Principles of Knowledge Representation and Reasoning

B. Nebel, S. Wölfl, F. Lindner
Winter Semester 2015/2016

University of Freiburg
Department of Computer Science

Exercise Sheet 8

Due: December 16th, 2015

Exercise 8.1 (Tableau Algorithm and Reasoning Services, $2+2+2$)

In this exercise you are asked to apply the tableau algorithm for description logics (lecture 9) and to use it to answer questions about TBoxes and ABoxes ${ }^{1}$
(a) Use the tableau algorithm to show that the $\mathcal{A L C}$ concept $C \doteq \forall r .(\neg A \sqcup \exists s . A) \sqcap \exists r .(A \sqcap \exists s . \neg A)$ is satisfiable. Extract a model of C from your tableau.
(b) Given two $\mathcal{A L C Q}$ concepts A and B, use tableau to prove that $A \sqsubseteq B$.

Hint: To transform a concept description that contains (qualified) number restrictions to negation normal form, you may need to make use of the following equivalences: $\neg(\geq n+$ $1 r . C) \equiv(\leq n r . C), \neg(\geq 0 r . C) \equiv \perp, \neg(\leq n r . C) \equiv(\geq n+1 r . C)$. The rule for expanding (qualified) number restrictions is explained in the Figure 2.6 mentioned in the footnote. Moreover, one needs to extend the clash detection, viz., there is a clash in a branch \mathcal{B} if $\{(\leq n R(x))\} \cup\left\{R\left(x, y_{i}\right) \mid 1 \leq i \leq n+1\right\} \cup\left\{y_{i} \neq y_{j} \mid 1 \leq i<j \leq n+1\right\} \subseteq \mathcal{B}$ for individual names $x, y_{1}, \ldots, y_{n+1}$, a nonnegative integer n, and a role name $R .^{2}$.

- $A \doteq \exists r .(\leq 2 r . C) \sqcap \forall r . C$
- $B \doteq \forall r .(C \sqcup D) \sqcap \exists r .(\leq 3 r . C)$
(c) Explain how one can you use the tableau procedure to retrieve all instances of the concept C^{\prime} given the ABox \mathcal{A}. Exemplify your approach by choosing any of the individuals and prove or disprove that it is an instance of C^{\prime}.
- $\mathcal{A}=\{A(a), A(c), B(b), \neg C(d), r(b, c), r(c, d), s(a, b), s(a, c), s(c, c)\}$
- $C^{\prime} \doteq \exists s . B \sqcup \exists s . \exists r . \neg C$

Exercise 8.2 (Expressibility and Complexity, $3+3$)
(a) You are asked to show that concept constructors are not just syntactic sugar. In particular, if one adds the functionality concept constructor - $(\leq 1 r)-$ to $\mathcal{A L C}$ one gets the language $\mathcal{A L C F}$. Show that $\mathcal{A L C \mathcal { F }}$ is indeed more expressive than $\mathcal{A L C}$ by proving that the concept $(\leq 1 r)$ cannot be expressed in $\mathcal{A L C}$.
Hint: Assume an $\mathcal{A L C}$ concept C being equivalent to $(\leq 1 r)$. Provide an interpretation \mathcal{I} which satisfies both C and $(\leq 1 r)$. Then construct another interpretation \mathcal{I}^{\prime} from \mathcal{I} as follows: $\left.\Delta^{\mathcal{I}^{\prime}}=\Delta^{\mathcal{I}} \times \mathbb{N}, A^{\mathcal{I}^{\prime}}=\left\{(d, i) \mid d \in A^{\mathcal{I}}, i \in \mathbb{N}\right)\right\}, r^{\mathcal{I}^{\prime}}=\left\{(<d, i>,<e, j>) \mid(d, e) \in r^{\mathcal{I}}, i, j \in \mathbb{N}\right\}$ and show that \mathcal{I}^{\prime} is a model for C but not for $(\leq 1 r)$.

[^0](b) Given the TBox \mathcal{T}, determine the description logic used to describe the concepts. What is the complexity class of the satisfiability problem of this logic? Propose how \mathcal{T} could be expressed in a less complex DL.

- $\mathcal{T}=\{A \doteq \exists r .(\forall s . C \sqcup \exists s . \neg C), B \doteq(\geq 1 s), C \doteq B \sqcap \forall r . \neg(\neg A \sqcup \neg B)\}$

[^0]: ${ }^{1}$ You may also want to consult https://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-02.pdf (p. 85, Fig. 2.6) for an overview of some basic tableau expansion rules.
 ${ }^{2}$ Cf., https://www.inf.unibz.it//~franconi/dl/course/dlhb/dlhb-02.pdf page 86

