Motivation

Global Constraints

Global Constraints

All-different

Sum and Cardinality

Circuit

Global constraints

What are global constraints?

- Type of similar constraint relations ...
- ... differing in the number of variables
- Semantically redundant: same constraint can be expressed by a conjunction of simpler constraints
- Similar structure: can be exploited by constraint solvers

Examples:

- sum constraint, knapsack constraint, element constraint, all-different constraint, cardinality constraints

All-different constraint

Definition

Let v_1, \ldots, v_n be variables each with a domain $D_i (1 \leq i \leq n)$.

\[
\text{alldifferent}(v_1, \ldots, v_n) := \{(d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : d_i \neq d_j \text{ for } i \neq j\}
\]

The all-different constraint is a simple, but widely used global constraint in constraint programming. It allows for compact modeling of CSP problems.
Problem representation:

Abbildung: 4-queens problem

Problem representation:

Variables v_i for each column $1, \ldots, n$;
v_j can take a “row value” $1, \ldots, n$.

No-attack constraints:

$$v_i \neq v_j \text{ for } 1 \leq i < j \leq n$$
$$v_i - v_j \neq i - j \text{ for } 1 \leq i < j \leq n$$
$$v_i - v_j \neq i - j \text{ for } 1 \leq i < j \leq n$$

The global cardinality constraint is defined as:

Definition

Global cardinality constraint

The sum constraint is defined as:

Definition

Sum constraint

Let v_1, \ldots, v_n, z be variables with subsets of \mathbb{Q} as domain.
For each v_i, let $c_i \in \mathbb{Q}$ be some fixed scalar, $c = (c_1, \ldots, c_n)$.

Definition

The sum constraint is defined as:

$$\text{sum}(v_1, \ldots, v_n, z; c) := (d_1, \ldots, d_n, d) \in (\prod_{1 \leq i \leq n} D_i) \times D_2 : d = \sum_{1 \leq i \leq n} c_i d_i).$$

Circuit constraint

Let $s = (s_1, \ldots, s_n)$ be a permutation of $\{1, \ldots, n\}$.
Define C_s as the smallest set that contains 1 and with each element i also s_i.
(s_1, \ldots, s_n) is called cyclic if $C_s = \{1, \ldots, n\}$.

Definition

Circuit constraint

Let v_1, \ldots, v_n be variables with domains $D_i = \{1, \ldots, n\}$ $(1 \leq i \leq n)$.

$$\text{circuit}(v_1, \ldots, v_n) := (d_1, \ldots, d_n) \in D_1 \times \cdots \times D_n : (d_1, \ldots, d_n) \text{ is cyclic}$$

Given an assignment $A = (d_1, \ldots, d_n)$, define

$$A := \{(v_i, v_d) : d_i \in D_i, 1 \leq i \leq n\}.$$

Then, a satisfies $\text{circuit}(v_1, \ldots, v_n)$ if and only if (V, A) is a
Example: Traveling Salesperson Problem

Traveling Salesperson Problem (TSP):

Given a set of \(n \) cities and distances \(c_{ij} \) between city \(i \) and city \(j \), find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem ...

Constraint optimization problem

Definition

A constraint optimization problem (COP) is a constraint satisfaction problem together with an objective function \(f \) that assigns to each variable assignment \(a \) a value \(f(a) \in Q \).

- **Minimization COP:** Find a solution \(a \) that minimizes \(f(a) \).
- **Maximization COP:** Find a solution \(a \) that maximizes \(f(a) \).
- **Optimal solution:** Solution to a minimization (maximization) COP.

Decision problem associated to a COP:

Given an instance of a COP, \((N, f)\), and some threshold \(t \in Q \), is there a solution \(a \) of \(P \) such that \(f(a) \geq t \) (\(f(a) \leq t \), resp.)?

The decision problem of TSP

- \(v_i \): variable for city \(i \) with domain \(D_i := \{1, \ldots, n\} \setminus \{i\} \) (read as: value of \(v_i \) is the city to be visited next)
- \(c_{ij} \): distance between cities \(i \) and \(j \) (may not be symmetric)
- \(t \): bound for the total tour length

Then:

\[
\text{circuit}(v_1, \ldots, v_n) \leq t
\]

2 Filtering

- Arc consistency
- All-different Constraint
Filtering

- Constraint propagation techniques aim at filtering variable domains: remove useless values (that cannot participate in any solution) as early as possible.
- Filtering allows false-positives (values are kept though they are useless).
- ... but not false-negatives (useful values may not be removed).
- A constraint is "good" if it allows significant filtering (pruning of domain values) with low computational efforts.
- Constraint solver may benefit from exploiting the structure of such good constraints.

Filtering by enforcing arc consistency

- In general, enforcing generalized arc consistency on a constraint network requires exponential time w.r.t. the largest arity of some constraint relation in the network.
- Recall: Enforcing generalized arc consistency runs in time \(O(e^r) \), where \(e \) is the number of constraints and \(r \) is the largest arity of some constraint in the network.
- Though general constraints have often high arity, there exist efficient methods to enforce generalized arc consistency.
- In the following we consider the all-different constraints.

Value graphs

Definition
An undirected graph \(G = \langle V, E \rangle \) is bipartite if there exists a partition \(S \cup T \) of \(V \) such that for each \(\{x, y\} \in E \), \(x \in S \) iff \(y \in T \). A directed graph \(G = \langle V, A \rangle \) is bipartite if there exists a partition \(S \cup T \) of \(V \) such that \(A \subseteq (S \times T) \cup (T \times S) \).

G is then written in the form \(G = \langle S, T, E \rangle \) (resp. \(G = \langle S, T, A \rangle \)).

Definition
Let \(V \) be a set of variables and \(D \) be the union of all domains \(D_v \) for \(v \in V \).
The value graph of \(V \) is defined as the following bipartite graph:

\[
G = \langle V, D, E \rangle
\]

where \(E = \{ \{v, d\} : v \in V, d \in D_v \} \).

Example: Value graph

Consider variables \(v_1, \ldots, v_4 \) with \(D_1 = \{b, c, d, e\} \), \(D_2 = \{b, c\} \), \(D_3 = \{a, b, c, d\} \), \(D_4 = \{b, c\} \).

Value graph:
Motivation
Filtering
Arc consistency
All-different
Constraint
Literature

Matchings

Let $G = (V, E)$ be an undirected (simple) graph.

Definition
A matching in G is a set $M \subseteq E$ of pairwisely disjoint edges.
A matching M covers a set $S \subseteq V$ if $S \subseteq \bigcup M$, i.e., each $v \in S$ is contained in some edge in M.
$v \in V$ is M-free if M does not cover $\{v\}$.

Definition
Let M be a matching in G.
A path $P = v_0, e_1, \ldots, e_k, v_k$ in G is M-alternating if all the edges e_i are alternatingly out of and in M.
An M-alternating path $P = v_0, e_1, \ldots, e_k, v_k$ is called M-augmenting if v_0 and v_k are M-free.

Max-cardinality matching

Let $G = (V, E)$ be a graph and M be a matching in G.

Theorem (Peterson)
M is a max-cardinality matching (i.e., it is a matching of maximum cardinality) if and only if there is no M-augmenting path in G.

Remark: If M is a matching and v_0, \ldots, v_k is an M-augmenting path, then

$$M' := M \cup \{v_i, v_{i+1} : 0 \leq i \leq k - 1\}$$

is a matching with $|M'| = |M| + 1$.
Hence a max-cardinality matching can be obtained by repeatedly searching for an M-augmenting path in G ...

Max-cardinality matching on bipartite graphs

Let $G = (U, W, E)$ be a bipartite graph and M be some matching in G.
Define a directed bipartite graph $G_M = (U, W, A)$ by

$$A := \{(w, u) : \{u, w\} \in M, u \in U, w \in W\} \cup \{(u, w) : \{u, w\} \in E \setminus M, u \in U, w \in W\}$$

Each directed path in G_M is M-alternating.
If such a path starts and ends in an M-free vertex (starts in U, ends in W), it is an M-augmenting path in G.
If no M-augmenting path can be found, M is a max-cardinality matching.
This can be used to compute a max-cardinality matching in time $\Theta(|U| \cdot |A|)$ (van der Waerden and König)
... and max-cardinality matching

$M = \{\{v_4, b\}, \{v_2, c\}, \{v_1, e\}, \{v_3, a\}\}$

Example: Computing a max-cardinality matching
All-different constraint and matching

Let $V = \{v_1, \ldots, v_n\}$ be a set of variables and G be the value graph of V. Let (d_1, \ldots, d_n) be a variable assignment.

Lemma

$(d_1, \ldots, d_n) \in \text{alldifferent}(v_1, \ldots, v_n)$ if and only if $M = \{\{v_1, d_1\}, \ldots, \{v_n, d_n\}\}$ is a matching in G.

Arc-consistent all-different constraint

Lemma

The constraint $\text{alldifferent}(v_1, \ldots, v_n)$ is generalized arc-consistent if and only if every edge in G belongs to a matching in G that covers V.

Proof.

Simple (exercise!).

Edges in max-cardinality matchings

Theorem

Let G be a graph and let M be a max-cardinality matching in G. An edge e belongs to some max-cardinality matching in G if and only if one of the following conditions holds:

- $e \in M$.
- e is on an even-length M-alternating path starting at an M-free vertex;
- e is on an even-length M-alternating cycle.

Enforcing arc consistency on all-different constraints

1. Compute a max-cardinality matching M in the value graph of V (can be done in time $O(m\sqrt{n})$ where $m = \sum_{1 \leq i \leq n} |D_i|$).
2. Identify the even M-alternating paths starting in an M-free vertex and the M-alternating cycles:
 1. Define dir. bipartite graph $G_M = (V, D_V, A)$ with $A = \{(v, d) : v \in V, \{v, d\} \in M\} \cup \{(d, v) : v \in V, \{v, d\} \in E \setminus M\}$
 2. Compute the strongly connected components in G_M (in time $O(n+m)$).
 3. Mark arcs between vertices in the same component as “used”: they belong to an even M-alternating cycle
 4. Mark arcs as “used” that belong to a M-alternating path in G_M that starts in an M-free vertex (breadth-first search in time $O(m)$).
3. Update $D_v \leftarrow D_v \setminus \{d\}$ for all edges $\{v, d\}$ where the corresponding arc is not marked as “used”.

Example: Enforcing arc-consistency

Start from max-cardinality matching

Compute strongly connected components (e.g. by Kosaraju's algorithm)

Mark "used" arcs

... and remove unused arcs
Example: Enforcing arc-consistency

\[
\begin{array}{ccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} \\
\text{v}_1 & \text{v}_2 & \text{v}_3 & \text{v}_4 \\
\end{array}
\]

The all-different constraint is now arc-consistent

Literature

Willem-Jan van Hoeve and Irit Katriel.
Global Constraints,
Handbook of Constraint Programming, Elsevier, 2006