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Coming up with heuristics in a principled way

General procedure for obtaining a heuristic
Solve an easier version of the problem.

Two common methods:
relaxation: consider less constrained version of the
problem
abstraction: consider smaller version of real problem

In previous chapters, we have studied relaxation, which has
been very successfully applied to satisficing planning.
Now, we study abstraction, which is one of the most prominent
techniques for optimal planning.
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Abstracting a transition system

Abstracting a transition system means dropping some
distinctions between states, while preserving the transition
behaviour as much as possible.

An abstraction of a transition system T is defined by an
abstraction mapping α that defines which states of T
should be distinguished and which ones should not.
From T and α , we compute an abstract transition system
T ′ which is similar to T , but smaller.
The abstract goal distances (goal distances in T ′) are
used as heuristic estimates for goal distances in T .
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Abstracting a transition system: example

Example (15-puzzle)
A 15-puzzle state is given by a permutation 〈b, t1, . . . , t15〉 of
{1, . . . ,16}, where b denotes the blank position and the other
components denote the positions of the 15 tiles.
One possible abstraction mapping ignores the precise location
of tiles 8–15, i. e., two states are distinguished iff they differ in
the position of the blank or one of the tiles 1–7:

α(〈b, t1, . . . , t15〉) = 〈b, t1, . . . , t7〉

The heuristic values for this abstraction correspond to the cost
of moving tiles 1–7 to their goal positions.
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Abstraction example: 15-puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space
16! = 20922789888000≈ 2 ·1013 states
16!
2 = 10461394944000≈ 1013 reachable states
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Abstraction example: 15-puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space
16 ·15 · . . . ·9 = 518918400≈ 5 ·108 states
16 ·15 · . . . ·9 = 518918400≈ 5 ·108 reachable states
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Computing the abstract transition system

Given T and α , how do we compute T ′?

Requirement
We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T ′) should never
overestimate h∗(s) (in the concrete state space T ).

An easy way to achieve this is to ensure that all solutions in T
also exist in T ′:

If s is a goal state in T , then α(s) is a goal state in T ′.
If T has a transition from s to t, then T ′ has a transition
from α(s) to α(t).
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Computing the abstract transition system:
example

Example (15-puzzle)
In the running example:

T has the unique goal state 〈16,1,2, . . . ,15〉.
 T ′ has the unique goal state 〈16,1,2, . . . ,7〉.

Let x and y be neighboring positions in the 4×4 grid.
T has a transition from 〈x, t1, . . . , ti−1,y, ti+1, . . . , t15〉
to 〈y, t1, . . . , ti−1,x, ti+1, . . . , t15〉 for all i ∈ {1, . . . ,15}.
 T ′ has a transition from 〈x, t1, . . . , ti−1,y, ti+1, . . . , t7〉

to 〈y, t1, . . . , ti−1,x, ti+1, . . . , t7〉 for all i ∈ {1, . . . ,7}.
 Moreover, T ′ has a transition from 〈x, t1, . . . , t7〉 to
〈y, t1, . . . , t7〉 if y /∈ {t1, . . . , t7}.
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Practical requirements for abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for α :

For a given state s, the abstract state α(s) must be
efficiently computable.
For a given abstract state α(s), the abstract goal distance
h∗(α(s)) must be efficiently computable.

There are different ways of achieving these requirements:
pattern database heuristics (Culberson & Schaeffer, 1996)
merge-and-shrink abstractions (Dräger, Finkbeiner &
Podelski, 2006)
structural patterns (Katz & Domshlak, 2008)
Cartesian abstractions (Ball, Podelski & Rajamani, 2001;
Seipp & Helmert, 2013)
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Practical requirements for abstractions:
example

Example (15-puzzle)
In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
most common algorithms precompute all abstract goal
distances prior to search by performing a backward
breadth-first search from the goal state(s). The distances are
then stored in a table (requires about 495 MB of RAM).
During search, computing h∗(α(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.
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Multiple abstractions

One important practical question is how to come up with a
suitable abstraction mapping α .
Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions (i. e., ones
that lead to informative heuristics).
However, it is generally not necessary to commit to a
single abstraction.
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Combining multiple abstractions

Maximizing several abstractions:
Each abstraction mapping gives rise to an admissible
heuristic.
By computing the maximum of several admissible
heuristics, we obtain another admissible heuristic which
dominates the component heuristics.
Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:
In some cases, we can even compute the sum of
individual estimates and still stay admissible.
Summation often leads to much higher estimates than
maximization, so it is important to understand when it is
admissible.
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Maximizing several abstractions: example

Example (15-puzzle)
mapping to tiles 1–7 was arbitrary
 can use any subset of tiles
with the same amount of memory required for the tables
for the mapping to tiles 1–7, we could store the tables for
nine different abstractions to six tiles and the blank
use maximum of individual estimates
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Adding several abstractions: example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1st abstraction: ignore precise location of 8–15
2nd abstraction: ignore precise location of 1–7

 Is the sum of the abstraction heuristics admissible?
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Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15
2nd abstraction: ignore precise location of 1–7

 The sum of the abstraction heuristics is not admissible.
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Adding several abstractions: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15 and blank
2nd abstraction: ignore precise location of 1–7 and blank

 The sum of the abstraction heuristics is admissible.
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Our plan for the next lectures

In the following, we take a deeper look at abstractions and
their use for admissible heuristics.

In the rest of this chapter, we formally introduce
abstractions and abstraction heuristics and study some of
their most important properties.
In the following chapter, we discuss one particular class
of abstraction heuristics in detail, namely pattern
database heuristics.
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2 Abstractions: formally

Transition systems
Abstractions
Abstraction heuristics
Additive abstraction heuristics
Coarsenings and refinements
Equivalent transition systems
Abstraction heuristics in practice
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Transition systems

Reminder from Chapter 2:

Definition (transition system)
A transition system is a 5-tuple T = 〈S,L,T ,s0,S?〉 where

S is a finite set of states,
L is a finite set of (transition) labels,
T ⊆ S×L×S is the transition relation,
s0 ∈ S is the initial state, and
S? ⊆ S is the set of goal states.

We say that T has the transition 〈s, `,s′〉 if 〈s, `,s′〉 ∈ T .
We also write this s `−→ s′, or s→ s′ when not interested in `.
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Transition systems: example

Note: To reduce clutter, our figures usually omit arc labels and
collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Transition systems of FDR planning tasks

Definition (induced transition system of an FDR planning
task)
Let Π = 〈V , I,O,γ〉 be an FDR planning task.
The induced transition system of Π, in symbols T (Π), is the
transition system T (Π) = 〈S,L,T ,s0,S?〉, where

S is the set of states over V ,
L = O,
T = {〈s,o, t〉 ∈ S×L×S | appo(s) = t},
s0 = I, and
S? = {s ∈ S | s |= γ}.
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Example task: one package, two trucks

Example (one package, two trucks)
Consider the following FDR planning task 〈V , I,O,γ〉:

V = {p, tA, tB} with
Dp = {L,R,A,B}
DtA = DtB = {L,R}

I = {p 7→ L, tA 7→ R, tB 7→ R}
O = {pickupi,j | i ∈ {A,B}, j ∈ {L,R}}
∪{dropi,j | i ∈ {A,B}, j ∈ {L,R}}
∪{movei,j,j ′ | i ∈ {A,B}, j, j ′ ∈ {L,R}, j 6= j ′}, where

pickupi,j = 〈ti = j ∧p = j,p := i〉
dropi,j = 〈ti = j ∧p = i,p := j〉
movei,j,j′ = 〈ti = j, ti := j ′〉

γ = (p = R)
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Transition system of example task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

State {p 7→ i, tA 7→ j, tB 7→ k} is depicted as ijk.
Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupA,L.
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Abstractions

Definition (abstraction, abstraction mapping)
Let T = 〈S,L,T ,s0,S?〉 and T ′ = 〈S′,L′,T ′,s′0,S′?〉
be transition systems with the same label set L = L′,
and let α : S→ S′ be a surjective function.
We say that T ′ is an abstraction of T with abstraction
mapping α (or: abstraction function α) if

α(s0) = s′0,
for all s ∈ S?, we have α(s) ∈ S′?, and
for all 〈s, `, t〉 ∈ T , we have 〈α(s), `,α(t)〉 ∈ T ′.
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Abstractions: terminology

Let T and T ′ be transition systems and α a function such
that T ′ is an abstraction of T with abstraction mapping α .

T is called the concrete transition system.
T ′ is called the abstract transition system.
Similarly: concrete/abstract state space, concrete/abstract
transition, etc.

We say that:
T ′ is an abstraction of T (without mentioning α)
α is an abstraction mapping on T (without mentioning
T ′)

Note: For a given T and α , there can be multiple abstractions
T ′, and for a given T and T ′, there can be multiple
abstraction mappings α .
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Abstraction: example

concrete transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL
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Abstraction: example

abstract transition system

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Note: Most arcs represent many parallel transitions.
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Induced abstractions

Definition (induced abstractions)
Let T = 〈S,L,T ,s0,S?〉 be a transition system, and let
α : S→ S′ be a surjective function.
The abstraction (of T ) induced by α , in symbols T α , is the
transition system T α = 〈S′,L,T ′,s′0,S′?〉 defined by:

T ′ = {〈α(s), `,α(t)〉 | 〈s, `, t〉 ∈ T}
s′0 = α(s0)
S′? = {α(s) | s ∈ S?}

Note: It is easy to see that T α is an abstraction of T . It is the
“smallest” abstraction of T with abstraction mapping α .

November 30th, 2016 B. Nebel, R. Mattmüller – AI Planning 27 / 62

Abstractions:
informally

Abstractions:
formally
Transition systems

Abstractions

Abstraction
heuristics

Additivity

Refinements

Equivalence

Practice

Summary

Induced abstractions: terminology

Let T and T ′ be transition systems and α be a function such
that T ′ = T α (i. e., T ′ is the abstraction of T induced by α).

α is called a strict homomorphism from T to T ′, and
T ′ is called a strictly homomorphic abstraction of T .
If α is bijective, it is called an isomorphism between T
and T ′, and the two transition systems are called
isomorphic.
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Strictly homomorphic abstractions: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

This abstraction is a strictly homomorphic abstraction of the
concrete transition system T .
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Strictly homomorphic abstractions: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

If we add any goal states or transitions, it is still
an abstraction of T , but no longer a strictly homomorphic one.
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Abstraction heuristics

Definition (abstr. heur. induced by an abstraction)
Let Π be an FDR planning task with state space S, and let A
be an abstraction of T (Π) with abstraction mapping α .
The abstraction heuristic induced by A and α , hA ,α , is the
heuristic function hA ,α : S→ N0∪{∞} which maps each state
s ∈ S to h∗A (α(s)) (the goal distance of α(s) in A ).

Note: hA ,α (s) = ∞ if no goal state of A is reachable from α(s)

Definition (abstr. heur. induced by strict homomorphism)
Let Π be an FDR planning task and α a strict homomorphism
on T (Π). The abstraction heuristic induced by α , hα , is the
abstraction heuristic induced by T (Π)α and α , i. e.,
hα := hT (Π)α ,α .
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Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hA ,α ({p 7→ L, tA 7→ R, tB 7→ R}) = 1
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Abstraction heuristics: example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα ({p 7→ L, tA 7→ R, tB 7→ R}) = 3
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Consistency of abstraction heuristics

Theorem (consistency and admissibility of hA ,α )
Let Π be an FDR planning task, and let A be an abstraction of
T (Π) with abstraction mapping α .
Then hA ,α is safe, goal-aware, admissible and consistent.

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.
Let T = T (Π) = 〈S,L,T ,s0,S?〉 and A = 〈S′,L′,T ′,s′0,S′?〉.
Goal-awareness: We need to show that hA ,α (s) = 0 for all
s ∈ S?, so let s ∈ S?. Then α(s) ∈ S′? by the definition of
abstractions and abstraction mappings, and hence
hA ,α (s) = h∗A (α(s)) = 0.
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Consistency of abstraction heuristics (ctd.)

Proof (ctd.)
Consistency: Let s, t ∈ S such that t is a successor of s. We
need to prove that hA ,α (s)≤ hA ,α (t) +1.
Since t is a successor of s, there exists an operator o with
appo(s) = t and hence 〈s,o, t〉 ∈ T .
By the definition of abstractions and abstraction mappings, we
get 〈α(s),o,α(t)〉 ∈ T ′  α(t) is a successor of α(s) in A .
Therefore, hA ,α (s) = h∗A (α(s))≤ h∗A (α(t)) +1 = hA ,α (t) +1,
where the inequality holds because the shortest path from
α(s) to the goal in A cannot be longer than the shortest path
from α(s) to the goal via α(t).
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Orthogonality of abstraction mappings

Definition (orthogonal abstraction mappings)
Let α1 and α2 be abstraction mappings on T .

We say that α1 and α2 are orthogonal if for all transitions
〈s, `, t〉 of T , we have αi(s) = αi(t) for at least one i ∈ {1,2}.
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Affecting transition labels

Definition (affecting transition labels)
Let T be a transition system, and let ` be one of its labels.
We say that ` affects T if T has a transition 〈s, `, t〉 with s 6= t.

Theorem (affecting labels vs. orthogonality)
Let A1 be an abstraction of T with abstraction mapping α1.
Let A2 be an abstraction of T with abstraction mapping α2.
If no label of T affects both A1 and A2, then α1 and α2 are
orthogonal.

(Easy proof omitted.)
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Orthogonal abstraction mappings: example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstraction mappings orthogonal?
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Orthogonality and additivity

Theorem (additivity for orthogonal abstraction mappings)
Let hA1,α1 , . . . ,hAn,αn be abstraction heuristics for the same
planning task Π such that αi and αj are orthogonal for all i 6= j.
Then ∑

n
i=1hAi ,αi is a safe, goal-aware, admissible and

consistent heuristic for Π.
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

transition system T
state variables: first package, second package, truck

November 30th, 2016 B. Nebel, R. Mattmüller – AI Planning 38 / 62

Abstractions:
informally

Abstractions:
formally
Transition systems

Abstractions

Abstraction
heuristics

Additivity

Refinements

Equivalence

Practice

Summary

Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL
LIL

LIR
LRR LRL

ILR

ILL
IIL IIR

IRR

IRL

RLR RLL
RIL

RIR
RRR RRL

abstraction A1
mapping: only consider state of first package
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Orthogonality and additivity: example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL
ILL

ILR
RLR RLL

LIR

LIL
IIL IIR

RIR

RIL

LRR LRL
IRL

IRR
RRR RRL

abstraction A2 (orthogonal to A1)
mapping: only consider state of second package
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Orthogonality and additivity: proof

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.
Let T = T (Π) = 〈S,L,T ,s0,S?〉.
Goal-awareness: For goal states s ∈ S?,
∑

n
i=1hAi ,αi (s) = ∑

n
i=10 = 0 because all individual abstractions

are goal-aware.
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Orthogonality and additivity: proof (ctd.)

Proof (ctd.)
Consistency: Let s, t ∈ S such that t is a successor of s.
Let L := ∑

n
i=1hAi ,αi (s) and R := ∑

n
i=1hAi ,αi (t).

We need to prove that L≤ R+1.
Since t is a successor of s, there exists an operator o with
appo(s) = t and hence 〈s,o, t〉 ∈ T .
Because the abstraction mappings are orthogonal, αi(s) 6= αi(t)
for at most one i ∈ {1, . . . ,n}.
Case 1: αi(s) = αi(t) for all i ∈ {1, . . . ,n}.
Then L = ∑

n
i=1hAi ,αi (s)

= ∑
n
i=1h∗Ai

(αi(s))
= ∑

n
i=1h∗Ai

(αi(t))
= ∑

n
i=1hAi ,αi (t)

= R ≤ R+1.
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Orthogonality and additivity: proof (ctd.)

Proof (ctd.)
Case 2: αi(s) 6= αi(t) for exactly one i ∈ {1, . . . ,n}.
Let k ∈ {1, . . . ,n} such that αk(s) 6= αk(t).
Then L = ∑

n
i=1hAi ,αi (s)

= ∑i∈{1,...,n}\{k}h∗Ai
(αi(s)) +hAk ,αk (s)

≤ ∑i∈{1,...,n}\{k}h∗Ai
(αi(t)) +hAk ,αk (t) +1

= ∑
n
i=1hAi ,αi (t) +1

= R+1,
where the inequality holds because αi(s) = αi(t) for all i 6= k and
hAk ,αk is consistent.
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Abstractions of abstractions

Theorem (transitivity of abstractions)
Let T , T ′ and T ′′ be transition systems.

If T ′ is an abstraction of T
and T ′′ is an abstraction of T ′,
then T ′′ is an abstraction of T .
If T ′ is a strictly homomorphic abstraction of T
and T ′′ is a strictly homomorphic abstraction of T ′,
then T ′′ is a strictly homomorphic abstraction of T .
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Abstractions of abstractions: example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

transition system T
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Abstractions of abstractions: example

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T
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Abstractions of abstractions: example

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BLR

BRR

BLL BLR

BRRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T ′
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Abstractions of abstractions: example
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Transition system T ′′ as an abstraction of T
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Abstractions of abstractions (proof)

Proof.
Let T = 〈S,L,T ,s0,S?〉, let T ′ = 〈S′,L,T ′,s′0,S′?〉 be an
abstraction of T with abstraction mapping α , and let
T ′′ = 〈S′′,L,T ′′,s′′0,S′′?〉 be an abstraction of T ′ with
abstraction mapping α ′.
We show that T ′′ is an abstraction of T with abstraction
mapping β := α ′ ◦α , i. e., that

1 β (s0) = s′′0,
2 for all s ∈ S?, we have β (s) ∈ S′′? , and
3 for all 〈s, `, t〉 ∈ T , we have 〈β (s), `,β (t)〉 ∈ T ′′.

Moreover, we show that if α and α ′ are strict homomorphisms,
then β is also a strict homomorphism.

. . .
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Abstractions of abstractions: proof

Proof (ctd.)
1. β (s0) = s′′0
Because T ′ is an abstraction of T with mapping α , we have
α(s0) = s′0. Because T ′′ is an abstraction of T ′ with mapping
α ′, we have α ′(s′0) = s′′0.
Hence β (s0) = α ′(α(s0)) = α ′(s′0) = s′′0.

. . .
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Abstractions of abstractions: proof (ctd.)

Proof (ctd.)
2. For all s ∈ S?, we have β (s) ∈ S′′? :
Let s ∈ S?. Because T ′ is an abstraction of T with mapping
α , we have α(s) ∈ S′?. Because T ′′ is an abstraction of T ′

with mapping α ′ and α(s) ∈ S′?, we have α ′(α(s)) ∈ S′′? .
Hence β (s) = α ′(α(s)) ∈ S′′? .

Strict homomorphism if α and α ′ strict homomorphisms:
Let s′′ ∈ S′′? . Because α ′ is a strict homomorphism, there exists
a state s′ ∈ S′? such that α ′(s′) = s′′. Because α is a strict
homomorphism, there exists a state s ∈ S? such that α(s) = s′.
Thus s′′ = α ′(α(s)) = β (s) for some s ∈ S?.

. . .
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Abstractions of abstractions: proof (ctd.)

Proof (ctd.)
3. For all 〈s, `, t〉 ∈ T , we have 〈β (s), `,β (t)〉 ∈ T ′′
Let 〈s, `, t〉 ∈ T . Because T ′ is an abstraction of T with
mapping α , we have 〈α(s), `,α(t)〉 ∈ T ′. Because T ′′ is an
abstraction of T ′ with mapping α ′ and 〈α(s), `,α(t)〉 ∈ T ′, we
have 〈α ′(α(s)), `,α ′(α(t))〉 ∈ T ′′.
Hence 〈β (s), `,β (t)〉 = 〈α ′(α(s)), `,α ′(α(t))〉 ∈ T ′′.

Strict homomorphism if α and α ′ strict homomorphisms:
Let 〈s′′, `, t ′′〉 ∈ T ′′. Because α ′ is a strict homomorphism,
there exists a transition 〈s′, `, t ′〉 ∈ T ′ such that α ′(s′) = s′′ and
α ′(t ′) = t ′′. Because α is a strict homomorphism, there exists a
transition 〈s, `, t〉 ∈ T such that α(s) = s′ and α(t) = t ′.
Thus 〈s′′, `, t ′′〉 = 〈α ′(α(s)), `,α ′(α(t))〉 = 〈β (s), `,β (t)〉 for some
〈s, `, t〉 ∈ T .
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Coarsenings and refinements

Terminology: Let T be a transition system,
let T ′ be an abstraction of T with abstraction mapping α , and
let T ′′ be an abstraction of T ′ with abstraction mapping α ′.
Then:

〈T ′′,α ′ ◦α〉 is called a coarsening of 〈T ′,α〉, and
〈T ′,α〉 is called a refinement of 〈T ′′,α ′ ◦α〉.
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Heuristic quality of refinements

Theorem (heuristic quality of refinements)
Let hA ,α and hB,β be abstraction heuristics for the same
planning task Π such that 〈A ,α〉 is a refinement of 〈B,β 〉.
Then hA ,α dominates hB,β .

In other words, hA ,α (s)≥ hB,β (s) for all states s of Π.

Proof.
Since 〈A ,α〉 is a refinement of 〈B,β 〉, there exists a mapping
α ′ such that β = α ′ ◦α and B is an abstraction of A with
abstraction mapping α ′.
For any state s of Π, we get hB,β (s) = h∗B(β (s)) =
h∗B(α ′(α(s))) = hB,α ′(α(s))≤ h∗A (α(s)) = hA ,α (s), where the
inequality holds because hB,α ′ is an admissible heuristic in the
transition system A .
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Isomorphic transition systems

Definition (isomorphic transition systems)
Let T = 〈S,L,T ,s0,S?〉 and T ′ = 〈S′,L′,T ′,s′0,S′?〉 be
transition systems.
We say that T is isomorphic to T ′, in symbols T ∼T ′, if
there exist bijective functions ϕ : S→ S′ and ψ : L→ L′ such
that:

ϕ(s0) = s′0,
s ∈ S? iff ϕ(s) ∈ S′?, and
〈s, `, t〉 ∈ T iff 〈ϕ(s),ψ(`),ϕ(t)〉 ∈ T ′.
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Graph-equivalent transition systems

Definition (graph-equivalent transition systems)
Let T = 〈S,L,T ,s0,S?〉 and T ′ = 〈S′,L′,T ′,s′0,S′?〉 be
transition systems.
We say that T is graph-equivalent to T ′, in symbols T

G∼T ′,
if there exists a bijective function ϕ : S→ S′ such that:

ϕ(s0) = s′0,
s ∈ S? iff ϕ(s) ∈ S′?, and
〈s, `, t〉 ∈ T for some ` ∈ L iff 〈ϕ(s), `′,ϕ(t)〉 ∈ T ′ for some
`′ ∈ L′.

Note: There is no requirement that the labels of T and T ′

correspond in any way. For example, it is permitted that all
transitions of T have different labels and all transitions of T ′

have the same label.
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Isomorphism vs. graph equivalence

(∼) and (G∼) are equivalence relations.
Two isomorphic transition systems are interchangeable
for all practical intents and purposes.
Two graph-equivalent transition systems are
interchangeable for most intents and purposes.
In particular, their state distances are identical, so they
define the same abstraction heuristic for corresponding
abstraction functions.
Isomorphism implies graph equivalence, but not vice
versa.
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Using abstraction heuristics in practice

In practice, there are conflicting goals for abstractions:
we want to obtain an informative heuristic, but
want to keep its representation small.

Abstractions have small representations if they have
few abstract states and
a succinct encoding for α .
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Counterexample: one-state abstraction

LRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLLLRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

One-state abstraction: α(s) := const.
+ very few abstract states and succinct encoding for α

− completely uninformative heuristic
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Counterexample: identity abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Identity abstraction: α(s) := s.
+ perfect heuristic and succinct encoding for α

− too many abstract states
November 30th, 2016 B. Nebel, R. Mattmüller – AI Planning 57 / 62

Abstractions:
informally

Abstractions:
formally
Transition systems

Abstractions

Abstraction
heuristics

Additivity

Refinements

Equivalence

Practice

Summary

Counterexample: perfect abstraction

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR

ALL

BLL

BRL

ALR

BRL

ALL

BLL

ARL

ARR

BRR

BLR

ARL

BLR

ARR

BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Perfect abstraction: α(s) := h∗(s).
+ perfect heuristic and usually few abstract states
− usually no succinct encoding for α
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Automatically deriving good abstraction
heuristics

Abstraction heuristics for planning: main research
problem
Automatically derive effective abstraction heuristics
for planning tasks.

 we will study one state-of-the-art approach
in the next chapter.
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An abstraction relates a transition system T (e. g. of a
planning task) to another (usually smaller) transition
system T ′ via an abstraction mapping α .
Abstraction preserves all important aspects of T :
initial state, goal states and (labeled) transitions.
Hence, they can be used to define heuristics for the
original system T : estimate the goal distance of s in T
by the optimal goal distance of α(s) in T ′.
Such abstraction heuristics are safe, goal-aware,
admissible and consistent.
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Strictly homomorphic abstractions are desirable as they
do not include “unnecessary” abstract goal states or
transitions (which could lower heuristic values).
Any surjection from the states of T to any set induces a
strictly homomorphic abstraction in a natural way.
Multiple abstraction heuristics can be added without
losing properties like admissibility if the underlying
abstraction mappings are orthogonal.
One sufficient condition for orthogonality is that
abstractions are affected by disjoint sets of labels.
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Summary (ctd.)

The process of abstraction is transitive: an abstraction
can be abstracted further to yield another abstraction.
Based on this notion, we can define abstractions that are
coarsenings or refinements of others.
A refinement can never lead to a worse heuristic.
Practically useful abstractions are those which give
informative heuristics, yet have a small representation.
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