When we as humans reason about planning tasks, we implicitly make use of “obvious” properties of these tasks.

Example: we are never in two places at the same time

We can express this as a logical formula ϕ that is true in all reachable states.

Example: $\phi = \neg (at\text{-}uni \land at\text{-}home)$

Such formulae are called invariants of the task.
Invariant synthesis algorithms

Most algorithms for generating invariants are based on a generate-test-repair paradigm:
- **Generate**: Suggest some invariant candidates, e.g., by enumerating all possible formulas φ of a certain size.
- **Test**: Try to prove that φ is indeed an invariant. Usually done inductively:
 1. Test that initial state satisfies φ.
 2. Test that if φ is true in the current state, it remains true after applying a single operator.
- **Repair**: If invariant test fails, replace candidate φ by a weaker formula, ideally exploiting why the proof failed.

Exploiting invariants

Invariants have many uses in planning:
- **Regression search**: Prune states that violate (are inconsistent with) invariants.
- **Planning as satisfiability**: Add invariants to a SAT encoding of a planning task to get tighter constraints.
- **Reformulation**: Derive a more compact state space representation (i.e., with lower percentage of unreachable states).

We now briefly discuss the last point, since it leads to planning tasks in finite-domain representation, which are very important for the next chapters.

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 20

Invariant synthesis: references

We discussed invariant synthesis in detail in previous courses on AI planning, but this year we will focus on other aspects of planning.

Literature on invariant synthesis:
- DISCOPLAN (Gerevini & Schubert, 1998)
- TIM (Fox & Long, 1998)
- Edelkamp & Helmert's algorithm (1999)
- Rintanen's algorithm (2000)
- Bonet & Geffner's algorithm (2001)
- Helmert's algorithm (2009)

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 7 / 20

2 Planning tasks in finite-domain representation

- Mutexes
- FDR planning tasks
- Relationship to propositional planning tasks
- SAS* planning tasks

November 25th, 2016 B. Nebel, R. Mattmüller – AI Planning 10 / 20
Mutexes

Invariants that take the form of binary clauses are called **mutexes** because they state that certain variable assignments cannot be simultaneously true and are hence mutually exclusive.

Example (Blocksworld)
The invariant $\neg A\text{-on-}B \lor \neg A\text{-on-}C$ states that $A\text{-on-}B$ and $A\text{-on-}C$ are mutex.

Often, a larger set of literals is mutually exclusive because every pair of them forms a mutex.

Example (Blocksworld)
Every pair in \{B-on-A, C-on-A, D-on-A, A-clear\} is mutex.

Encoding mutex groups as finite-domain variables

Let $L = \{l_1, \ldots, l_n\}$ be mutually exclusive literals over n different variables $A_L = \{a_1, \ldots, a_n\}$.

Then the planning task can be rephrased using a single finite-domain (i.e., non-binary) state variable v_L with $n + 1$ possible values in place of the n variables in A_L:

- n of the possible values represent situations in which exactly one of the literals in L is true.
- The remaining value represents situations in which none of the literals in L is true.

Note: If we can prove that one of the literals in L has to be true in each state, this additional value can be omitted.

In many cases, the reduction in the number of variables can dramatically improve performance of a planning algorithm.

Finite-domain state variables

Definition (finite-domain state variable)
A finite-domain state variable is a symbol v with an associated finite domain, i.e., a non-empty finite set.

We write \mathcal{D}_v for the domain of v.

Example
$v = \text{above-a}$, $\mathcal{D}_{\text{above-a}} = \{b, c, d, \text{nothing}\}$

This state variable encodes the same information as the propositional variables B-on-A, C-on-A, D-on-A and A-clear.

Finite-domain states

Definition (finite-domain state)
Let V be a finite set of finite-domain state variables.

A state over V is an assignment $s : V \rightarrow \bigcup_{v \in V} \mathcal{D}_v$ such that $s(v) \in \mathcal{D}_v$ for all $v \in V$.

Example
$s = \{\text{above-a} \mapsto \text{nothing}, \text{above-b} \mapsto a, \text{above-c} \mapsto b, \text{below-a} \mapsto b, \text{below-b} \mapsto c, \text{below-c} \mapsto \text{table}\}$
Finite-domain formulae

Definition (finite-domain formulae)
Logical formulae over finite-domain state variables V are defined as in the propositional case, except that instead of atomic formulae of the form $a \in A$, there are atomic formulae of the form $v = d$, where $v \in V$ and $d \in D_v$.

Example
The formula $(above-a = nothing) \lor \neg(below-b = c)$ corresponds to the formula $A-clear \lor \neg B-on-C$.

Finite-domain effects

Definition (finite-domain effects)
Effects over finite-domain state variables V are defined as in the propositional case, except that instead of atomic effects of the form a and $\neg a$ with $a \in A$, there are atomic effects of the form $v := d$, where $v \in V$ and $d \in D_v$.

Example
The effect $(below-a := table) \land ((above-b = a) \triangleright (above-b := nothing))$ corresponds to the effect $A-on-T \land \neg A-on-B \land \neg A-on-C \land \neg A-on-D \land (A-on-B \triangleright B-clear)$.

Planning tasks in finite-domain representation

Definition (planning task in finite-domain representation)
A deterministic planning task in finite-domain representation or FDR planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where
- V is a finite set of finite-domain state variables,
- I is an initial state over V,
- O is a finite set of finite-domain operators over V, and
- γ is a formula over V describing the goal states.

Relationship to propositional planning tasks

Definition (induced propositional planning task)
Let $\Pi = \langle V, I, O, \gamma \rangle$ be an FDR planning task.
The induced propositional planning task Π' is the (regular) planning task $\Pi' = \langle A', I', O', \gamma' \rangle$, where
- $A' = \{ (v, d) \mid v \in V, d \in D_v \}$
- $I'((v, d)) = 1$ iff $I(v) = d$
- O' and γ' are obtained from O and γ by replacing
 - each atomic formula $v = d$ with the proposition (v, d),
 - each atomic effect $v := d$ with the effect $(v, d) \land \forall d' \in D_v \setminus \{d\} \neg(v, d')$.

\rightarrow can define operator semantics, plans, relaxed planning graphs, ... for Π in terms of its induced propositional planning task
SAS+ planning tasks

Definition (SAS+ planning task)
An FDR planning task \(\Pi = (V, I, O, \gamma) \) is called an SAS+ planning task if there are no conditional effects in \(O \) and all operator preconditions in \(O \) and the goal formula \(\gamma \) are conjunctions of atoms.

- analogue of STRIPS planning tasks for finite-domain representations
- induced propositional planning task of a SAS+ planning task is STRIPS
- FDR tasks obtained by invariant-based reformulation of STRIPS planning task are SAS+

Summary
- Invariants are common properties of all reachable states, expressed as logical formulas.
- A number of algorithms for computing invariants exist.
- These algorithms will not find all useful invariants (which is too hard), but try to find some useful subset within reasonable (polynomial) time.
- Mutexes are invariants that express that certain pairs of state variable assignments are mutually exclusive.
- Groups of mutexes can be used for problem reformulation, transforming a planning task into finite-domain representation (FDR).
- Many planning algorithms are more efficient when working on these FDR tasks (rather than the original tasks) because they contain fewer unreachable states.