of multiple PDB heuristics
how to find good patterns for PDB heuristics

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 11 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

2 Implementing pattern database heuristics

Precomputation step
Lookup step

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 13 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Pattern database implementation

Assume we are given a pattern P for a planning task Π.
How do we implement hP?

1 In a precomputation step, we compute a graph
representation for the abstraction T (Π)πP and compute
the abstract goal distance for each abstract state.

2 During search, we use the precomputed abstract goal
distances in a lookup step.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 14 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Precomputation step

Let Π be a planning task and P a pattern.
Let T = T (Π) and T ′ = T πP .

We want to compute a graph representation of T ′.
T ′ is defined through a homomorphism of T .

For example, each concrete transition induces an abstract
transition.

However, we cannot compute T ′ by iterating over all
transitions of T .

This would take time Ω(‖T ‖).
This is prohibitively large (or else we could solve the task
using breadth-first search or similar techniques).

Hence, we need a way of computing T ′ in time which is
polynomial only in ‖Π‖ and ‖T ′‖.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 15 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Syntactic projections

Definition (syntactic projection)
Let Π = 〈V , I,O,γ〉 be an FDR planning task,
and let P ⊆ V be a subset of its variables.
The syntactic projection Π|P of Π to P is the FDR planning task
〈P, I|P,{o|P | o ∈O},γ|P〉, where

ϕ|P for formula ϕ is defined as the formula obtained from
ϕ by replacing all atoms (v = d) with v /∈ P by >, and
o|P for operator o is defined by replacing all formulas ϕ

occurring in the precondition or effect conditions of o with
ϕ|P and all atomic effects (v := d) with v /∈ P with the
empty effect >.

Put simply, Π|P throws away all information not pertaining to
variables in P.
December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 16 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Trivially inapplicable operators

Definition (trivially inapplicable operator)
An operator 〈χ,e〉 of a SAS+ task is called trivially inapplicable
if

χ contains the atoms (v = d) and (v = d ′)
for some variable v and values d 6= d ′, or
e contains the effects (v := d) and (v := d ′)
for some variable v and values d 6= d ′.

Notes:
Trivially inapplicable operators are never applicable and
can thus be safely omitted from the task.
Trivially inapplicable operators can be detected in linear
time.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Trivially unsolvable SAS+ tasks

Definition (trivially unsolvable SAS+ tasks)
A SAS+ task Π = 〈V , I,O,γ〉 is called trivially unsolvable if γ

contains the atoms (v = d) and (v = d ′) for some variable v and
values d 6= d ′.

Notes:
Trivially unsolvable SAS+ tasks have no goal states, and
are hence unsolvable.
Trivially unsolvable SAS+ tasks can be detected in linear
time.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 18 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Equivalence theorem for syntactic projections

Theorem (syntactic projections vs. projections)
Let Π be a SAS+ task that is not trivially unsolvable and has no
trivially inapplicable operators, and let P be a pattern for Π.
Then T (Π|P) G∼T (Π)πP .

Proof.
 exercises

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 19 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

PDB computation

Using the equivalence theorem, we can compute pattern
databases for (not trivially unsolvable) SAS+ tasks Π and
patterns P:

Computing pattern databases
def compute-PDB(Π, P):

Remove trivially inapplicable operators from Π.
Compute Π′ := Π|P.
Compute T ′ := T (Π′).
Perform a backward breadth-first search from the goal

states of T ′ to compute all abstract goal distances.
PDB := a table containing all goal distances in T ′

return PDB
The algorithm runs in polynomial time and space in terms of
‖Π‖+ |PDB|.
December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 20 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Generalizations of the equivalence theorem

The restrictions to SAS+ tasks and to tasks without
trivially inapplicable operators are necessary.
We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.

In that case, the unlabeled graph of T (Π)πP is isomorphic
to a subgraph of the unlabeled graph of T (Π|P).
This means that we can use T (Π|P) to derive an
admissible estimate of hP .

With conditional effects, not even this weaker result holds.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 21 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Going beyond SAS+ tasks

Most practical implementations of PDB heuristics are
limited to SAS+ tasks (or modest generalizations).
One way to avoid the issues with general FDR tasks is to
convert them to equivalent SAS+ tasks.
However, most direct conversions can exponentially
increase the task size in the worst case.

 We will only consider SAS+ tasks in this chapter.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 22 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Lookup step: overview

During search, the PDB is the only piece of information
necessary to represent hP. (It is not necessary to store
the abstract transition system itself at this point.)
Hence, the space requirements for PDBs during search
are linear in the number of abstract states S′: there is one
table entry for each abstract state.
During search, hP(s) is computed by mapping πP(s) to a
natural number in the range {0, . . . , |S′|−1} using a
perfect hash function, then looking up the table entry for
that number.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 23 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Lookup step: algorithm

Let P = {v1, . . . ,vk} be the pattern.
We assume that all variable domains are natural numbers
counted from 0, i. e., Dv = {0,1, . . . , |Dv |−1}.
For all i ∈ {1, . . . ,k}, we precompute Ni := ∏

i−1
j=1 |D(vj)|.

Then we can look up heuristic values as follows:

Computing pattern database heuristics
def PDB-heuristic(s):

index := ∑
k
i=1Nis(vi)

return PDB[index]

This is a very fast operation: it can be performed in O(k).
For comparison, most relaxation heuristics need time
O(‖Π‖) per state.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 24 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Lookup step: example

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 25 / 70

PDB
heuristics

Implemen-
ting
PDBs
Precomputation

Lookup

Additivity

Pattern
selection

Summary

Lookup step: example (ctd.)

P = {v1,v2} with v1 = package, v2 = truck A.
Dv1 = {L,R,A,B} ≈ {0,1,2,3}
Dv2 = {L,R} ≈ {0,1}

 N1 = ∏
0
j=1 |Dvj | = 1, N2 = ∏

1
j=1 |Dvj | = 4

 index(s) = 1 ·s(package) +4 ·s(truck A)

Pattern database:
abstract state LL RL AL BL LR RR AR BR

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 26 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

3 Additive patterns for planning tasks

The additivity criterion & the canonical heuristic function
Algebraic simplification & dominance pruning

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 28 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Pattern collections

The space requirements for a pattern database grow
exponentially with the number of state variables in the
pattern.
This places severe limits on the usefulness of single PDB
heuristics hP for larger planning task.
To overcome this limitation, planners using pattern
databases work with collections of multiple patterns.
When using two patterns P1 and P2, it is always possible
to use the maximum of hP1 and hP2 as an admissible and
consistent heuristic estimate.
However, when possible, it is much preferable to use the
sum of hP1 and hP2 as a heuristic estimate, since
hP1 +hP2 ≥max{hP1 ,hP2}.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 29 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Criterion for additive patterns

Theorem (additive pattern sets)
Let P1, . . . ,Pk be patterns for an FDR planning task Π.
If there exists no operator that has an effect on a variable
vi ∈ Pi and on a variable vj ∈ Pj for some i 6= j, then ∑

k
i=1hPi is

an admissible and consistent heuristic for Π.

Proof.
If there exists no such operator, then no label of T (Π) affects
both T (Π)πPi and T (Π)πPj for i 6= j. By the theorem on affecting
transition labels, this means that any two projections πPi and
πPj are orthogonal. The claim follows with the theorem on
additivity for orthogonal abstraction mappings.

A pattern set {P1, . . . ,Pk} which satisfies the criterion of the
theorem is called an additive pattern set or additive set.
December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 30 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Finding additive pattern sets

The theorem on additive pattern sets gives us a simple
criterion to decide which pattern heuristics can be admissibly
added.
Given a pattern collection C (i. e., a set of patterns),
we can use this information as follows:

1 Build the compatibility graph for C .
Vertices correspond to patterns P ∈ C .
There is an edge between two vertices iff no operator
affects both incident patterns.

2 Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C .

Computing large cliques is an NP-hard problem, and a
graph can have exponentially many maximal cliques.
However, there are output-polynomial algorithms for
finding all maximal cliques (Tomita, Tanaka & Takahashi,
2004) which have led to good results in practice.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 31 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

The canonical heuristic function

Definition (canonical heuristic function)
Let Π be an FDR planning task, and let C be a pattern
collection for Π.
The canonical heuristic hC for pattern collection C is defined
as

hC (s) = max
D∈cliques(C) ∑

P∈D
hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C .

For all choices of C , heuristic hC is admissible and consistent.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 32 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

How good is the canonical heuristic function?

The canonical heuristic function is the best possible
admissible heuristic we can derive from C using our
additivity criterion.
In theory, even better heuristic estimates can be obtained
from projection heuristics using a more general additivity
criterion based on an idea called cost partitioning.

Optimal polynomial cost partitioning algorithms exist (Katz
& Domshlak, 2008a).

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 33 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Canonical heuristic function: example

Example
Consider a planning task with state variables V = {v1,v2,v3}
and the pattern collection C = {P1, . . . ,P4} with P1 = {v1,v2},
P2 = {v1}, P3 = {v2} and P4 = {v3}.
There are operators affecting each individual variable, and the
only operators affecting several variables affect v1 and v3.
What are the maximal cliques in the compatibility graph for C ?

Answer: {P1}, {P2,P3}, {P3,P4}

What is the canonical heuristic function hC ?

Answer: hC = max{hP1 ,hP2 +hP3 ,hP3 +hP4}
= max{h{v1,v2},h{v1} +h{v2},h{v2} +h{v3}}

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 34 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Computing hC efficiently: motivation

Consider hC = max{h{v1,v2},h{v1} +h{v2},h{v2} +h{v3}}.
We need to evaluate this expression for every search
node.
It is thus worth to spend some effort in precomputations to
make the evaluation more efficient.

A naive implementation requires 8 atomic operations:
4 heuristic lookups (for h{v1,v2}, h{v1}, h{v2} and h{v3}),
2 binary summations and
2 binary maximizations

Can we do better than that?

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 35 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Algebraic simplifications

One possible simplification is to use algebraic identities
to reduce the number of operations:

max{h{v1,v2},h{v1} +h{v2},h{v2} +h{v3}}
= max{h{v1,v2},h{v2} +max{h{v1},h{v3}}}

 reduces number of operations from 8 to 7

Is there anything else we can do?

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 36 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Dominated sum theorem

Theorem (dominated sum)
Let {P1, . . . ,Pk} be an additive pattern set for an FDR planning
task, and let P be a pattern with Pi ⊆ P for all i ∈ {1, . . . ,k}.
Then ∑

k
i=1hPi ≤ hP.

Proof.
Let T ′ be the transition system induced by πP, and for all
i ∈ {1, . . . ,k}, let T ′

i be the transition system induced by πPi .
Because Pi ⊆ P, we can write each projection πPi as a
projection onto P followed by a projection onto Pi :
πPi = π ′Pi

◦πP. Hence, each T ′
i is a coarsening of T ′, and we

can consider the hPi as abstraction heuristics on T ′, where
they are also additive.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 37 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Dominated sum theorem (ctd.)

Proof (ctd.)
We get:

k

∑
i=1

hPi (s) =
k

∑
i=1

h∗T ′
i

(πPi (s)) =
k

∑
i=1

h∗T ′
i

(π ′Pi
(πP(s)))

(1)=
k

∑
i=1

h∗T ′
i

(π ′Pi
(s′)) (2)=

k

∑
i=1

hPi (s′)

(3)
≤ h∗T ′(s′) = h∗T ′(πP(s)) = hP(s)

where (1) holds for s′ := πP(s), (2) holds because we can
consider the hPi as abstraction heuristics on T ′, and (3) holds
because of the additivity criterion.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 38 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Dominated sum corollary

Corollary (dominated sum)
Let {P1, . . . ,Pn} and {Q1, . . . ,Qm} be additive pattern sets of
an FDR planning task such that each pattern Pi is a subset of
some pattern Qj (not necessarily proper).
Then ∑

n
i=1hPi ≤ ∑

m
j=1hQj .

Proof.
n

∑
i=1

hPi
(1)
≤

m

∑
j=1

∑
Pi⊆Qj

hPi
(2)
≤

m

∑
j=1

hQj ,

where (1) holds because each Pi is contained in some Qj
and (2) follows from the dominated sum theorem.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 39 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity
Canonical heuristic
function

Simplification

Pattern
selection

Summary

Dominance pruning

We can use the dominated sum corollary to simplify the
representation of hC : sums that are dominated by other
sums can be pruned.
The dominance test can be performed in polynomial time.

Example

max{h{v1,v2},h{v1} +h{v2},h{v2} +h{v3}}
= max{h{v1,v2},h{v2} +h{v3}}

 reduces number of operations from 8 to 5

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 40 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

4 Pattern selection

Pattern selection as local search
Search space
Estimating heuristic quality

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 42 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Pattern selection as an optimization problem

Only one question remains to be answered now
in order to apply PDBs to planning tasks in practice:
How do we automatically find a good pattern collection?

The idea
Pattern selection can be cast as an optimization problem:

Given: a set of candidate solutions
(= pattern collections which fit into a given memory limit)
Find: a best possible solution, or an approximation
(= pattern collection with high heuristic quality)

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 43 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Pattern selection as local search

How to solve this optimization problem?
For problems of interesting size, we cannot hope to find
(and prove) a globally optimal pattern collection.

Question: How many candidates are there?
Instead, we try to find good solutions by local search.

Two approaches from the literature:
Edelkamp (2007): using evolutionary algorithm
Haslum et al. (2007): using hill-climbing

 we present the main ideas of the second approach here

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 44 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Pattern selection as hill-climbing

Reminder: Hill-climbing
σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ ,o,s) | 〈o,s〉 ∈ succ(state(σ))}
σ := an element of Σ′ minimizing h (random tie breaking)

Four questions to answer to use this for pattern selection:
1 init: What is the initial pattern collection?
2 is-goal: When do we terminate?
3 succ: Which collections are neighbours of the current

collection?
4 h: How do we rank the quality of pattern collections?

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 45 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Search space

We first discuss the search space (init, is-goal, succ).

The basic idea is that we
start from small patterns of only a single variable each,
grow them by adding slightly larger patterns, and
stop when heuristic quality no longer improves.

To motivate the precise definition of our search space, we
need a little more theory.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 46 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Initial pattern collection

Theorem (non-goal patterns are trivial)
Let Π be a SAS+ planning task that is not trivially unsolvable,
and let P be a pattern for Π such that no variable in P is
mentioned in the goal formula of Π.
Then hP(s) = 0 for all states s.

Proof.
All states in the abstraction are goal states.

This motivates our first answer:

1. What is the initial pattern collection?
The initial pattern collection is
{{v} | v is a state variable mentioned in the goal formula}.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 47 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Termination criterion

Our second question has a very simple answer:

2. When do we terminate?
We terminate as soon as the current pattern collection has no
successors of better quality.

Note that this also covers the case where there are no
successors at all because further growth of the current pattern
collection would exceed a memory limit.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 48 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Search neighborhood: idea

Our search neighbourhood is defined through incremental
growth of the current pattern collection.
A successor is obtained by

starting from the current pattern collection C ,
choosing one of its patterns P ∈ C (without removing it
from C !),
generating a new pattern by extending P with a single
variable (P′ = P∪{v}), and
adding P′ to C to form the new pattern collection C ′

However, not all such collections C ′ are useful.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 49 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causal graphs

Definition (causal graph)
Let Π = 〈V , I,O,γ〉 be an FDR planning task.
The causal graph of Π, CG(Π), is the directed graph with vertex
set V and an arc from u ∈ V to v ∈ V iff u 6= v and there exists
an operator o ∈O such that:

u appears anywhere in o (in precondition, effect
conditions or atomic effects), and
v is modified by an effect of o.

Idea: an arc 〈u,v〉 in the causal graph indicates that variable u
is in some way relevant for modifying the value of v

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 50 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causally relevant variables

Definition (causally relevant variables)
Let Π = 〈V , I,O,γ〉 be an FDR planning task and let P ⊆ V be a
pattern for Π.
We say that v ∈ P is causally relevant for P if CG(Π) contains a
directed path from v to a variable v ′ ∈ P that is mentioned in
the goal formula γ .

Note: The definition implies that variables in P mentioned in
the goal are always causally relevant for P.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 51 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causally irrelevant variables are useless

Theorem (causally irrelevant variables are useless)
Let P ⊆ V be a pattern for an FDR planning task Π, and let
P′ ⊆ P consist of all variables that are causally relevant for P.
Then hP′(s) = hP(s) for all states s.

Proof.
(≤): follows from the dominated sum theorem with P′ ⊆ P

(≥): Obvious if hP′(s) = ∞; else, induction over n = hP′(s).

Base case n = 0:
If hP′(s) = 0, then there exists a concrete goal state s̃ that
agrees with s on all variables in P′. If we change s̃ so that
it agrees with s on all variables in P, it is still a goal state
because we only change variables that are not mentioned
in the goal.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 52 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causally irrelevant variables are useless (ctd.)

Proof (ctd.)
Inductive case n→ n+1:
If hP′(s) = n+1, then there exist concrete states s̃ and t̃
and an operator o of Π such that:

s and s̃ agree on all variables in P′,
appo(s̃) = t̃, and
hP′ (t̃) = n.

If we change s̃ and t̃ so that they agree with s on all
variables of P, then still appo(s̃) = t̃, because

o modifies a variable in P′ (otherwise πP′ (s̃) = πP′ (t̃)
contradicting hP′ (s̃) = n+1 6= n = hP′ (t̃)), and hence
all variables mentioned in o are causally relevant for P′,
which implies that
o mentions no variable in P \P′.

. . .
December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 53 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causally irrelevant variables are useless (ctd.)

Proof (ctd.)
. . .
We get:

s and s̃ agree on all variables in P,
appo(s̃) = t̃, and
hP′ (t̃) = n = hP(t̃) (by the induction hypothesis).

This implies hP(s)≤ n+1, concluding the proof.

Corollary: There is no point in growing a pattern by adding a
variable that is causally irrelevant in the resulting pattern.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 54 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Causally connected patterns

Definition (causally connected patterns)
Let Π = 〈V , I,O,γ〉 be an FDR planning task and let P ⊆ V be a
pattern for Π.
We say that P is causally connected if the subgraph of CG(Π)
induced by P is weakly connected (i. e., contains a path from
every vertex to every other vertex, ignoring arc directions).

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 55 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Disconnected patterns are decomposable

Theorem (causally disconnected patterns are
decomposable)
Let P ⊆ V be a pattern for a SAS+ planning task Π that is not
causally connected, and let P1, P2 be a partition of P into
non-empty subsets such that CG(Π) contains no arc between
the two sets.
Then hP1(s) +hP2(s) = hP(s) for all states s.

Proof.
(≤): There is no arc between P1 and P2 in the causal graph,
and thus there is no operator that affects both patterns.
Therefore, they are additive, and hP1 +hP2 ≤ hP follows from
the dominated sum theorem.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 56 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Disconnected patterns are decomposable
(ctd.)

Proof (ctd.)
(≥): If hP1(s) +hP2(s) = ∞, we are done.
Otherwise, proof by induction over n = hP1(s) +hP2(s).

Base case n = 0:
If hP1(s) +hP2(s) = 0, then hP1(s) = 0 and hence s satisfies
all goal atoms for variables in P1; similarly for P2. Hence,
it satisfies all goal atoms for variables in P = P1∪P2, and
thus hP(s) = 0.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 57 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Disconnected patterns are decomposable
(ctd.)

Proof (ctd.)
Inductive case n→ n+1:
If hP1(s) +hP2(s) = n+1, then there exist concrete states s̃
and t̃, an operator o of Π and i ∈ {1,2} such that:

1 s and s̃ agree on all variables in Pi ,
2 appo(s̃) = t̃, and
3 hPi (t̃) = hPi (s̃)−1.

Let j ∈ {1,2} with j 6= i. Since P1 and P2 are causally
disconnected, the operator o does not mention any
variables in Pj . Therefore, we can change s̃ and t̃ so that
they agree with s on all variables of P and still have (2)
and (3).
. . .

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 58 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Disconnected patterns are decomposable
(ctd.)

Proof (ctd.)
. . .
We get:

hPj (t̃) = hPj (s̃) (because o does not affect variables in Pj)
 hP1 (t̃) +hP2 (t̃) = n
 hP(t̃) = n (by the induction hypothesis)
 hP(s̃)≤ n+1 (because appo(s̃) = t̃)
 hP(s)≤ n+1 (because s and s̃ agree on P and hence

hP(s) = hP(s̃)).
This concludes the proof.

Corollary: There is no point in including a causally
disconnected pattern in the collection. (Using its connected
components instead requires less space and gives identical
results.)
December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 59 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Search neighbourhood

We can now put the pieces together to define our search
neighbourhood, obtaining the third answer:

3. Which collections are neighbours of the current
collection?
The neighbours of C are all pattern collections C ∪{P′} where

P′ = P∪{v} for some P ∈ C ,
P′ /∈ C ,
all variables of P′ are causally relevant in P′,
P′ is causally connected, and
all pattern databases in C ∪{P′} can be represented
within some prespecified space limit

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 60 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Search neighborhood (ctd.)

Remark: For causal relevance and connectivity, there is a
sufficient and necessary criterion which is easy to check:

v is a predecessor of some u ∈ P in the causal graph, or
v is a successor of some u ∈ P in the causal graph and is
mentioned in the goal formula.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 61 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

What is a good pattern collection?

The last question we need to answer is how to rank
the quality of pattern collections.
This is perhaps the most critical point: without a good
ranking criterion, pattern collections are chosen blindly.

The first search-based approach to pattern selection
(Edelkamp, 2007) used the following strategy:

only additive sets are used as pattern collections
no need for something like the canonical heuristic function

the quality of a single pattern is estimated by
its mean heuristic value (the higher, the better)
the quality of a pattern collection is estimated by
the sum of the individual pattern qualities

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 62 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Discussion of the mean value approach

Pros of the approach:
mean heuristic values are clearly correlated with search
performance the quality measure makes sense
mean heuristic values are quite easy to calculate

Cons of the approach:
cannot reasonably deal with infinite heuristic estimates
difficult to generalize to pattern collections that are
not fully additive
there are better predictors for search performance
than mean heuristic values

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 63 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

So what is a good pattern collection, again?

How can be come up with a better quality measure?
We are chiefly interested in minimizing the number of
node expansions for the canonical heuristic function
during the actual search phase of the planner.
There is theoretical work on predicting node expansions
of heuristic search algorithms based on parameters of the
heuristic (Korf, Reid & Edelkamp, 2001).

 Try to estimate these parameters, then use their analysis.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 64 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

The Korf, Reid & Edelkamp formula

Korf, Reid & Edelkamp (2001)
In the limit of large c, the expected number of node expansions
for a failed iteration of IDA∗ with depth threshold c is

E(N,c,P) =
c

∑
i=0

NiP(c− i)

where
N = 〈N0,N1, . . . ,Nc〉 is the brute-force tree shape
 Ni : number of search nodes in layer i of the brute-force

search tree
P is the equilibrium distribution of the heuristic function
 P(k): probability that node chosen uniformly from layer i of

the brute-force search tree has heuristic value at most k,
in the limit of large i

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 65 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Using the formula for quality estimation

Some problems when using the formula for quality estimation:
only holds in the limit
applies to IDA∗, but most planners use A∗

we do not know N or P

However:
we do not need absolute node estimates, we only need to
know which heuristic among a set of candidates is best
we would expect heuristics good for IDA∗ to be good for
A∗ most of the time
we can use random walks and sampling to get
approximate estimates without knowing N and P

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 66 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Estimating heuristic quality in practice

With some additional assumptions and simplifications, we
reduce the problem of ranking the quality of pattern collections
to the following criterion:

Measuring degree of improvement
Generate M states s1, . . . ,sM through random walks in the
search space from the initial state (according to certain
parameters not discussed in detail).
The degree of improvement of a pattern collection C ′

which is generated as a successor of collection C is the
number of sample states si for which hC ′(si) > hC (si).

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 67 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection
Local search

Search space

Estimating
heuristic quality

Summary

Computing hC ′(s)

So we need to compute hC ′(s) for some states s and each
candidate successor collection C ′.
We have PDBs for all patterns in C , but not for the new
pattern P′ ∈ C ′ (of the form P∪{v} for some P ∈ C).
If possible, we want to avoid computing the complete
pattern database except for the best successor (where we
will need it later anyway).

Idea:
For SAS+ tasks Π, hP′(s) is identical to the
optimal solution length for the syntactic projection Π|P′ .
We can use any optimal planning algorithm for this.
In particular, we can use A∗ search using hP as a
heuristic.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 68 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Summary

Pattern database (PDB) heuristics are abstraction
heuristics based on projection to a subset of variables.
For SAS+ tasks, they can easily be implemented via
syntactic projections on the task representation.
PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.
PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 69 / 70

PDB
heuristics

Implemen-
ting
PDBs

Additivity

Pattern
selection

Summary

Summary (ctd.)

When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
possible, and maximize where addition is inadmissible.
The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given our additivity criterion.
One way to automatically find a good pattern collection is
by performing search in the space of pattern collections.
One such approach uses hill-climbing search guided by
the Korf, Reid and Edelkamp formula, which tries to
estimate the quality of a heuristic function.

December 7th, 2016 B. Nebel, R. Mattmüller – AI Planning 70 / 70

	Pattern databases heuristics
	Projections and pattern database heuristics
	Examples
	Overview

	Implementing pattern database heuristics
	Precomputation step
	Lookup step

	Additive patterns for planning tasks
	The additivity criterion & the canonical heuristic function
	Algebraic simplification & dominance pruning

	Pattern selection
	Pattern selection as local search
	Search space
	Estimating heuristic quality

