
Principles of AI Planning
7. Planning as search: relaxed planning tasks

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
November 9th, 2016

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

SummaryHow to obtain a heuristic

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 2 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A simple heuristic for deterministic planning

STRIPS (Fikes & Nilsson, 1971) used the number of state
variables that differ in current state s and a STRIPS goal
a1∧·· ·∧an:

h(s) := |{i ∈ {1, . . . ,n} | s 6|= ai}|.

Intuition: more true goal literals closer to the goal

 STRIPS heuristic (a.k.a. goal-count heuristic) (properties?)

Note: From now on, for convenience we usually write
heuristics as functions of states (as above), not nodes.
Node heuristic h′ is defined from state heuristic h as
h′(σ) := h(state(σ)).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 4 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

Criticism of the STRIPS heuristic

What is wrong with the STRIPS heuristic?
quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate
very sensitive to reformulation:
can easily transform any planning task into an equivalent
one where h(s) = 1 for all non-goal states (how?)
ignores almost all problem structure:
heuristic value does not depend on the set of operators!

 need a better, principled way of coming up with heuristics

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 5 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

Coming up with heuristics in a principled way

General procedure for obtaining a heuristic
Solve an easier version of the problem.

Two common methods:
relaxation: consider less constrained version of the
problem
abstraction: consider smaller version of real problem

Both have been very successfully applied in planning.
We consider both in this course, beginning with relaxation.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 6 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

Relaxing a problem

How do we relax a problem?

Example (Route planning for a road network)
The road network is formalized as a weighted graph over
points in the Euclidean plane. The weight of an edge is the
road distance between two locations.

A relaxation drops constraints of the original problem.

Example (Relaxation for route planning)
Use the Euclidean distance

√
|x1−x2|2 + |y1−y2|2 as a

heuristic for the road distance between 〈x1,y1〉 and 〈x2,y2〉
This is a lower bound on the road distance (admissible).

 We drop the constraint of having to travel on roads.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 7 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics
STRIPS heuristic

Relaxation and
abstraction

Relaxed
planning
tasks

Summary

A∗ using the Euclidean distance heuristic

Frankfurt

Freiburg

Karlsruhe

Munich

Nuremberg

Passau

Regensburg
Stuttgart

Ulm

Wurzburg

12
0
km

12
0
km

100 km
100 km

100 km 120
km80

km

160 km

100 km

100 km

120 km

200
km

200
km

270 km

150 km

420 km180 km

340
km

120
km

45
0 k

m
13
0 k

m

440 km100 km

540
km

120
km

460 km

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 8 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Relaxed planning tasks

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 9 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Relaxed planning tasks: idea

In positive normal form (remember?), good and bad effects are
easy to distinguish:

Effects that make state variables true are good
(add effects).
Effects that make state variables false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 11 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Relaxed planning tasks

Definition (relaxation of operators)
The relaxation o+ of an operator o = 〈χ,e〉 in positive normal
form is the operator which is obtained by replacing all negative
effects ¬a within e by the do-nothing effect >.

Definition (relaxation of planning tasks)
The relaxation Π+ of a planning task Π = 〈A, I,O,γ〉 in positive
normal form is the planning task Π+ := 〈A, I,{o+ | o ∈O},γ〉.

Definition (relaxation of operator sequences)
The relaxation of an operator sequence π = o1 . . .on is the
operator sequence π+ := o1+ . . .on+.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 12 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Relaxed planning tasks: terminology

Planning tasks in positive normal form without delete
effects are called relaxed planning tasks.
Plans for relaxed planning tasks are called relaxed plans.
If Π is a planning task in positive normal form and π+ is a
plan for Π+, then π+ is called a relaxed plan for Π.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 13 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Dominating states

The on-set on(s) of a state s is the set of true state variables in
s, i.e. on(s) = s−1({1}).
A state s′ dominates another state s iff on(s)⊆ on(s′).

Lemma (domination)
Let s and s′ be valuations of a set of propositional variables A
and let χ be a propositional formula over A which does not
contain negation symbols.
If s |= χ and s′ dominates s, then s′ |= χ .

Proof.
Proof by induction over the structure of χ .

Base case χ =>: then s′ |=>.
Base case χ =⊥: then s 6|=⊥.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 14 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Dominating states (ctd.)

Proof (ctd.)
Base case χ = a ∈ A: assume s |= a and on(s)⊆ on(s′).
With a ∈ on(s) we get a ∈ on(s′), hence s′ |= a.
Inductive case χ = χ1∧χ2: by induction hypothesis, our
claim holds for the proper subformulas χ1 and χ2 of χ .

s |= χ ⇐⇒ s |= χ1∧χ2

⇐⇒ s |= χ1 and s |= χ2
I.H. (twice)=⇒ s′ |= χ1 and s′ |= χ2

⇐⇒ s′ |= χ1∧χ2

⇐⇒ s′ |= χ.

Inductive case χ = χ1∨χ2: Analogous.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 15 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma

For the rest of this chapter, we assume that all planning tasks
are in positive normal form.

Lemma (relaxation)
Let s be a state, let s′ be a state that dominates s,
and let π be an operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+ (s′) dominates appπ (s).
Moreover, if π leads to a goal state from s, then π+ leads to a
goal state from s′.

Proof.
The “moreover” part follows from the rest by the domination
lemma. Prove the rest by induction over the length of π .
Base case: π = ε

appπ+ (s′) = s′. dominates appπ (s) = s by assumption.
November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 16 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma

For the rest of this chapter, we assume that all planning tasks
are in positive normal form.

Lemma (relaxation)
Let s be a state, let s′ be a state that dominates s,
and let π be an operator sequence which is applicable in s.
Then π+ is applicable in s′ and appπ+ (s′) dominates appπ (s).
Moreover, if π leads to a goal state from s, then π+ leads to a
goal state from s′.

Proof.
The “moreover” part follows from the rest by the domination
lemma. Prove the rest by induction over the length of π .
Base case: π = ε

appπ+ (s′) = s′. dominates appπ (s) = s by assumption.
November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 16 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma (ctd.)

Proof (ctd.)
Inductive case: π = o1 . . .on+1.
By the induction hypothesis, o1+ . . .on+ is applicable in s′, and
t ′ = appo1+...on+ (s′) dominates t = appo1...on(s).
Let o := on+1 = 〈χ,e〉 and o+ = 〈χ,e+〉. By assumption, o is
applicable in t, and thus t |= χ . By the domination lemma, we
get t ′ |= χ and hence o+ is applicable in t ′. Therefore, π+ is
applicable in s′.
Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t ′ (by the domination
lemma). Therefore, ([e]t ∩A)⊆ [e+]t ′ (where A is the set of
state variables, or positive literals). We get
on(appπ (s))⊆ on(t)∪ ([e]t ∩A)⊆ on(t ′)∪ [e+]t ′ = on(appπ+ (s′)),
and thus appπ+ (s′) dominates appπ (s).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma (ctd.)

Proof (ctd.)
Inductive case: π = o1 . . .on+1.
By the induction hypothesis, o1+ . . .on+ is applicable in s′, and
t ′ = appo1+...on+ (s′) dominates t = appo1...on(s).
Let o := on+1 = 〈χ,e〉 and o+ = 〈χ,e+〉. By assumption, o is
applicable in t, and thus t |= χ . By the domination lemma, we
get t ′ |= χ and hence o+ is applicable in t ′. Therefore, π+ is
applicable in s′.
Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t ′ (by the domination
lemma). Therefore, ([e]t ∩A)⊆ [e+]t ′ (where A is the set of
state variables, or positive literals). We get
on(appπ (s))⊆ on(t)∪ ([e]t ∩A)⊆ on(t ′)∪ [e+]t ′ = on(appπ+ (s′)),
and thus appπ+ (s′) dominates appπ (s).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma (ctd.)

Proof (ctd.)
Inductive case: π = o1 . . .on+1.
By the induction hypothesis, o1+ . . .on+ is applicable in s′, and
t ′ = appo1+...on+ (s′) dominates t = appo1...on(s).
Let o := on+1 = 〈χ,e〉 and o+ = 〈χ,e+〉. By assumption, o is
applicable in t, and thus t |= χ . By the domination lemma, we
get t ′ |= χ and hence o+ is applicable in t ′. Therefore, π+ is
applicable in s′.
Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t ′ (by the domination
lemma). Therefore, ([e]t ∩A)⊆ [e+]t ′ (where A is the set of
state variables, or positive literals). We get
on(appπ (s))⊆ on(t)∪ ([e]t ∩A)⊆ on(t ′)∪ [e+]t ′ = on(appπ+ (s′)),
and thus appπ+ (s′) dominates appπ (s).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The relaxation lemma (ctd.)

Proof (ctd.)
Inductive case: π = o1 . . .on+1.
By the induction hypothesis, o1+ . . .on+ is applicable in s′, and
t ′ = appo1+...on+ (s′) dominates t = appo1...on(s).
Let o := on+1 = 〈χ,e〉 and o+ = 〈χ,e+〉. By assumption, o is
applicable in t, and thus t |= χ . By the domination lemma, we
get t ′ |= χ and hence o+ is applicable in t ′. Therefore, π+ is
applicable in s′.
Because o is in positive normal form, all effect conditions
satisfied by t are also satisfied by t ′ (by the domination
lemma). Therefore, ([e]t ∩A)⊆ [e+]t ′ (where A is the set of
state variables, or positive literals). We get
on(appπ (s))⊆ on(t)∪ ([e]t ∩A)⊆ on(t ′)∪ [e+]t ′ = on(appπ+ (s′)),
and thus appπ+ (s′) dominates appπ (s).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 17 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Consequences of the relaxation lemma

Corollary (relaxation leads to dominance and preserves
plans)
Let π be an operator sequence that is applicable in state s.
Then π+ is applicable in s and appπ+ (s) dominates appπ (s).
If π is a plan for Π, then π+ is a plan for Π+.

Proof.
Apply relaxation lemma with s′ = s.

 Relaxations of plans are relaxed plans.
 Relaxations are no harder to solve than original task.
 Optimal relaxed plans are never longer than optimal plans

for original tasks.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 18 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Consequences of the relaxation lemma (ctd.)

Corollary (relaxation preserves dominance)
Let s be a state, let s′ be a state that dominates s,
and let π+ be a relaxed operator sequence applicable in s.
Then π+ is applicable in s′ and appπ+ (s′) dominates appπ+ (s).

Proof.
Apply relaxation lemma with π+ for π , noting that (π+)+ = π+.

 If there is a relaxed plan starting from state s, the same
plan can be used starting from a dominating state s′.

 Making a transition to a dominating state never hurts in
relaxed planning tasks.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 19 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Monotonicity of relaxed planning tasks

We need one final property before we can provide an
algorithm for solving relaxed planning tasks.

Lemma (monotonicity)
Let o+ = 〈χ,e+〉 be a relaxed operator and let s be a state in
which o+ is applicable.
Then appo+ (s) dominates s.

Proof.
Since relaxed operators only have positive effects, we have
on(s)⊆ on(s)∪ [e+]s = on(appo+ (s)).

 Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 20 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Greedy algorithm for relaxed planning tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy planning algorithm for 〈A, I,O+,γ〉
s := I
π+ := ε

forever:
if s |= γ :

return π+

else if there is an operator o+ ∈O+ applicable in s
with appo+ (s) 6= s:

Append such an operator o+ to π+.
s := appo+ (s)

else:
return unsolvable

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 21 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Correctness of the greedy algorithm

The algorithm is sound:
If it returns a plan, this is indeed a correct solution.
If it returns “unsolvable”, the task is indeed unsolvable

Upon termination, there clearly is no relaxed plan from s.
By iterated application of the monotonicity lemma, s
dominates I.
By the relaxation lemma, there is no solution from I.

What about completeness (termination) and runtime?
Each iteration of the loop adds at least one atom to on(s).
This guarantees termination after at most |A| iterations.
Thus, the algorithm can clearly be implemented to run in
polynomial time.

A good implementation runs in O(‖Π‖).

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 22 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Using the greedy algorithm as a heuristic

We can apply the greedy algorithm within heuristic search:
In a search node σ , solve the relaxation of the planning
task with state(σ) as the initial state.
Set h(σ) to the length of the generated relaxed plan.

Is this an admissible heuristic?
Yes if the relaxed plans are optimal (due to the plan
preservation corollary).
However, usually they are not, because our greedy
planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 23 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

The set cover problem

To obtain an admissible heuristic, we need to generate optimal
relaxed plans. Can we do this efficiently?
This question is related to the following problem:

Problem (set cover)
Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . ,n}, and a natural number K.
Question: Does there exist a set cover of size at most K , i. e., a
subcollection S = {S1, . . . ,Sm} ⊆ C with S1∪·· ·∪Sm = U and
m≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)
The set cover problem is NP-complete.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 24 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Hardness of optimal relaxed planning

Theorem (optimal relaxed planning is hard)
The problem of deciding whether a given relaxed planning task
has a plan of length at most K is NP-complete.

Proof.
For membership in NP, guess a plan and verify. It is sufficient
to check plans of length at most |A|, so this can be done in
nondeterministic polynomial time.

For hardness, we reduce from the set cover problem.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 25 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Hardness of optimal relaxed planning (ctd.)

Proof (ctd.)
Given a set cover instance 〈U,C,K 〉, we generate the
following relaxed planning task Π+ = 〈A, I,O+,γ〉:

A = U
I = {a 7→ 0 | a ∈ A}
O+ = {〈>,

∧
a∈Ci a〉 | Ci ∈ C}

γ =
∧

a∈U a
If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the
subsets corresponding to the operators. There exists a plan of
length at most K iff there exists a set cover of size K .
Moreover, Π+ can be generated from the set cover instance in
polynomial time, so this is a polynomial reduction.
November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 26 / 28

Obtaining
heuristics

Relaxed
planning
tasks
Definition

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Summary

Using relaxations in practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:
Implement an optimal planner for relaxed planning tasks
and use its solution lengths as an estimate, even though it
is NP-hard.
 h+ heuristic
Do not actually solve the relaxed planning task, but
compute an estimate of its difficulty in a different way.
 hmax heuristic, hadd heuristic, hLM-cut heuristic
Compute a solution for relaxed planning tasks which is
not necessarily optimal, but “reasonable”.
 hFF heuristic

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 27 / 28

Obtaining
heuristics

Relaxed
planning
tasks

Summary

Summary

Two general methods for coming up with heuristics:
relaxation: solve a less constrained problem
abstraction: solve a small problem

Here, we consider the delete relaxation, which requires
tasks in positive normal form and ignores delete effects.
Delete-relaxed tasks have a domination property:
it is always beneficial to make more fluents true.
They also have a monotonicity property:
applying operators leads to dominating states.
Because of these two properties, finding some relaxed
plan greedily is easy (polynomial).
For an informative heuristic, we would ideally want to find
optimal relaxed plans. This is NP-complete.

November 9th, 2016 B. Nebel, R. Mattmüller – AI Planning 28 / 28

	How to obtain a heuristic
	The STRIPS heuristic
	Relaxation and abstraction

	Relaxed planning tasks
	Definition
	The relaxation lemma
	Greedy algorithm
	Optimality
	Discussion

