Principles of Knowledge Representation and Reasoning

B. Nebel, S. Wölfl, F. Lindner Winter Semester 2015/2016 University of Freiburg Department of Computer Science

Exercise Sheet 10 Due: January 13, 2015

Exercise 10.1 (PROPERTIES OF DEFAULT LOGIC, 3 + 3 + 3) Proof or disproof:

- (a) Let $\langle D, W \rangle$ be a propositional default theory and let D' be a set of normal defaults with $D \subseteq D'$. If E is an extension of $\langle D, W \rangle$, then there exists an extension E' of $\langle D', W \rangle$ such that $E \subseteq E'$.
- (b) Let $\langle D, W \rangle$ be a propositional default theory and ϕ be a formula that skeptically follows from $\langle D, W \rangle$. Then, each formula that skeptically follows from $\langle D, W \cup \{\phi\} \rangle$ also skeptically follows from $\langle D, W \rangle$, and vice versa.
- (c) Let $\langle D, W \rangle$ be a propositional, semi-normal default theory that has a consistent extension E such that the justification (consistency condition) of each default rule in D is consistent with E (und thus with W). Then W must be consistent with the set of all justifications of the default rules in D.

Exercise 10.2 (FIXPOINT SEMANTICS FOR DEFAULT LOGIC, 3)

Let $\langle D, W \rangle$ be a propositional default theory. For a given set of formulae, X, we consider sets of formulae U with the following properties:

- (i) $W \subseteq U$,
- (ii) $\operatorname{Th}(U) = U$,
- (iii) If $\frac{\alpha:\beta}{\gamma} \in D$, $\alpha \in U$, and $X \cup \{\beta\}$ is consistent, then $\gamma \in U$.

Let Γ be the operator that assigns to each set X of formulae the smallest set of formulae, $\Gamma(X)$, that has these properties (Γ is well-defined because for each set of formulae X such a smallest set $\Gamma(X)$ exists).

Show that a set E of formulae is an extension of $\langle D, W \rangle$ if and only if E is a fixpoint of Γ (i.e., $\Gamma(E) = E$).

Hint: For an arbitrary set of formulae E consider the sets $E_0 := W$, $E_i := \text{Th}(E_{i-1}) \cup \ldots$ (as defined in the lecture). Show first that $\bigcup_i E_i$ satisfies the conditions (i)–(iii).