Motivation
Example TBox & ABox

- Male $\triangleq \neg$Female
- Human \sqsubseteq Living_entity
- Woman \triangleq Human \sqcap Female
- Man \triangleq Human \sqcap Male
- Mother \triangleq Woman $\sqcap \exists$has-child.Human
- Father \triangleq Man $\sqcap \exists$has-child.Human
- Parent \triangleq Father \sqcup Mother
- Grandmother \triangleq Woman $\sqcap \exists$has-child.Parent
- Mother-without-daughter \triangleq Mother $\sqcap \forall$has-child.Male
- Mother-with-many-children \triangleq Mother $\sqcap (\geq 3 \text{has-child})$

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CARL, WILLIAM): has-child

Motivation: Reasoning services

What do we want to know?

We want to check whether the knowledge base is reasonable:
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?
- Is concept X subsumed by concept Y?
- Is an object an instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept \(X \) subsumed by concept \(Y \)?
 - Is an object a instance of a concept \(X \)?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Basic Reasoning Services
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ satisfiable?
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation I such that $C^I \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:
- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Example

Mother-without-daughter $\sqcap \forall \text{has-child}\text{.Female}$ is unsatisfiable, given our previously specified family TBox.
Reduction: Getting rid of the TBox

We can **reduce** satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.
Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox T and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if C is satisfiable in T.
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
Normalized terminologies

- A terminology is called **normalized** when it does not contain definitions of the form $A \sqsubseteq C$.
- In order to normalize a terminology, replace
 \[A \sqsubseteq C \]
 by
 \[A \models A^* \sqcap C, \]
 where A^* is a **fresh** concept symbol (not appearing elsewhere in \mathcal{T}).
- If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.

Normed terminologies

In order to **normalize** a terminology, replace

\[A \sqsubseteq C \]

by

\[A \models A^* \sqcap C, \]

where A^* is a **fresh** concept symbol (not appearing elsewhere in \mathcal{T}).

If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.

Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^{\mathcal{I}} = A^{\mathcal{I}'}$, and *vice versa*.

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations.
Normalizing is reasonable

Theorem (Normalization invariance)

If \(\mathcal{I} \) is a model of the terminology \(\mathcal{T} \), then there exists a model \(\mathcal{I}' \) of \(\tilde{\mathcal{T}} \) such that for all concept symbols \(A \) occurring in \(\mathcal{T} \), it holds \(A^\mathcal{I} = A^{\mathcal{I}'} \), and vice versa.

Proof.

"⇒": Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). This model should be extended to \(\mathcal{I}' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in \mathcal{T} \), i.e., we have \((A = A^* \cap C) \in \tilde{\mathcal{T}} \).
Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^\mathcal{I}'$, and vice versa.

Proof.

\Rightarrow: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^*_{\mathcal{I}'} := A^\mathcal{I}$.
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^\mathcal{I}'$, and vice versa.

Proof.

“\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^*\mathcal{I}' := A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.
Normalizing is reasonable

Theorem (Normalization invariance)

If \(I \) is a model of the terminology \(\mathcal{T} \), then there exists a model \(I' \) of \(\tilde{T} \) such that for all concept symbols \(A \) occurring in \(\mathcal{T} \), it holds \(A^I = A^{I'} \), and vice versa.

Proof.

“\(\Rightarrow \)”: Let \(I \) be a model of \(\mathcal{T} \). This model should be extended to \(I' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in \mathcal{T} \), i.e., we have \((A \sqsubseteq A^* \sqcap C) \in \tilde{T} \).

Then set \(A^{*I'} := A^I \).

\(I' \) obviously satisfies \(\tilde{T} \) and has the same interpretation for all symbols in \(\mathcal{T} \).

“\(\Leftarrow \)”: Given a model \(I' \) of \(\tilde{T} \), its restriction to symbols of \(\mathcal{T} \) is the interpretation we look for.
We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother \triangleq Woman $\sqcap \ldots$ is unfolded to Mother $\triangleq (\text{Human} \sqcap \text{Female}) \sqcap \ldots$
TBox unfolding

- We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

- **Example:** Mother ⊑ Woman ⊓ ... is unfolded to Mother ⊑ (Human ⊓ Female) ⊓ ...

- We write $U(\mathcal{T})$ to denote a one-step unfolding and $U^n(\mathcal{T})$ to denote an n-step unfolding.

- We say that \mathcal{T} is **unfolded** if $U(\mathcal{T}) = \mathcal{T}$.

- $U^n(\mathcal{T})$ is called the **unfolding** of \mathcal{T} if $U^n(\mathcal{T}) = U^{n+1}(\mathcal{T})$. If such an unfolding exists, it is denoted by $\hat{\mathcal{T}}$.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.

Proof idea.

The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{\mathcal{T}} \).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ if and only if it is a model of } \hat{\mathcal{T}}. \]

Proof sketch.

\(\Rightarrow\): Let \(\mathcal{I}\) be a model of \(\mathcal{T}\).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{\mathcal{T}} \).

Proof sketch.

\(\Rightarrow \): Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted.
Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) if and only if it is a model of \(\hat{\mathcal{T}} \).

Proof sketch.

“\(\Rightarrow \)”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ if and only if it is a model of } \hat{\mathcal{T}}. \]

Proof sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \).
Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ if and only if it is a model of } \hat{\mathcal{T}}. \]

Proof sketch.

\[\Rightarrow \]: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \).

Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

\[\Leftarrow \]: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above).

This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

*For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.***
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I}_{ext} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use \hat{T} and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(\mathcal{T} \) if and only if \(\hat{C} \) satisfiable in an empty terminology.

Proof.

\(\Rightarrow \): trivial.

\(\Leftarrow \): Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(\mathcal{T} \).
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \(\widehat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(T \) if and only if \(\widehat{C} \) is satisfiable in an empty terminology.

Proof.

“⇒”: trivial.

“⇐”: Use the interpretation for all the symbols in \(\widehat{C} \) to generate an initial interpretation of \(T \).
Then extend it to a full model \(I \) of \(T \).
Unfolding of concept descriptions

Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.

We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}.
Then extend it to a full model \mathcal{I} of \mathcal{T}.
This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \qed
General TBox Reasoning Services
Subsumption in a TBox

Given a terminology T and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in T (symb. $C \sqsubseteq_T D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of T, i.e. $C^\mathcal{I} \subseteq D^\mathcal{I}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of T into FOL?
Subsumption in a TBox

Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq_\mathcal{T} D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of \mathcal{T}, i.e. $C^\mathcal{I} \subseteq D^\mathcal{I}$?
- Is the formula $\forall x \left(C(x) \rightarrow D(x) \right)$ a logical consequence of the translation of \mathcal{T} into FOL?

Example

Given our family TBox, it holds Grandmother $\sqsubseteq_\mathcal{T}$ Mother.
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, Human \sqcap Female \sqsubseteq Human.
Subsumption in a TBox can be reduced to subsumption in the empty TBox:

… normalize and unfold TBox and concept descriptions.
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:

 ... normalize and unfold TBox and concept descriptions.

- Subsumption in the empty TBox can be reduced to unsatisfiability:

 ... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 ... normalize and unfold TBox and concept descriptions.

- Subsumption in the empty TBox can be reduced to unsatisfiability:
 ... $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable.

- Unsatisfiability can be reduced to subsumption:
 ... C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C)$.
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!
General ABox Reasoning Services
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

Notice: ABoxes representing the real world should always have a model.

Example: The ABox \mathcal{X}: $(\forall r. \neg C)$, $\mathcal{Y}: C$, $(\mathcal{X}, \mathcal{Y}) : r$ is not satisfiable.
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.

Example

The ABox

$$X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r$$

is not satisfiable.
ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

- MARGRET: Woman
- (DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.
ABox satisfiability in a TBox

<table>
<thead>
<tr>
<th>ABox satisfiability in a TBox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>If we extend our example with</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARGRET: Woman</td>
</tr>
<tr>
<td>(DIANA,MARGRET): has-child,</td>
</tr>
</tbody>
</table>

then the ABox becomes unsatisfiable in the given TBox.

- Problem is reducible to satisfiability of an ABox:
 - … normalize terminology, then unfold all concept and role descriptions in the ABox
Instance relations

Which additional ABox formulae of the form \(a : C \) follow logically from a given ABox and TBox?

- Is \(a^I \in C^I \) true in all models \(I \) of \(T \cup A \)?
- Does the formula \(C(a) \) logically follow from the translation of \(A \) and \(T \) to predicate logic?
Instance relations

Which additional ABox formulae of the form \(a : C \) follow logically from a given ABox and TBox?

- Is \(a^T \in C^T \) true in all models \(\mathcal{I} \) of \(\mathcal{T} \cup \mathcal{A} \)?
- Does the formula \(C(a) \) logically follow from the translation of \(\mathcal{A} \) and \(\mathcal{T} \) to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
 Instance relations

Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^T \in C^T$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $a : C$ holds in $\mathcal{A} \iff \mathcal{A} \cup \{a : \neg C\}$ is unsatisfiable
Examples

Example

- ELIZABETH: Mother-with-many-children?
Examples

Example

ELIZABETH: Mother-with-many-children?
 yes
Examples

Example

- **ELIZABETH:** Mother-with-many-children?
 - yes
- **WILLIAM:** ¬ Female?
 - yes
 - no (no CWA!)
 - no (only male, but not necessarily human!)
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes
- WILLIAM: ¬ Female?
 yes
- ELIZABETH: Mother-without-daughter?
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: \(\neg \) Female?
 yes

- ELIZABETH: Mother-without-daughter?
 no (no CWA!)
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes
- WILLIAM: ¬ Female?
 yes
- ELIZABETH: Mother-without-daughter?
 no (no CWA!)
- ELIZABETH: Grandmother?
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes
- WILLIAM: ¬ Female?
 yes
- ELIZABETH: Mother-without-daughter?
 no (no CWA!)
- ELIZABETH: Grandmother?
 no (only male, but not necessarily human!)
Realization

For a given object \(a \), determine the most specialized concept symbols such that \(a \) is an instance of these concepts.

Motivation:
- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!
Realization

For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts.

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Given a concept description C, determine the set of all (specified) instances of the concept description.

We ask for all instances of the concept Male. For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.
Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male.
For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object!
- **Implementation**: Realization can be used to speed this up
Summary and Outlook
Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?