
Principles of AI Planning
9. Interlude: Finite-domain representation

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
November 25th, 2016

Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

1 Invariants

Introduction
Computing invariants
Exploiting invariants

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 3 / 20

Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

Invariants

When we as humans reason about planning tasks, we
implicitly make use of “obvious” properties of these tasks.

Example: we are never in two places at the same time
We can express this as a logical formula ϕ that is
true in all reachable states.

Example: ϕ = ¬(at-uni∧at-home)
Such formulae are called invariants of the task.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 4 / 20

Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

Computing invariants

How does an automated planner come up with invariants?
Theoretically, testing if an arbitrary formula ϕ

is an invariant is as hard as planning itself.
Still, many practical invariant synthesis algorithms exist.
To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
Empirically, they tend to at least find the “obvious”
invariants of a planning task.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 5 / 20



Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

Invariant synthesis algorithms

Most algorithms for generating invariants are based on a
generate-test-repair paradigm:

Generate: Suggest some invariant candidates, e. g., by
enumerating all possible formulas ϕ of a certain size.
Test: Try to prove that ϕ is indeed an invariant.
Usually done inductively:

1 Test that initial state satisfies ϕ .
2 Test that if ϕ is true in the current state, it remains true

after applying a single operator.
Repair: If invariant test fails, replace candidate ϕ by a
weaker formula, ideally exploiting why the proof failed.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 6 / 20

Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

Invariant synthesis: references

We discussed invariant synthesis in detail in previous courses
on AI planning, but this year we will focus on other aspects of
planning.

Literature on invariant synthesis:
DISCOPLAN (Gerevini & Schubert, 1998)
TIM (Fox & Long, 1998)
Edelkamp & Helmert’s algorithm (1999)
Rintanen’s algorithm (2000)
Bonet & Geffner’s algorithm (2001)
Helmert’s algorithm (2009)

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 7 / 20

Invariants
Introduction

Computing
invariants

Exploiting
invariants

FDR
planning
tasks

Summary

Exploiting invariants

Invariants have many uses in planning:
Regression search:
Prune states that violate (are inconsistent with) invariants.
Planning as satisfiability:
Add invariants to a SAT encoding of a planning task to get
tighter constraints.
Reformulation:
Derive a more compact state space representation
(i. e., with lower percentage of unreachable states).

We now briefly discuss the last point, since it leads to planning
tasks in finite-domain representation, which are very important
for the next chapters.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

2 Planning tasks in finite-domain
representation

Mutexes
FDR planning tasks
Relationship to propositional planning tasks
SAS+ planning tasks

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 10 / 20



Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Mutexes

Invariants that take the form of binary clauses are called
mutexes because they state that certain variable assignments
cannot be simultaneously true and are hence mutually
exclusive.

Example (Blocksworld)
The invariant ¬A-on-B∨¬A-on-C states that A-on-B and
A-on-C are mutex.

Often, a larger set of literals is mutually exclusive because
every pair of them forms a mutex.

Example (Blocksworld)
Every pair in {B-on-A,C-on-A,D-on-A,A-clear} is mutex.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 11 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Encoding mutex groups as finite-domain
variables

Let L = {l1, . . . , ln} be mutually exclusive literals over n different
variables AL = {a1, . . . ,an}.
Then the planning task can be rephrased using a single
finite-domain (i.e., non-binary) state variable vL with n +1
possible values in place of the n variables in AL:

n of the possible values represent situations in which
exactly one of the literals in L is true.
The remaining value represents situations in which none
of the literals in L is true.

Note: If we can prove that one of the literals in L has to be
true in each state, this additional value can be omitted.

In many cases, the reduction in the number of variables can
dramatically improve performance of a planning algorithm.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 12 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Finite-domain state variables

Definition (finite-domain state variable)
A finite-domain state variable is a symbol v with an associated
finite domain, i. e., a non-empty finite set.
We write Dv for the domain of v.

Example
v = above-a, Dabove-a = {b,c,d,nothing}
This state variable encodes the same information as the
propositional variables B-on-A, C-on-A, D-on-A and A-clear.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 13 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Finite-domain states

Definition (finite-domain state)
Let V be a finite set of finite-domain state variables.
A state over V is an assignment s : V →

⋃
v∈V Dv such that

s(v) ∈ Dv for all v ∈ V .

Example
s = {above-a 7→ nothing,above-b 7→ a,above-c 7→ b,

below-a 7→ b,below-b 7→ c,below-c 7→ table}

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 14 / 20



Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Finite-domain formulae

Definition (finite-domain formulae)
Logical formulae over finite-domain state variables V are
defined as in the propositional case, except that instead of
atomic formulae of the form a ∈ A, there are atomic formulae
of the form v = d, where v ∈ V and d ∈ Dv .

Example
The formula (above-a = nothing)∨¬(below-b = c) corresponds
to the formula A-clear∨¬B-on-C.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 15 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Finite-domain effects

Definition (finite-domain effects)
Effects over finite-domain state variables V are defined as in
the propositional case, except that instead of atomic effects of
the form a and ¬a with a ∈ A, there are atomic effects of the
form v := d, where v ∈ V and d ∈ Dv .

Example
The effect
(below-a := table)∧ ((above-b = a)B (above-b := nothing))
corresponds to the effect
A-on-T∧¬A-on-B∧¬A-on-C∧¬A-on-D∧ (A-on-BB B-clear).

 definition of finite-domain operators follows from this

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 16 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Planning tasks in finite-domain representation

Definition (planning task in finite-domain representation)
A deterministic planning task in finite-domain representation or
FDR planning task is a 4-tuple Π = 〈V , I,O,γ〉 where

V is a finite set of finite-domain state variables,
I is an initial state over V ,
O is a finite set of finite-domain operators over V , and
γ is a formula over V describing the goal states.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 20

Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

Relationship to propositional planning tasks

Definition (induced propositional planning task)
Let Π = 〈V , I,O,γ〉 be an FDR planning task.
The induced propositional planning task Π′ is the (regular)
planning task Π′ = 〈A′, I′,O′,γ ′〉, where

A′ = {(v,d) | v ∈ V ,d ∈ Dv}
I′((v,d)) = 1 iff I(v) = d
O′ and γ ′ are obtained from O and γ by replacing

each atomic formula v = d with the proposition (v,d),
each atomic effect v := d with the effect
(v,d)∧

∧
d ′∈Dv\{d}¬(v,d ′).

 can define operator semantics, plans, relaxed planning
graphs, . . . for Π in terms of its induced propositional
planning task

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 18 / 20



Invariants

FDR
planning
tasks
Mutexes

FDR planning
tasks

Relationship to
propositional
planning tasks

SAS+ planning
tasks

Summary

SAS+ planning tasks

Definition (SAS+ planning task)
An FDR planning task Π = 〈V , I,O,γ〉 is called an SAS+

planning task iff there are no conditional effects in O and all
operator preconditions in O and the goal formula γ are
conjunctions of atoms.

analogue of STRIPS planning tasks for finite-domain
representations
induced propositional planning task of a SAS+ planning
task is STRIPS
FDR tasks obtained by invariant-based reformulation of
STRIPS planning task are SAS+

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 19 / 20

Invariants

FDR
planning
tasks

Summary

Summary

Invariants are common properties of all reachable states,
expressed as logical formulas.
A number of algorithms for computing invariants exist.
These algorithms will not find all useful invariants (which
is too hard), but try to find some useful subset within
reasonable (polynomial) time.
Mutexes are invariants that express that certain pairs of
state variable assignments are mutually exclusive.
Groups of mutexes can be used for problem
reformulation, transforming a planning task into
finite-domain representation (FDR).
Many planning algorithms are more efficient when
working on these FDR tasks (rather than the original
tasks) because they contain fewer unreachable states.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 20 / 20


	Invariants
	Introduction
	Computing invariants
	Exploiting invariants

	Planning tasks in finite-domain representation
	Mutexes
	FDR planning tasks
	Relationship to propositional planning tasks
	SAS+ planning tasks


