Principles of Knowledge Representation and Reasoning
Semantic Networks and Description Logics III:
Description Logics – Reasoning Services and Reductions

Motivation

Basic Reasoning Services
General TBox Reasoning Services
General ABox Reasoning Services
Summary and Outlook

Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.

Example TBox & ABox

<table>
<thead>
<tr>
<th>TBox & ABox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male ✖ ¬Female</td>
</tr>
<tr>
<td>Human ⊑ Living_entity</td>
</tr>
<tr>
<td>Woman ✖ Human ✖ Female</td>
</tr>
<tr>
<td>Man ✖ Human ✖ Male</td>
</tr>
<tr>
<td>Mother ✖ Woman ✖ has-child.Human</td>
</tr>
<tr>
<td>Father ✖ Man ✖ has-child.Human</td>
</tr>
<tr>
<td>Parent ✖ Father ✖ Mother</td>
</tr>
<tr>
<td>Grandmother ✖ Woman ✖ has-child.Parent</td>
</tr>
<tr>
<td>Mother-without-daughter ✖ Mother ✖ has-child.Male</td>
</tr>
<tr>
<td>Mother-with-many-children ✖ Mother ✖ (≥3 has-child)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABox</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIANA: Woman</td>
</tr>
<tr>
<td>ELIZABETH: Woman</td>
</tr>
<tr>
<td>CHARLES: Man</td>
</tr>
<tr>
<td>EDWARD: Man</td>
</tr>
<tr>
<td>ANDREW: Man</td>
</tr>
<tr>
<td>DIANA: Mother-without-daughter</td>
</tr>
<tr>
<td>(ELIZABETH, CHARLES): has-child</td>
</tr>
<tr>
<td>(ELIZABETH, EDWARD): has-child</td>
</tr>
<tr>
<td>(DIANA, WILLIAM): has-child</td>
</tr>
<tr>
<td>(CHARLES, WILLIAM): has-child</td>
</tr>
</tbody>
</table>

2 Basic Reasoning Services

- Satisfiability without a TBox
- Satisfiability in TBox
- Eliminating the TBox
- Normalization
- Unfolding

Satisfiability of concept descriptions

Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:
- Does there exist an interpretation I such that $C^I \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{has-child}) \sqcap (\geq 1 \text{has-child})$ is unsatisfiable.

Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:
- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox T and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if C is satisfiable in T.
- Problem: What do we do with partial definitions (using \sqsubseteq)?

Example

$\text{Mother-without-daughter} \sqcap \forall \text{has-child}. \text{Female}$ is unsatisfiable, given our previously specified family TBox.
Normalized terminologies

- A terminology is called **normalized** when it does not contain definitions to the form \(A \sqsubseteq C \).
- In order to **normalize** a terminology, replace \(A \sqsubseteq C \) by \(A \equiv A^* \sqcap C \), where \(A^* \) is a fresh concept symbol (not appearing elsewhere in \(T \)).
- If \(T \) is a terminology, the normalized terminology is denoted by \(\tilde{T} \).

Normalizing is reasonable

Theorem (Normalization invariance)

If \(I \) is a model of the terminology \(T \), then there exists a model \(I' \) of \(\tilde{T} \) such that for all concept symbols \(A \) occurring in \(T \), it holds \(A^I = A'^I \), and vice versa.

Proof.
- \(\Rightarrow \): Let \(I \) be a model of \(T \). This model should be extended to \(I' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in T\), i.e., we have \((A \equiv A^* \sqcap C) \in \tilde{T}\). Then set \(A^* \equiv A^I \). \(I' \) obviously satisfies \(\tilde{T} \) and has the same interpretation for all symbols in \(T \).
- \(\Leftarrow \): Given a model \(I' \) of \(\tilde{T} \), its restriction to symbols of \(T \) is the interpretation we look for.

Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \(T \) can be unfolded, i.e., its unfolding \(\hat{T} \) exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology T if and only if it is a model of \hat{T}.

Proof sketch.

\Rightarrow: Let I be a model of T.
Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

\Leftarrow: Let I be a model for $U(T)$. Clearly, this is also a model of T (with the same argument as above).
This means that any model \hat{T} is also a model of T.

Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \hat{T}.
Then extend it to a full model I of \hat{T}.
This satisfies \hat{T} as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C.

Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation J of a normalized TBox, there exists a unique interpretation I extending J and satisfying T.

Proof idea.

Use \hat{T} and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.

3 General TBox Reasoning Services

- Subsumption
- Subsumption vs. Satisfiability
- Classification
Subsumption in a TBox

Given a terminology T and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in T (symb. $C ⊑ T D$)?

Test:
- Is C interpreted as a subset of D in each model I of T, i.e. $C^I ⊆ D^I$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of T into FOL?

Example

Given our family TBox, it holds Grandmother \subseteq_T Mother.

Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C ⊑ D$)?

Test:
- Is C interpreted as a subset of D for all interpretations I ($C^I ⊆ D^I$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, Human \cap Female \subseteq Human.

Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 ... normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability:
 ... $C ⊑ D$ iff $C \cap \neg D$ is unsatisfiable.
- Unsatisfiability can be reduced to subsumption:
 ... C is unsatisfiable iff $C ⊑ (C \cap \neg C)$.

Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:
- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!
4 General ABox Reasoning Services

- ABox Satisfiability
- Instances
- Realization and Retrieval

ABox satisfiability

Satisfiability of an ABox
Given an ABox A, does this set of assertions have a model?

- Notice: ABoxes representing the real world, should always have a model.

Example
The ABox
$$X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r$$
is not satisfiable.

ABox satisfiability in a TBox

ABox satisfiability in a TBox
Given an ABox A and a TBox T, is A consistent with the terminology introduced in T, i.e., is $T \cup A$ satisfiable?

Example
If we extend our example with

MARGRET: Woman
(DIANA,MARGRET): has-child,
then the ABox becomes unsatisfiable in the given TBox.

Problem is reducible to satisfiability of an ABox:

- … normalize terminology, then unfold all concept and role descriptions in the ABox

Instance relations

Instance relations
Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^I \in C^I$ true in all models I of $T \cup A$?
- Does the formula $C(a)$ logically follow from the translation of $\forall a. \neg C$ to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

$$a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Examples

Example

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: ~ Female?
 - yes
- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
- ELIZABETH: Grandmother?
 - no (only male, but not necessarily human!)

Realization

Realization

For a given object \(a \), determine the most specialized concept symbols such that \(a \) is an instance of these concepts

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.

Retrieval

Retrieval

Given a concept description \(C \), determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male.
For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- Reduction: Compute the set of instances by testing the instance relation for each object!
- Implementation: Realization can be used to speed this up

5 Summary and Outlook
Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval

Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?