Principles of Knowledge Representation and Reasoning

Semantic Networks and Description Logics II:
Description Logics – Terminology and Notation

Bernhard Nebel, Stefan Wölfl, and Felix Lindner
November 23, 2015
Introduction
Motivation

- Main problem with semantic networks and frames
 ... the lack of formal semantics!

- Disadvantage of simple inheritance networks
 ... concepts are atomic and do not have any structure

⇒ Brachman’s structural inheritance networks (1977)
Structural inheritance networks

- Concepts are **defined/described** using a small set of well-defined operators
- Distinction between **conceptual** and **object-related** knowledge
- Computation of **subconcept relation** and of **instance relation**
- **Strict inheritance** (of the entire structure of a concept): inherited properties cannot be overridden
Systems and applications

- **Systems:**
 - **KL-ONE:** First implementation of the ideas (1978)
 - then: NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK …
 - later: FaCT, DLP, RACER 1998
 - currently: FaCT++, RACER, Pellet, HermiT, and many more …
Systems and applications

- **Systems:**
 - **KL-ONE:** First implementation of the ideas (1978)
 - then: NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK …
 - later: FaCT, DLP, RACER 1998
 - currently: FaCT++, RACER, Pellet, HermiT, and many more …

- **Applications:**
 - First, natural language understanding systems,
 - then configuration systems,
 - and information systems,
 - currently, it is one tool for the **Semantic Web**
Systems and applications

- **Systems:**
 - **KL-ONE:** First implementation of the ideas (1978)
 - then: NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK …
 - later: FaCT, DLP, RACER 1998
 - currently: FaCT++, RACER, Pellet, HermiT, and many more …

- **Applications:**
 - First, natural language understanding systems,
 - then configuration systems,
 - and information systems,
 - currently, it is one tool for the Semantic Web

- **Languages:** DAML+OIL, now OWL (Web Ontology Language)
Description logics

Previously also known as KL-ONE-alike languages, frame-based languages, terminological logics, concept languages
Description logics

- Previously also known as KL-ONE-alike languages, frame-based languages, terminological logics, concept languages
- Description Logics (DL) allow us
 - to describe concepts using complex descriptions,
 - to introduce the terminology of an application and to structure it (TBox),
 - to introduce objects and relate them to the introduced terminology (ABox),
 - and to reason about the terminology and the objects.
Informal example

Male is: the opposite of **female**
A **human** is a kind of: **living entity**
A **woman** is: a **human** and a **female**
A **man** is: a **human** and a **male**
A **mother** is: a **woman** with at least one child that is a **human**
A **father** is: a **man** with at least one child that is a **human**
A **parent** is: a **mother** or a **father**
A **grandmother** is: a **woman**, with at least one child that is a **parent**
A **mother-wod** is: a **mother** with only **male children**
Informal example

Male is: the opposite of female
A human is a kind of: living entity
A woman is: a human and a female
A man is: a human and a male
A mother is: a woman with at least one child that is a human
A father is: a man with at least one child that is a human
A parent is: a mother or a father
A grandmother is: a woman, with at least one child that is a parent
A mother-wod is: a mother with only male children

Elizabeth is a woman
Elizabeth has the child Charles
Charles is a man
Diana is a mother-wod
Diana has the child William

Possible Questions:
- Is a grandmother a parent?
- Is Diana a parent?
- Is William a man?
- Is Elizabeth a mother-wod?
Concepts and Roles
Atomic concepts and roles

- **Concept names:**
 - E.g., Grandmother, Male, ... (in the following usually capitalized)
 - We will use symbols such as A, A_1, \ldots for concept names
 - **Semantics:** Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^I \subseteq D$.
Atomic concepts and roles

- **Concept names:**
 - E.g., Grandmother, Male, ... (in the following usually capitalized)
 - We will use symbols such as A, A_1, \ldots for concept names
 - Semantics: Monadic predicates $A(\cdot)$ or set-theoretically a subset of the universe $A^\mathcal{I} \subseteq \mathcal{D}$.

- **Role names:**
 - In our example, e.g., child. Often we will use names such as has-child or something similar (in the following usually lowercase).
 - Role names are disjoint from concept names
 - Symbolically: t, t_1, \ldots
 - Semantics: Binary relations $t(\cdot, \cdot)$ or set-theoretically $t^\mathcal{I} \subseteq \mathcal{D} \times \mathcal{D}$.

From (atomic) **concept** and **role names**, complex concept and role descriptions can be created.

In our example, e.g., “Human and Female.”

Symbolically: C for concept descriptions and r for role descriptions.
Concept and role description

- From (atomic) concept and role names, complex concept and role descriptions can be created.
- In our example, e.g., “Human and Female.”
- Symbolically: C for concept descriptions and r for role descriptions.

Which particular constructs are available depends on the chosen description logic!
From (atomic) concept and role names, complex concept and role descriptions can be created.

In our example, e.g., “Human and Female.”

Symbolically: C for concept descriptions and r for role descriptions.

Which particular constructs are available depends on the chosen description logic!

- **FOL semantics:** A concept description C corresponds to a formula $C(x)$ with the free variable x.
 Similarly with role descriptions r: they correspond to formulae $r(x, y)$ with free variables x, y.

- **Set semantics:**

 \[
 C^I = \{ d \in \mathcal{D} : C(d) \text{ “is true in” } I \}

 \]

 \[
 r^I = \{ (d, e) \in \mathcal{D}^2 : r(d, e) \text{ “is true in” } I \}
 \]
Boolean operators

Syntax: let C and D be concept descriptions, then the following are also concept descriptions:

- $C \sqcap D$ (concept conjunction)
- $C \sqcup D$ (concept disjunction)
- $\neg C$ (concept negation)
Boolean operators

- **Syntax**: let C and D be concept descriptions, then the following are also concept descriptions:
 - $C \sqcap D$ (concept conjunction)
 - $C \sqcup D$ (concept disjunction)
 - $\neg C$ (concept negation)

- **Examples**:
 - Human \sqcap Female
 - Father \sqcup Mother
 - \neg Female
Boolean operators

- **Syntax**: let C and D be concept descriptions, then the following are also concept descriptions:
 - $C \sqcap D$ (concept conjunction)
 - $C \sqcup D$ (concept disjunction)
 - $\neg C$ (concept negation)

- **Examples**:
 - Human \sqcap Female
 - Father \sqcup Mother
 - \neg Female

- **FOL semantics**: $C(x) \land D(x)$, $C(x) \lor D(x)$, $\neg C(x)$
Boolean operators

- **Syntax:** let C and D be concept descriptions, then the following are also concept descriptions:
 - $C \sqcap D$ (concept conjunction)
 - $C \sqcup D$ (concept disjunction)
 - $\neg C$ (concept negation)

- **Examples:**
 - Human \sqcap Female
 - Father \sqcup Mother
 - \neg Female

- **FOL semantics:** $C(x) \land D(x), C(x) \lor D(x), \neg C(x)$

- **Set semantics:** $C^I \cap D^I, C^I \cup D^I, D \setminus C^I$
Role restrictions

Motivation:

- Often we want to describe something by restricting the possible “fillers” of a role, e.g. Mother–wod.
- Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother.
Role restrictions

- **Motivation:**
 - Often we want to describe something by restricting the possible “fillers” of a role, e.g. Mother–wod.
 - Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother

- **Idea:** Use quantifiers that range over the role-fillers
 - Mother $\sqcap \forall \text{has-child.Man}$
 - Woman $\sqcap \exists \text{has-child.Parent}$
Role restrictions

Motivation:
- Often we want to describe something by restricting the possible “fillers” of a role, e.g. Mother-wod.
- Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother.

Idea: Use quantifiers that range over the role-fillers
- Mother $\sqcap \forall \text{has-child}.\text{Man}$
- Woman $\sqcap \exists \text{has-child}.\text{Parent}$

FOL semantics:
- $(\exists r. C)(x) = \exists y (r(x, y) \land C(y))$
- $(\forall r. C)(x) = \forall y (r(x, y) \rightarrow C(y))$

Set semantics:
- $(\exists r. C)^I = \{ d \in D : \text{there ex. some } e \text{ s.t. } (d, e) \in r^I \land e \in C^I \}$
- $(\forall r. C)^I = \{ d \in D : \text{for each } e \text{ with } (d, e) \in r^I, e \in C^I \}$
Cardinality restriction

Motivation:
- Often we want to describe something by restricting the number of possible “fillers” of a role, e.g., a Mother with at least 3 children or at most 2 children.

Idea: We restrict the cardinality of the role filler sets:
- Mother \(\sqcap \geq 3 \text{has-child} \)
- Mother \(\sqcap \leq 2 \text{has-child} \)

FOL semantics:
\[
(\geq n r)(x) = \exists y_1. \ldots y_n (r(x, y_1) \land \ldots \land r(x, y_n) \land y_1 \neq y_2 \land \ldots \land y_{n-1} \neq y_n)
\]
\[
(\leq n r)(x) = \neg (\geq n + 1 r)(x)
\]

Set semantics:
\[
(\geq n r)I = \{ d \in D : \left| \{ e \in D : r_I(d, e) \} \right| \geq n \}
\]
\[
(\leq n r)I = D \setminus (\geq n + 1 r)I
\]
Cardinality restriction

- **Motivation:**
 - Often we want to describe something by restricting the number of possible “fillers” of a role, e.g., a Mother with at least 3 children or at most 2 children.

- **Idea:** We restrict the cardinality of the role filler sets:
 - Mother $\sqcap \geq 3$ has-child
 - Mother $\sqcap \leq 2$ has-child

- **FOL semantics:**

 \[
 (\geq n r)(x) = \exists y_1 \ldots y_n (r(x,y_1) \land \cdots \land r(x,y_n) \land y_1 \neq y_2 \land \cdots \land y_{n-1} \neq y_n)
 \]

 \[
 (\leq n r)(x) = \neg (\geq n + 1 r)(x)
 \]

- **Set semantics:**

 \[
 (\geq n r)^I = \{ d \in D : | \{ e \in D : r^I(d,e) \} | \geq n \}
 \]

 \[
 (\leq n r)^I = D \setminus (\geq n + 1 r)^I
 \]
Inverse roles

- **Motivation:**
 - How can we describe the concept “children of rich parents”?

- **Idea:** Define the “inverse” role for a given role (the converse relation)
 - has-child\(^{-1}\)

- **Example:** \(\exists \text{has-child}^{-1}.\text{Rich}\)
Inverse roles

- **Motivation:**
 - How can we describe the concept “children of rich parents”?

- **Idea:** Define the “inverse” role for a given role (the converse relation)
 - has-child$^{-1}$

- **Example:** $\exists \text{has-child}^{-1}. \text{Rich}$

- **FOL semantics:**
 $$r^{-1}(x, y) = r(y, x)$$

- **Set semantics:**
 $$\mathcal{I} = \{(d, e) \in D^2 : (e, d) \in r^\mathcal{I}\}$$
Role composition

- **Motivation:**
 - How can we define the role has-grandchild given the role has-child?

- **Idea:** Compose roles (as one can compose binary relations)
 - has-child ◦ has-child
Role composition

- **Motivation:**
 - How can we define the role `has-grandchild` given the role `has-child`?

- **Idea:** Compose roles (as one can compose binary relations)
 - `has-child ∈ has-child`

- **FOL semantics:**
 \[
 (r \circ s)(x, y) = \exists z (r(x, z) \land s(z, y))
 \]

- **Set semantics:**
 \[
 (r \circ s)^I = \{(d, e) \in D^2 : \exists f \text{ s.t. } (d, f) \in r^I \land (f, e) \in s^I\}
 \]
Role value maps

- **Motivation:**
 - How do we express the concept “women who know all the friends of their children”

- **Idea:** Relate role filler sets to each other
 - Woman $\sqcap (\text{has-child} \circ \text{has-friend} \sqsubseteq \text{knows})$

- **FOL semantics:**
 \[
 (r \sqsubseteq s)(x) = \forall y \left(r(x, y) \rightarrow s(x, y) \right)
 \]

- **Set semantics:** Let $r^I(d) = \{ e : r^I(d, e) \}$.
 \[
 (r \sqsubseteq s)^I = \{ d \in D : r^I(d) \subseteq s^I(d) \}
 \]

- **Note:** Role value maps lead to undecidability of satisfiability testing of concept descriptions!
TBox and ABox
Introduction

Concepts and Roles

TBox and ABox

Terminology Box

Assertional Box

Example

Reasoning Services

Outlook

Literature

Appendix

In order to introduce new terms, we use two kinds of terminological axioms:

- \(A \equiv C \)
- \(A \sqsubseteq C \)

where \(A \) is a concept name and \(C \) is a concept description.
In order to introduce new terms, we use two kinds of terminological axioms:

- $A \equiv C$
- $A \sqsubseteq C$

where A is a concept name and C is a concept description.

A terminology or TBox is a finite set of such axioms with the following additional restrictions:

- no multiple definitions of the same symbol such as $A \equiv C$, $A \sqsubseteq D$
- no cyclic definitions (even not indirectly), such as $A \equiv \forall r . B$, $B \equiv \exists s . A$
TBoxes: semantics

- TBoxes restrict the set of possible interpretations.
- **FOL semantics:**
 - $A \equiv C$ corresponds to $\forall x (A(x) \leftrightarrow C(x))$
 - $A \subseteq C$ corresponds to $\forall x (A(x) \rightarrow C(x))$
TBoxes: semantics

- TBoxes restrict the set of possible interpretations.
- **FOL semantics:**
 - $A = C$ corresponds to $\forall x (A(x) \leftrightarrow C(x))$
 - $A \sqsubseteq C$ corresponds to $\forall x (A(x) \rightarrow C(x))$
- **Set semantics:**
 - $A = C$ corresponds to $A^I = C^I$
 - $A \sqsubseteq C$ corresponds to $A^I \subseteq C^I$
TBoxes: semantics

- TBoxes restrict the set of possible interpretations.
- **FOL semantics:**
 - $A = C$ corresponds to $\forall x (A(x) \leftrightarrow C(x))$
 - $A \sqsubseteq C$ corresponds to $\forall x (A(x) \rightarrow C(x))$
- **Set semantics:**
 - $A = C$ corresponds to $A^\mathcal{I} = C^\mathcal{I}$
 - $A \sqsubseteq C$ corresponds to $A^\mathcal{I} \subseteq C^\mathcal{I}$
- Non-empty interpretations which satisfy all terminological axioms are called **models** of the TBox.
In order to state something about objects in the world, we use two forms of **assertions**:

- \(a : C \)
- \((a, b) : r \)

where \(a \) and \(b \) are **individual names** (e.g., ELIZABETH, PHILIP), \(C \) is a **concept description**, and \(r \) is a **role description**.

An **ABox** is a finite set of assertions.
ABoxes: semantics

- **Individual names** are interpreted as elements of the universe under the *unique-name-assumption*, i.e., different names refer to different objects.
- **Assertions** express that an object is an instance of a concept or that two objects are related by a role.
ABoxes: semantics

- **Individual names** are interpreted as elements of the universe under the *unique-name-assumption*, i.e., different names refer to different objects.

- **Assertions** express that an object is an instance of a concept or that two objects are related by a role.

- **FOL semantics:**
 - $a : C$ corresponds to $C(a)$
 - $(a, b) : r$ corresponds to $r(a, b)$

- **Set semantics:**
 - $a^I \in D$
 - $a : C$ corresponds to $a^I \in C^I$
 - $(a, b) : r$ corresponds to $(a^I, b^I) \in r^I$
ABoxes: semantics

- **Individual names** are interpreted as elements of the universe under the unique-name-assumption, i.e., different names refer to different objects.
- **Assertions** express that an object is an instance of a concept or that two objects are related by a role.
- **FOL semantics:**
 - $a : C$ corresponds to $C(a)$
 - $(a, b) : r$ corresponds to $r(a, b)$
- **Set semantics:**
 - $a^I \in D$
 - $a : C$ corresponds to $a^I \in C^I$
 - $(a, b) : r$ corresponds to $(a^I, b^I) \in r^I$
- **Models** of an ABox and of ABox + TBox can be defined analogously to models of a TBox.
Example TBox

Male ⊑ ¬Female
Human ⊑ Living_entity
Woman ⊑ Human ⊓ Female
 Man ⊑ Human ⊓ Male
Mother ⊑ Woman ⊓ ∃ has-child.Human
Father ⊑ Man ⊓ ∃ has-child.Human
Parent ⊑ Father ⊔ Mother
Grandmother ⊑ Woman ⊓ ∃ has-child.Parent
Mother-without-daughter ⊑ Mother ⊓ ∀ has-child.Male
Mother-with-many-children ⊑ Mother ⊓ (∃ ≥ 3 has-child)
Example ABox

CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Woman
ELIZABETH: Woman

DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child
Reasoning Services
Some reasoning services

- Does a description C make sense at all, i.e., is it **satisfiable**? A concept description C is **satisfiable**, if there exists an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$.
Some reasoning services

- Does a description C make sense at all, i.e., is it satisfiable? A concept description C is satisfiable, if there exists an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$.

- Is one concept a specialization of another one, is it subsumed? C is subsumed by D (in symbols $C \sqsubseteq D$) if we have for all interpretations $C^\mathcal{I} \subseteq D^\mathcal{I}$.

Note: These questions can be posed with or without a TBox that restricts the possible interpretations.
Some reasoning services

- Does a description C make sense at all, i.e., is it **satisfiable**?
 A concept description C is **satisfiable**, if there exists an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$.

- Is one concept a specialization of another one, is it **subsumed**?
 C is **subsumed by** D (in symbols $C \sqsubseteq D$) if we have for all interpretations $C^\mathcal{I} \subseteq D^\mathcal{I}$.

- Is a an **instance** of a concept C?
 a is an **instance** of C if for all interpretations, we have $a^\mathcal{I} \in C^\mathcal{I}$.

Note: These questions can be posed with or without a TBox that restricts the possible interpretations.
Some reasoning services

- Does a description \(C \) make sense at all, i.e., is it **satisfiable**? A concept description \(C \) is **satisfiable**, if there exists an interpretation \(\mathcal{I} \) such that \(C^\mathcal{I} \neq \emptyset \).

- Is one concept a specialization of another one, is it **subsumed**? \(C \) is **subsumed by** \(D \) (in symbols \(C \sqsubseteq D \)) if we have for all interpretations \(C^\mathcal{I} \subseteq D^\mathcal{I} \).

- Is \(a \) an **instance** of a concept \(C \)? \(a \) is an **instance** of \(C \) if for all interpretations, we have \(a^\mathcal{I} \in C^\mathcal{I} \).

- **Note**: These questions can be posed with or without a TBox that restricts the possible interpretations.
Outlook
Can we reduce the reasoning services to perhaps just one problem?

What could be reasoning algorithms?

What can we say about complexity and decidability?

What has all that to do with modal logics?

How can one build efficient systems?
Literature I

- **Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.**
 The Description Logic Handbook: Theory, Implementation, Applications,

- **Ronald J. Brachman and James G. Schmolze.**
 An overview of the KL-ONE knowledge representation system.

- **Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder, Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich.**
 Terminological Knowledge Representation: A proposal for a terminological logic.
Bernhard Nebel.
Reasoning and Revision in Hybrid Representation Systems.
Summary: Concept descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(A)</td>
<td>(A^I)</td>
</tr>
<tr>
<td>(C \cap D)</td>
<td>(and (C D))</td>
<td>(C^I \cap D^I)</td>
</tr>
<tr>
<td>(C \cup D)</td>
<td>(or (C D))</td>
<td>(C^I \cup D^I)</td>
</tr>
<tr>
<td>(\neg C)</td>
<td>(not (C))</td>
<td>(D - C^I)</td>
</tr>
<tr>
<td>(\forall r.C)</td>
<td>(all (r C))</td>
<td>({d \in D : r^I(d) \subseteq C^I})</td>
</tr>
<tr>
<td>(\exists r)</td>
<td>(some (r))</td>
<td>({d \in D : r^I(d) \neq \emptyset})</td>
</tr>
<tr>
<td>(\geq n r)</td>
<td>(atleast (n r))</td>
<td>({d \in D :</td>
</tr>
<tr>
<td>(\leq n r)</td>
<td>(atmost (n r))</td>
<td>({d \in D :</td>
</tr>
<tr>
<td>(\exists r.C)</td>
<td>(some (r C))</td>
<td>({d \in D : r^I(d) \cap C^I \neq \emptyset})</td>
</tr>
<tr>
<td>(\geq n r.C)</td>
<td>(atleast (n r C))</td>
<td>({d \in D :</td>
</tr>
<tr>
<td>(\leq n r.C)</td>
<td>(atmost (n r C))</td>
<td>({d \in D :</td>
</tr>
<tr>
<td>(r = s)</td>
<td>(eq (r s))</td>
<td>({d \in D : r^I(d) = s^I(d)})</td>
</tr>
<tr>
<td>(r \neq s)</td>
<td>(neq (r s))</td>
<td>({d \in D : r^I(d) \neq s^I(d)})</td>
</tr>
<tr>
<td>(r \subseteq s)</td>
<td>(subset (r s))</td>
<td>({d \in D : r^I(d) \subseteq s^I(d)})</td>
</tr>
<tr>
<td>(g = h)</td>
<td>(eq (g h))</td>
<td>({d \in D : g^I(d) = h^I(d) \neq \emptyset})</td>
</tr>
<tr>
<td>(g \neq h)</td>
<td>(neq (g h))</td>
<td>({d \in D : \emptyset \neq g^I(d) \neq h^I(d) \neq \emptyset})</td>
</tr>
<tr>
<td>({i_1, i_2, \ldots, i_n})</td>
<td>(oneof (i_1 \ldots i_n))</td>
<td>({i_1^I, i_2^I, \ldots, i_n^I})</td>
</tr>
</tbody>
</table>
Summary: Role descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t^I</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f^I, (functional role)</td>
</tr>
<tr>
<td>$r \cap s$</td>
<td>(and $r \circ s$)</td>
<td>$r^I \cap s^I$</td>
</tr>
<tr>
<td>$r \cup s$</td>
<td>(or $r \circ s$)</td>
<td>$r^I \cup s^I$</td>
</tr>
<tr>
<td>$\neg r$</td>
<td>(not r)</td>
<td>$D \times D - r^I$</td>
</tr>
<tr>
<td>r^{-1}</td>
<td>(inverse r)</td>
<td>${(d,d') : (d',d) \in r^I}$</td>
</tr>
<tr>
<td>$r \mid_C$</td>
<td>(restr $r \circ C$)</td>
<td>${(d,d') \in r^I : d' \in C^I}$</td>
</tr>
<tr>
<td>r^+</td>
<td>(trans r)</td>
<td>$(r^I)^+$</td>
</tr>
<tr>
<td>$r \circ s$</td>
<td>(compose $r \circ s$)</td>
<td>$r^I \circ s^I$</td>
</tr>
<tr>
<td>1</td>
<td>self</td>
<td>${(d,d) : d \in D}$</td>
</tr>
</tbody>
</table>