Expressiveness vs. complexity

- For some restricted constraint languages we know some polynomial time algorithms that solve each instance of that language.
- Restricting constraint languages entails restricting expressiveness, i.e., the class of problems that can be expressed in the language.

Expressiveness vs computational complexity?
Definition

An instance of a constraint satisfaction problem (i.e., a constraint network) is a triple

\[N = \langle V, D, C \rangle, \]

where:

- \(V \) is a non-empty and finite set of variables,
- \(D \) is an arbitrary set (domain),
- \(C \) is a finite set of constraints \(C_1, \ldots, C_q \), i.e., each constraint \(C_i \) is a pair \((s_i, R_i)\), where \(s_i \) is a tuple of variables of length \(m_i \) and \(R_i \) is an \(m_i \)-ary relation on \(D \) (\(s_i \): constraint scope; \(R_i \): constraint relation).
Restricting the general CSP

The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, \(N \), determine if there exists solution to \(N \), i.e., determine whether

\[
\text{Sol}(N) := \{(d_1, \ldots, d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } N\}
\]

(where \(n \) is the number of variables of \(V \)) is not empty.

Restricting the general CSP:

- **structural restriction:** consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties)
- **relational restriction:** consider just CSP instances, where the constraint relations have a specific form or specific properties
Restricting the general CSP

The general CSP decision problem is the following: Given an instance of a constraint satisfaction problem, \(N \), determine if there exists solution to \(N \), i.e., determine whether

\[
\text{Sol}(N) := \{(d_1, \ldots, d_n) \in D^n : a(v_i) = d_i \text{ for a solution } a \text{ of } N\}
\]

(where \(n \) is the number of variables of \(V \)) is not empty.

Restricting the general CSP:

- **structural restriction**: consider just CSP instances with particular constraint scopes (e.g., where the network hypergraph has specific properties)
- **relational restriction**: consider just CSP instances, where the constraint relations have a specific form or specific properties
Tractable Constraint Languages
A constraint language is an arbitrary set of relations, Γ, defined over some fixed domain (denoted by $D(\Gamma)$).

For a constraint language Γ, let $\text{CSP}(\Gamma)$ be the class of CSP instances $N = \langle V, D, C \rangle$ such that for each $(s, R) \in C$, $R \in \Gamma$. $\text{CSP}(\Gamma)$ is called the relational subclass associated with Γ.

A finite constraint language Γ is tractable if there exists a polynomial algorithm that solves all instances of $\text{CSP}(\Gamma)$. An infinite constraint language Γ is tractable if each finite subset of the language is tractable.

Following, we present some examples:
Example: CHiP language

CHiP is a constraint language for arithmetic and other constraints. Basic constraints in CHiP are so-called:

- **domain constraints**: unary constraints that restrict the domains of variables to a finite set of natural numbers
- **arithmetic constraints**: constraints of one of the forms

\[
ax = by + c \\
ax \leq by + c \\
ax \geq by + c
\]

\((a, b, c \in \mathbb{N}, a \neq 0)\). If these equations are conceived of as relations, the resulting constraint language is tractable.

The language is still tractable if we allow for relations expressed by

\[
a_1x_1 + a_2x_2 + \cdots + a_nx_n \geq by + c \\
ax_1 \cdots x_n \geq by + c \\
(a_1x_1 \geq b_1) \lor \cdots \lor (a_nx_n \geq b_n) \lor (ay \geq b)
\]
Example: Linear relations

Let D be any field (e.g., the field of real numbers). A linear relation on D is any relation defined by some system of linear equations:

$$a_1 x_1 + \cdots + a_n x_n = r \quad (a_1, \ldots, a_n, r \in D).$$

Then any instance of CSP(Γ_{lin}) can be represented by a system of linear equations over D, and hence can be solved in polynomial time (apply Gaussian elimination). Hence, the language of all linear relations over D is tractable.
Example: Relations on finite orderings

Let D be a finite ordered set.
Consider the binary disequality relation

$$\neq_D = \{(d_1, d_2) \in D^2 : d_1 \neq d_2\}$$

The class of CSP instances $\text{CSP}(\{\neq_D\})$ corresponds to the graph colorability problem with $|D|$ colors. $\text{CSP}(\{\neq_D\})$ is tractable if $|D| \leq 2$ or $|D| = \infty$, and intractable, otherwise.

The ternary betweenness relation over D is defined by:

$$B_D = \{(a, b, c) \in D^3 : a < b < c \lor c < b < a\}$$

$\text{CSP}(\{B_D\})$ is tractable if $|D| \leq 4$, and intractable if $|D| \geq 5$.
Example: Connected row-convex relations

Let $D = \{d_1, \ldots, d_n\}$ be a finite (totally) ordered set.
For a binary relation R over D, the matrix representation of R is an $n \times n$ 0,1-matrix M_R, where $M_R[d, d'] = 1$ iff $(d, d') \in R$.

The pruned matrix representation of R results from the matrix representation of R, when we remove all rows and columns in which only 0’s occur.

R is connected row-convex, if in the pruned matrix representation of R, the pattern of 1’s is connected along each column, along each row, and forms a connected 2-dimensional region.

For example,

$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$

$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$

The constraint language on any class of connected row-convex relations is tractable.
Example: Boolean constraints

Let $D = \{0, 1\}$.

The class of CSP instances $\text{CSP}(\{N_D\})$, where

$$N_D = D^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$$

is the not-all-equal relation over D, is intractable.

CSP($\{N_D\}$) corresponds to the not-all-equal satisfiability problem (NAE-3SAT), which is known to be NP-hard.

The class of CSP instances $\text{CSP}(\{T_D\})$, where

$$T_D = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\},$$

is intractable.

CSP($\{T_D\}$) corresponds to the one-in-three satisfiability problem (1-in-3 SAT).
Example: 0/1/all-relations

Let D be an arbitrary finite set. A relation R over D is called $0/1/all$-relation if one of the following conditions holds:

- R is unary;
- $R = D_1 \times D_2$ for subsets D_1, D_2 of D;
- $R = \{(d, \pi(d)) : d \in D_1\}$, for some subset $D_1 \subseteq D$ and some permutation π of D;
- $R = \{(a, b) \in D_1 \times D_2 : a = d_1 \lor b = d_2\}$, for some subsets D_1, D_2 of D and some elements $d_1 \in D_1, d_2 \in D_2$.

The language defined by all 0/1/all-relations is tractable.

It is even maximal tractable: if we add any binary relation over D that is not a 0/1/all-relation, then the resulting constraint language becomes intractable.
max-closed relations

Let \((D, <)\) be a linear order. Define \(\max : D \times D \to D\) in the usual way, i.e., \(\max(a, b) = a\) if \(a > b\), and \(\max(a, b) = b\), otherwise. We extend \(\max\) to a function that can be applied to tuples, i.e., we define \(\max : D^k \times D^k \to D^k\) by

\[
\max((a_1, \ldots, a_k), (b_1, \ldots, b_k))
\]

\[
:= (\max(a_1, b_1), \ldots, \max(a_k, b_k)).
\]

Definition

An \(n\)-ary relation \(R\) over \(D\) is **max-closed** if for all \((a_1, \ldots, a_n), (b_1, \ldots, b_n) \in R\),

\[
\max((a_1, \ldots, a_n), (b_1, \ldots, b_n)) \in R.
\]
Lemma

Let Γ be a constraint language with max-closed relations only. Then $\text{CSP}(\Gamma)$ is tractable.

Proof:

Enforce generalized arc consistency. If any domain of the resulting network is empty, the network is inconsistent. Otherwise, set each variable to its maximal value,
Example: max-closed relations

Consider the CHIP language. All relations of CHIP are max-closed. Hence any set of equations can be solved by establishing gen. arc consistency.

For example, consider a CSP instance with domain \{1, \ldots, 5\}, variables \{v, w, x, y, z\}, and equations

\[
\begin{align*}
w & \neq 3, \quad z \neq 5, \quad 3v \leq z, \quad y \geq z + 2, \\
3x + y + z & \geq 5w + 1, \quad wz \geq 2y.
\end{align*}
\]

Enforcing gen. arc consistency results in:

\[
D(v) = \{1\}, \quad D(w) = \{4\}, \quad D(x) = \{4, 5\},
\]
\[
D(y) = \{5\}, \quad D(z) = \{3\}.
\]

Hence

\[
v \mapsto 1, \quad w \mapsto 4, \quad x \mapsto 5, \quad y \mapsto 5, \quad z \mapsto 3
\]

is a solution of the constraint network.
Schaefer’s Dichotomy Theorem
The key result in the literature on tractable constraint languages is Schaefer’s Dichotomy Theorem (1978).

Definition

A *Boolean constraint language* is a constraint language over the two-element domain $D = \{0, 1\}$.

Schaefer’s theorem states that any Boolean constraint language is either tractable or NP-complete. Moreover, it provides a classification of all tractable constraint languages.
Schaefer’s theorem

Theorem (Schaefer 1978)

Let Γ be a Boolean constraint language. Then Γ is tractable if at least one of the following conditions is satisfied:

1. Each relation in Γ contains the tuple $(0, \ldots, 0)$.
2. Each relation in Γ contains the tuple $(1, \ldots, 1)$.
3. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most one negative literal.
4. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most one positive literal.
5. Each relation in Γ is definable by a formula in CNF s.t. each conjunct has at most two literals.
6. Each relation in Γ is the set of solutions of a system of linear equations over the finite field with 2 elements.

In all other cases, Γ is NP-complete.
Let Γ be a Boolean constraint language.

Class 1: any CSP instance N can be solved by simply assigning 0 to each variable of N.

Class 2: cf. Class 1 ($v \mapsto 1$).

Class 6: any CSP instance N can be solved by applying the Gaussian elimination procedure.

Class 5: any CSP instance N can be solved by resolution: in this case CSP(Γ) corresponds to the 2-SAT satisfiability problem and this can be solved efficiently by resolution.

Class 4: any CSP instance N can be solved by unit resolution: here CSP(Γ) corresponds to the Horn-SAT satisfiability problem, which can be solved efficiently by unit resolution.

Class 3: cf. Class 4 (“anti-Horn”).
Relational Clones
Gadgets

Definition

Let Γ be constraint language and R be a relation on $D(\Gamma)$. R is expressible in Γ if there exists a CSP instance $N \in \text{CSP}(\Gamma)$ and a sequence of variables x_1, \ldots, x_r in N such that

$$R = \pi_{x_1,\ldots,x_r} (\text{Sol}(N)).$$

N is referred to as a gadget for expressing R in $\text{CSP}(\Gamma)$, the sequence x_1,\ldots,x_r as construction site for R.
Example

Which relation is expressed by the edge \((v_1, v_4)\)?
Relational clones

Expressiveness can also be reformulated in the following way:
Let Γ, Γ' be constraint languages (def. on the same domain D).

Definition

Γ' is a relational clone of Γ if Γ' contains each relation definable by a FO-formula with

- relations from $\Gamma \cup \{=_D\}$,
- conjunctions, and
- existential quantification.

(Formulae of this form are called primitive positive formulae.)

Definition

Let Γ be a constraint language. $\langle \Gamma \rangle$ denotes the smallest relational clone containing Γ, the clone generated by Γ.
Example

Consider a Boolean constraint language with the following relations:

\[R_1 = \{(0,1), (1,0), (1,1)\} \quad R_2 = \{(0,0), (0,1), (1,0)\} \]

The relational clone generated by the set of these two relations contains all 16 binary Boolean relations. For example:

\[R_3 := \{(0,1), (1,0)\} \]
\[R_4 := \{(0,0), (1,0), (1,1)\} \]
\[R_5 := \{(0,0), (1,1)\} \]
\[R_6 := \{(0,0)\} \]
\[R_7 := \{(1,1)\} \]
\[R_8 := \{(0,1)\} \]
\[\ldots \]

\[R_1(v_1, v_2) \land R_2(v_1, v_2) \]
\[\exists y(R_1(v_1, y) \land R_2(y, v_2)) \]
\[v_1 = v_2 \]
\[R_2(v_1, v_2) \land R_5(v_1, v_2) \]
\[R_1(v_1, v_2) \land R_5(v_1, v_2) \]
\[\exists y(R_6(v_1, y) \land R_1(y, v_2)) \]
Theorem

Let Γ be a set of relations on a fixed domain D, and let Δ be a finite subset of $\langle \Gamma \rangle$. Then there exists a polynomial time reduction from CSP(Δ) to CSP(Γ).
Proof:

Let $\Delta = \{S_1, \ldots, S_k\}$ be a finite set of relations, where each S_j is definable by a pp-formula with relations from Γ and the relation $=_D$. For each S_j fix such a formula $\varphi_j(x_1, \ldots, x_{r_j})$, where r_j is the arity of S_j. Without loss of generality, we may assume that each $\varphi_j(x_1, \ldots, x_{r_j})$ has the form

$$\exists u_1 \ldots u_m (R_1(w_1^1, \ldots, w_{k_1}^1) \land \cdots \land R_n(w_1^n, \ldots, w_{k_n}^n))$$

(1)

where $w_1^1, \ldots, w_{k_1}^1, \ldots, w_1^n, \ldots, w_{k_n}^n \in \{x_1, \ldots, x_{r_j}, u_1, \ldots, u_m\}$ for some auxiliary variables u_1, \ldots, u_m, and $R_1, \ldots, R_n \in \Gamma \cup \{=_D\}$. ...
Let $N = \langle V, D, C \rangle$ be an arbitrary instance in CSP(Δ). Initially, set $V' := V, D' := D, C' := C$. For each constraint (s, R) (where $s = (v_1, \ldots, v_r)$) of N, proceed as follows:

1. add the auxiliary variables u_1, \ldots, u_m to V' (always add new variables, rename variables if necessary (also in (1)))

2. remove (r, R) from C' and instead add to C' the constraints (cf. (1)):

 $$((w_1^1, \ldots, w_{k_1}^1), R_1), \ldots, ((w_1^n, \ldots, w_{k_n}^n), R_n)$$

The CSP instance N' obtained by this procedure is contained in CSP($\Gamma \cup \{=_{D}\}$) and is obviously equivalent to N. Furthermore, from N' we can obtain a CSP instance N'' in CSP(Γ) by deleting constraints of the form $((v_i, v_j), =_{D})$ and replacing any occurrence of v_j by v_i. Obviously, both transformation can be done in polynomial time.
Corollary

A constraint language Γ is tractable if and only if its relational clone $\langle \Gamma \rangle$ is tractable. Γ is NP-complete if and only if $\langle \Gamma \rangle$ is NP-complete.

Remark: Γ is called **NP-complete** if CSP(Δ) is NP-complete for some finite subset $\Delta \subseteq \Gamma$.

Corollary

Let Γ be a constraint language and let R be a relation. R is expressible in Γ if and only if $R \in \langle \Gamma \rangle$.
Expressiveness
The indicator problem

Let $k \geq 1$ be a fixed natural number.
Let $s = (x_1, \ldots, x_m)$ be a list of k-tuples in D^k.
Let R be an n-ary relation on D.

We say, that s matches R if $n = m$ and if for each $1 \leq i \leq k$, the n-tuple $(x_1[i], \ldots, x_n[i])$ is in R.

Let now Γ be a fixed finite constraint language over a finite domain.
Set $I_k(\Gamma) = \langle V, D, C \rangle$, where

$$V := D^k$$
$$C := \{(s, R) : R \in \Gamma, s \text{ matches } R\}$$

Note: $I_k(\Gamma) \in \text{CSP}(\Gamma)$ and contains constraints from Γ on every possible scope which matches some relation in Γ.

Definition

$I_k(\Gamma)$ is said to be the indicator problem of order k for Γ.
Example: \neg, \oplus

Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus, i.e.,

$$R_{\oplus} = \{(0, 1), (1, 0)\} \quad \text{and} \quad R_{\neg} = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

```
1 1 1 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0
```
Example: \neg, \oplus

Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus, i.e.,

$$R_{\oplus} = \{(0, 1), (1, 0)\} \text{ and } R_{\neg} = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus, i.e.,

$$R_{\oplus} = \{(0,1), (1,0)\} \quad \text{and} \quad R_{\neg} = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Consider the Boolean constraint language containing the unary relation \neg and the exclusive-or relation \oplus, i.e.,

$$R_{\oplus} = \{(0, 1), (1, 0)\} \text{ and } R_{\neg} = \{(0)\}.$$

The 3-rd order indicator problem of this language is:

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
Example (cont’d): \neg, \oplus

Solutions of this indicator problem:

$$
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

Solutions:

$$
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
$$

\neg \oplus
Expressiveness and the indicator problem

Theorem (Jeavons (1998))

Let Γ be a finite constraint language over some finite domain D and let $R = \{t_1, \ldots, t_k\}$ be any n-ary relation on D. Equivalent are:

(a) R is expressible in Γ (i.e., $R \in \langle \Gamma \rangle$).

(b) $I_k(\Gamma)$ is a gadget for expressing R with construction site (x_1, \ldots, x_n), where for each $1 \leq i \leq n$,

$$x_i := (t_1[i], \ldots, t_k[i]).$$

Proof:

The direction from (b) to (a) is trivial, since $I_k(\Gamma)$ is contained in $\text{CSP}(\Gamma)$. The other direction will be proved later.
Example: \neg, \oplus

Problem: Is the implication expressible in the Boolean language \{\neg, \oplus\}?

Consider the 3rd indicator problem (since R has three elements $(1, 1), (0, 0), (0, 1)$). Consider the variables $v = (1, 0, 0)$ and $w = (1, 0, 1)$:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Solutions

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: \(\neg, \oplus \)

Problem: Is the implication expressible in the Boolean language \(\{\neg, \oplus\} \)?

Consider the 3rd indicator problem (since \(R \Rightarrow \) has three elements \((1, 1), (0, 0), (0, 1)\)). Consider the variables \(v = (1, 0, 0) \) and \(w = (1, 0, 1) \):

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\text{Solutions} \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]
Example: \neg, \oplus

Problem: Is the implication expressible in the Boolean language \{\neg, \oplus\}?

Consider the 3rd indicator problem (since $R\Rightarrow$ has three elements $(1,1), (0,0), (0,1)$). Consider the variables $v = (1,0,0)$ and $w = (1,0,1)$:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Solutions

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: \neg, \oplus

Problem: Is the implication expressible in the Boolean language $\{\neg, \oplus\}$?

Consider the 3rd indicator problem (since $R \Rightarrow$ has three elements $(1,1), (0,0), (0,1)$). Consider the variables $v = (1,0,0)$ and $w = (1,0,1)$:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From this we obtain that $\pi_{(v,w)}(\text{Sol}(I_3(\Gamma))) = D \times D \neq R \Rightarrow$. Thus, the implication is not expressible.
Polymorphisms
Let f be a k-ary operation, i.e., a function $f : D^k \rightarrow D$. For any collection of n-tuples, $t_1, \ldots, t_k \in D^n$, let $f(t_1, \ldots, t_k)$ be defined as the n-tuple:

$$(f(t_1[1], \ldots, t_k[1]), \ldots, f(t_1[n], \ldots, t_k[n])).$$

Definition

Let $f : D^k \rightarrow D$ be a k-ary operation, and R be an n-ary relation. f is a **polymorphism of R** (or: R is **invariant** under f) if for all $t_1, \ldots, t_k \in R$, $f(t_1, \ldots, t_k) \in R$.
Polymorphisms and invariant relations

Let Γ be a set of relations on a fixed domain D, and let F be a set of operations on D. Then define:

- $\text{Pol}(\Gamma)$: the set of operations on D that preserve each relation in Γ
- $\text{Inv}(F)$: the set of relations on D that are invariant under each operation of F

Lemma

Pol and Inv define anti-monotone functions, and are related by the following Galois correspondence:

$$\Gamma \subseteq \text{Inv}(F) \iff F \subseteq \text{Pol}(\Gamma).$$

In particular, it holds:

January 12, 14 & 19, 2015 Wölf, Nebel and Becker-Asano – Constraint Satisfaction Problems

Tractable Constraint Languages

Schaefer’s Dichotomy Theorem

Relational Clones

Expressiveness

Polymorphisms

Tractability over Finite Domains

Literature
Lemma

Let Γ be a constraint language. The solutions of the k-th indicator problem $I_k(\Gamma)$ are precisely the k-ary polymorphisms of Γ.

Proof:

Apply the definitions ...
Lemma

Let Γ be a constraint language over some domain D. If $f : D^k \to D$ is a polymorphism of each $R \in \Gamma$, then f is a polymorphism of each $R \in \langle \Gamma \rangle$.

Proof:

Induction on primitive positive formula (exercise).
The following lemma completes the proof of Jeavons’ theorem:

Lemma

Let \(R = \{t_1, \ldots, t_k\} \) be an \(n \)-ary relation (over some finite domain \(D \)). For \(1 \leq i \leq n \), set \(x_i := (t_1[i], \ldots, t_k[i]) \).

If \(R \) is expressible in \(\Gamma \), then \(R = \pi_{x_1,\ldots,x_n}(\text{Sol}(I_k(\Gamma))) \).

Proof:

Blackboard.
For any constraint language Γ over some finite domain D,

$$\langle \Gamma \rangle = \text{Inv}(\text{Pol}(\Gamma))$$

Proof:

\subseteq is clear. For the converse let R be an n-ary relation that is invariant for each polymorphism of Γ. We have to show that $R \in \langle \Gamma \rangle$. Let $R = \{t_1, \ldots, t_k\}$ and consider the k-th indicator problem of Γ. First define $x_i := (t_1[i], \ldots, t_k[i])$ ($1 \leq i \leq n$), then consider $R_t = \pi_{x_1, \ldots, x_n}(\text{Sol}(I_k(\Gamma)))$. Obviously, R is expressible if $R = R_t$.

$R_t \subseteq R$ follows from the facts that every solution of $I_k(\Gamma)$ is a k-ary polymorphism and that each polymorphism of Γ preserves R.

For $R \subseteq R_t$, consider t_j in R. Now the j-th projection function $p_j : D^k \rightarrow D$ is a polymorphism, and hence a solution of $I_k(\Gamma)$. It follows $t_j = p_j(x_1, \ldots, x_n) \in R_t$. \(\square\)
Corollary

A relation R on a finite domain is expressible in a constraint language Γ if and only if $\text{Pol}(\Gamma) \subseteq \text{Pol}(\{R\})$.

Corollary

Let Γ and Δ be constraint languages on a finite domain. If Δ is finite and $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$, then $\text{CSP}(\Delta)$ is polynomial-time reducible to $\text{CSP}(\Gamma)$.
Tractability over Finite Domains
Following, we study k-ary operations $f : D^k \rightarrow D$.

Definition

- f is **idempotent** if for each $x \in D$, $f(x, \ldots, x) = x$.

- Given $k = 3$, f is a **majority operation** if for all $x, y \in D$,
 \[
 f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
 \]

- Given $k = 3$, f is a **Mal’tsev operation** if for all $x, y \in D$,
 \[
 f(y, y, x) = f(x, y, y) = x.
 \]

- f is **conservative** if for all $x_1, \ldots, x_k \in D$,
 \[
 f(x_1, \ldots, x_k) \in \{x_1, \ldots, x_k\}.
 \]
Definition

- Given $k = 2$, f is a **semi-lattice operation** if it is
 - associative (i.e., $f(x, f(y, z)) = f(f(x, y), z)$),
 - commutative (i.e., $f(x, y) = f(y, x)$), and
 - idempotent.

- Given $k = 3$ and an Abelian group structure on D, f is **affine** if for all $x, y, z \in D$,
 \[f(x, y, z) = x - y + z. \]

- Given $k \geq 3$, f is a **near-unanimity operation** if for all $x, y \in D$,
 \[f(y, x, \ldots, x) = f(x, y, x \ldots, x) = \cdots = f(x, \ldots, x, y) = x. \]
Definition

- f is **essentially unary** if there exists an $1 \leq i \leq k$ and a unary non-constant operation g on D such that for all $x_1, \ldots, x_k \in D$,

\[f(x_1, \ldots, x_k) = g(x_i). \]

If g is the identity operation, then f is called a **projection**.

- Given $k \geq 3$, f is a **semi-projection** if f is not a projection and there exists an $1 \leq i \leq k$, such that for all $x_1, \ldots, x_k \in D$ with $|\{x_1, \ldots, x_k\}| < k$,

\[f(x_1, \ldots, x_k) = x_i. \]
A necessary condition for tractability

Theorem

Given \(P \neq NP \), any tractable constraint language \(\Gamma \) over a finite domain has a solution to an indicator problem \(I_k(\Gamma) \) that defines

- a constant operation,
- a majority operation,
- an idempotent binary operation,
- an affine operation, or
- a semi-projection.
The complexity of any language over a domain of size 2 can be determined by considering the solutions of its 3rd order indicator problem. The problem is intractable unless this indicator problem has one of the following six solutions:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Solutions</th>
<th>Schaefer class</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>1</td>
<td>Constant 0</td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0 0</td>
<td>1 1 1 1 1 1 1 1 1</td>
<td>2</td>
<td>Constant 1</td>
</tr>
<tr>
<td>1 0 1 0 1 0 1 0 0</td>
<td>1 1 1 1 1 1 1 1 0</td>
<td>3</td>
<td>Anti-Horn</td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0 0</td>
<td>1 0 0 0 0 0 0 0 0</td>
<td>4</td>
<td>Horn-SAT</td>
</tr>
<tr>
<td>1 1 0 0 0 0 0 0 0</td>
<td>1 1 1 1 0 1 0 0 0</td>
<td>5</td>
<td>2-SAT</td>
</tr>
<tr>
<td>1 0 0 1 0 1 1 0 0</td>
<td>1 0 0 1 0 1 1 0 0</td>
<td>6</td>
<td>Linear</td>
</tr>
</tbody>
</table>
Example: \neg, \oplus

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 0 0 1 0</td>
</tr>
<tr>
<td>1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>1 0 0 1 0 1 1 0</td>
</tr>
<tr>
<td>1 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>1 1 1 0 1 0 0 0 0</td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0</td>
</tr>
<tr>
<td>1 1 0 0 1 1 0 0</td>
</tr>
</tbody>
</table>
In what follows let Γ always be a constraint language over a finite domain D. We present some sufficient criteria for (in-) tractability.

Theorem

If $\text{Pol}(\Gamma)$ contains a semi-lattice operation, then

- Γ is tractable, and
- each instance of $\text{CSP}(\Gamma)$ can be solved by enforcing generalized arc consistency.
Examples

Example 1:
If \(\Gamma \) is the Boolean constraint language containing relations expressible by conjunctions of Horn clauses, then

\[
\land : \{0, 1\}^2 \rightarrow \{0, 1\}
\]

is a semi-lattice operation that is a polymorphism of \(\Gamma \).

Example 2:
If \(D \) is ordered, then max is a semi-lattice operation, which is a polymorphism of each set of max-closed relations.
Sufficient conditions: Conservative operations

Theorem

If $\text{Pol}(\Gamma)$ contains a conservative and commutative binary operation, then Γ is tractable.

Note: If Γ contains all unary relations on D, then all operations in $\text{Pol}(\Gamma)$ are conservative.
Sufficient conditions: Near-unanimity operations

Theorem

If \(\text{Pol}(\Gamma) \) contains a \(k \)-ary near-unanimity operation, then

- \(\Gamma \) is tractable.
- Each instance of \(\text{CSP}(\Gamma) \) can be solved by enforcing strong \(k \)-consistency.

Proof:

Blackboard.
Examples

Example 3:
Let Γ be the Boolean constraint language that consists of relations definable by a PL-formula in CNF s.t. each conjunct has at most two literals.
Then
\[
d(x, y, z) := (x \land y) \lor (y \land z) \lor (x \land z)
\]
is a near-unanimity operation on $\{0, 1\}$ and a polym. of Γ.

Example 4:
The 0/1/all relations are invariant under the ternary operation
\[
d(x, y, z) := \begin{cases}
x & \text{if } y \neq z \\
y & \text{else}
\end{cases}
\]
which is a near-unanimity operation.
Sufficient conditions: Mal’tsev operations

Theorem

If \(\text{Pol}(\Gamma) \) contains a \(k \)-ary Mal’tsev operation, then \(\text{CSP}(\Gamma) \) is tractable.

Note: Affine relations are Mal’tsev operations.
Reduced constraint languages

Lemma

Let Γ be a constraint language over D, and let f be a unary operation in $\text{Pol}(\Gamma)$. Let $f(\Gamma)$ be the set of all $f(R) := \{f(t) : t \in R\}$ with $R \in \Gamma$. Then, $\text{CSP}(\Gamma)$ is polynomial-time equivalent to $\text{CSP}(f(\Gamma))$.

Definition

A constraint language Γ is reduced if all its unary polymorphisms are surjective.

Note: Each constraint language can be transformed into a reduced language. For this find all unary polymorphisms by generating and solving the 1st order indicator problem. Choose one of these polymorphisms f with a minimal number of values in its range.
A sufficient condition for intractability

Theorem

Let Γ be a constraint language over a finite domain. If $\text{Pol}(\Gamma)$ contains only essentially unary operations, then $\text{CSP}(\Gamma)$ is NP-complete.

Proof idea:

We can assume that Γ is reduced. One can show that

- $\not=_{D}$ is in $\text{Inv}(\text{Pol}(\Gamma))$;
- if $|D| = 2$, $\text{Inv}(\text{Pol}(\Gamma))$ contains the not-all-equal relation:

$$D^3 \setminus \{(x, x, x) : x \in D\}$$

which ensures that $\text{CSP}(\Gamma)$ intractable.
Towards a classification

It can be shown that for any reduced constraint language Γ on a finite domain D, one of the following conditions holds:

- Pol(Γ) contains a constant operation;
- Pol(Γ) contains a ternary near-unanimity operation;
- Pol(Γ) contains a Mal’tsev operation;
- Pol(Γ) contains an idempotent binary operation;
- Pol(Γ) contains a semi-projection;
- Pol(Γ) contains essentially unary operations only.

