Constraint Satisfaction Problems

Introduction
1 Introduction

- Constraint Satisfaction Problems
- Real World Applications
- Solving Constraints
- Contents of the lecture
Constraints

What is a constraint?

1 a: the act of constraining b: the state of being checked, restricted, or compelled to avoid or perform some action . . .
c: a constraining condition, agency, or force . . .
2 a: repression of one’s own feelings, behavior, or actions b: a sense of being constrained . . .

(from Merriam-Webster’s Online Dictionary)

Usage

- In programming languages, constraints are often used to restrict the domains of variables.
- In databases, constraints can be used to specify integrity conditions.
- In mathematics, a constraint is a requirement on solutions of optimization problems.
Examples:

- Latin squares
- Eight queens problem
- Sudoku
- Map coloring problem
- Boolean satisfiability
Problem:

- How can one fill an $n \times n$ table with n different symbols
- ... such that each symbol occurs exactly once in each row and in each column?

There are 56 different *reduced* Latin squares of size 5, 9408 squares of size 6, 16.942.080 squares of size 7, 535.281.401.856 squares of size 8, ...
Sudoku

Problem:

- Fill a partially completed 9×9 grid such that
- ... each row, each column, and each of the nine 3×3 grids contains the numbers from 1 to 9.

```
 2 5 3 9 1 4 7 2 8
1 4 3 6 7 2 7 3 9
4 7 8 2 4 3 6 9 1
```

... (additional cells filled in the grid) ...
Eight queens puzzle

Problem:

- How can one put 8 queens on a standard chess board (8 × 8-board)
- …such that no queen can attack any other queen?

Solutions:

- The puzzle has 12 unique solutions (up to rotations and reflections)

- Old problem proposed in 1848.
- Various variants
 - knights (instead of queens)
 - 3D
 - n queens on an n × n-board
A solution of the 8-queens problem
Definition

A constraint network is defined by:

- a finite set of variables
- a (finite) domain of values for each variable
- a finite set of constraints (i.e., binary, ternary, ... relations defined between the variables)

Problem

Is there a solution of the network, i.e., an assignment of values to the variables such that all constraints are satisfied?
k-Colorability

Problem:
- Can one color the nodes of a given graph with k colors such that all nodes connected by an edge have different colors?

Reformulated as a constraint network:
- **Variables:** the nodes of the graph
- **Domains:** “colors” $\{1, \ldots, k\}$ for each variable
- **Constraints:** nodes connected by an edge must have different values

This constraint network has a particular restricted form:
- only **binary** constraints
- domains are **finite**
Crossword puzzle

Problem instance:

- **Variables**: empty squares in a crossword puzzle;
- **Domains**: letters \(\{A, B, C, \ldots, Z\} \) for each variable;
- **Constraints**: relations defined by a given set of words that need (or are allowed) to occur in the completed puzzle.

```
  1  2  3  4  5  6  7  8  9 10 11 12 13  14 15 16 17 18 19 20 21 22 23 24 25
```

- **1**: [] [] [] [] [] [] []
- **2**: [] [] [] [] [] [] []
- **3**: [] [] [] [] [] [] []
- **4**: [] [] [] [] [] [] []
- **5**: [] [] [] [] [] [] []
- **6**: [] [] [] [] [] [] []
- **7**: [] [] [] [] [] [] []
- **8**: [] [] [] [] [] [] []
- **9**: [] [] [] [] [] [] []
- **10**: [] [] [] [] [] [] []
- **11**: [] [] [] [] [] [] []
- **12**: [] [] [] [] [] [] []
- **13**: [] [] [] [] [] [] []
- **14**: [] [] [] [] [] [] []
- **15**: [] [] [] [] [] [] []
- **16**: [] [] [] [] [] [] []
- **17**: [] [] [] [] [] [] []
- **18**: [] [] [] [] [] [] []
- **19**: [] [] [] [] [] [] []
- **20**: [] [] [] [] [] [] []
- **21**: [] [] [] [] [] [] []
- **22**: [] [] [] [] [] [] []
- **23**: [] [] [] [] [] [] []
- **24**: [] [] [] [] [] [] []
- **25**: [] [] [] [] [] [] []
SAT

Given a propositional logic formula in CNF, is the formula satisfiable?

As a constraint satisfaction problem:

Problem instance (Boolean constraint network):

- **Variables**: (propositional) variables;
- **Domains**: truth values \(\{0, 1\} \) for each variable;
- **Constraints**: defined by a clause in the formula.

Example: \((x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4)\)
Traveling salesperson problem (TSP):
Given a set of n cities and distances c_{ij} between city i and city j, find the shortest route that visits all cities and finishes in the starting city.

TSP is not a constraint satisfaction problem, but a constraint optimization problem . . .
Vehicle routing problem (VRP):
Given a set of goods that need to be delivered from a central depot to customers, and given a fleet of trucks that can transport the goods: find an assignment of routes to the trucks that minimizes the total route cost.

Dozens of variants: Capacitated Vehicle Routing Problem (CVRP), ... with Pickup and Delivery (VRPPD), ... with time windows (CRPTW), ...
In practice, not only constraint satisfaction, but constraint optimization is required.

Seminar topic assignment

- Given n students who want to participate in a seminar; m topics are available to be worked on by students; each topic can be worked on by at most one student, and each student has preferences which topics s/he would like to work on;
- ... how to assign topics to students?
CSP/COP techniques can be used in

- **civil engineering** (design of power plants, water and energy supply, transportation and traffic infrastructure)
- **mechanical engineering** (design of machines, robots, vehicles)
- digital circuit **verification**
- automated timetabling
- air traffic control
- finance
Computational complexity

Theorem

It is NP-hard to decide solvability of CSPs.

Since k-colorability (SAT, 3SAT) is NP-complete, solvability of CSPs in general must be NP-hard.

Question: Is CSP solvability *in* NP?
Solving CSPs

- **Enumeration** of all assignments and testing
 \[\Rightarrow\] ... too costly

- **Backtracking** search
 \[\Rightarrow\] numerous different strategies, often “dead” search paths are explored extensively

- **Constraint propagation**: elimination of obviously impossible values

- Interleaving backtracking and constraint propagation: constraint propagation at each generated search node

- Many other search methods, e.g., local/stochastic search, etc.
Contents I

- *Introduction and mathematical background*
 - Sets, relations, graphs
 - Constraint networks and satisfiability
 - Binary constraint networks
 - Simple solution methods (backtracking, etc.)

- *Inference-based methods*
 - Arc and path consistency
 - \(k \)-consistency and global consistency

- *Search methods*
 - Backtracking
 - Backjumping
 - Comparing different methods
 - Stochastic local search
Contents II

- Global constraints
- Constraint optimization
- Selected advanced topics
 - Expressiveness vs complexity of constraint formalisms
 - Qualitative constraint networks
2 Organization

- Time, Location, Web
- Lecturers
- Exercises
- Course goals
- Literature
Lectures: Where, when, web page

Where
Bld. 51, Room SR 00 006

When
Monday, 10:15–12:00
Wednesday, 10:15–11:00 (+ exercises: 11:15–12:00)

No lectures
- 24-12-2014 – 06-01-2015 (Christmas break)

Web Page
http://www.informatik.uni-freiburg.de/~ki/teaching/ws1415/csp/
Lecturers

Prof. Bernhard Nebel
Bld. 52, Room 00-029
Phone: 0761/203-8221
Email: nebel@informatik.uni-freiburg.de

Dr. Christian Becker-Asano
Bld. 52, Room 00-042
Phone: 0761/203-8251
Email: basano@informatik.uni-freiburg.de

Dr. Stefan Wölfl
Bld. 52, Room 00-043
Phone: 0761/203-8228
Email: woelfl@informatik.uni-freiburg.de
Exercises

Where
Bld. 51, Room SR 00 006

When
Wednesday, 11:15–12:00
Course prerequisites & goals

Goals

- Acquiring skills in constraint processing
- Understanding the principles behind different solving techniques
- Being able to read and understand research literature in the area of constraint satisfaction
- Being able to complete a project (thesis) in this research area

Prerequisites

- Basic knowledge in the area of AI
- Basic knowledge in formal logic
- Basic knowledge in theoretical computer science
Exercises

Exercise assignments

- handed out on Wednesdays
- due on Wednesday in the following week (before the lecture)
- may be solved in groups of two students
- 50 % of reachable points are required for exam admission
Programming project

Implement a CSP solver . . .

- Implementation tasks are specified on a regular basis (depending on the progress of the lecture)
- Programming language
- Implementation should compile on a standard Linux computer (Ubuntu 13.08)
- We provide git repositories for source code
- Working solver is prerequisite for exam admission
- We will do a competition between solvers at the end of the lecture
Credit points

- 6 ECTS points

Exams

- (Oral or written) exam in February/March 2015
Projects and theses

Topics of theses resulting from this lecture:

- *Räumliche und zeitliche Constraints in beschreibungslogischen Wissensbasen*
- *Tableaux-Verfahren zur Lösung qualitativer CSPs*
- *Revisionsoperationen auf qualitativen Constraintnetzen*
- *Berechnung handhabbarer Klassen für qualitative räumliche Formalismen*
- *Fast procedures for the combination of qualitative constraint calculi*
Projects and theses

Topics of projects related to this lecture:

- *Ein Schwierigkeitsmaß für Sudoku-Puzzles*
- *Empirische Analyse von Konsistenz- und Suchalgorithmen*
- *Umsetzung eines CSP-Methoden-basierten Timetabling Algorithmus*
Acknowledgements

Lecture is based on slidesets of previous CSP lectures:

- Malte Helmert and Stefan Wölfli (summer term 2007)
- Bernhard Nebel and Stefan Wölfli (winter term 2009/10)
- Julien Hué and Stefan Wölfli (summer term 2012)

Special thanks to: Matthias Westphal, Robert Mattmüller, Gabriele Röger, Manuel Bodirsky
Literature

- Further readings will be given during the lecture.