Principles of Knowledge Representation and Reasoning
Semantic Networks and Description Logics III: Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Stefan Wölfl, and Julien Hué
February 3, 2014
1 Motivation
Example TBox & ABox

<table>
<thead>
<tr>
<th>Class</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>$\dashv \neg \text{Female}$</td>
<td>DIANA: Woman</td>
</tr>
<tr>
<td>Human ⊑ Living_entity</td>
<td></td>
<td>ELIZABETH: Woman</td>
</tr>
<tr>
<td>Woman \dashv Human \sqcap Female</td>
<td></td>
<td>CHARLES: Man</td>
</tr>
<tr>
<td>Man \dashv Human \sqcap Male</td>
<td></td>
<td>EDWARD: Man</td>
</tr>
<tr>
<td>Mother \dashv Woman $\sqcap \exists \text{has-child.Human}$</td>
<td></td>
<td>ANDREW: Man</td>
</tr>
<tr>
<td>Father \dashv Man $\sqcap \exists \text{has-child.Human}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent \dashv Father \sqcap Mother</td>
<td></td>
<td>DIANA: Mother-without-daughter</td>
</tr>
<tr>
<td>Grandmother</td>
<td>\dashv Woman $\sqcap \exists \text{has-child.Parent}$</td>
<td></td>
</tr>
<tr>
<td>Mother-without-daughter</td>
<td>\dashv Mother $\sqcap \forall \text{has-child.Male}$</td>
<td></td>
</tr>
<tr>
<td>Mother-with-many-children</td>
<td>\dashv Mother $\sqcap (\geq 3 \text{has-child})$</td>
<td></td>
</tr>
</tbody>
</table>
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
2 Basic Reasoning Services

- Satisfiability without a TBox
- Satisfiability in TBox
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of concept descriptions in a TBox

Given a TBox \(T \) and a concept description \(C \), is \(C \) satisfiable?

Test:

- Does there exist a model \(I \) of \(T \) such that \(C^I \neq \emptyset \)?
- Translated into FOL: Is the formula \(\exists x \ C(x) \) together with the formulae resulting from the translation of \(T \) satisfiable?

Example

Mother-without-daughter \(\sqcap \forall \text{has-child} \text{.Female} \) is unsatisfiable, given our previously specified family TBox.
3 Eliminating the TBox

- Normalization
- Unfolding
Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if C is satisfiable in \mathcal{T}.

Problem: What do we do with partial definitions (using \sqsubseteq)?
A terminology is called **normalized** when it does not contain definitions of the form \(A \sqsubseteq C \).

In order to normalize a terminology, replace

\[A \sqsubseteq C \]

by

\[A \equiv A^* \sqcap C, \]

where \(A^* \) is a **fresh** concept symbol (not appearing elsewhere in \(\mathcal{T} \)).

If \(\mathcal{T} \) is a terminology, the normalized terminology is denoted by \(\tilde{\mathcal{T}} \).
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\mathcal{\tilde{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^\mathcal{I}'$, and vice versa.

Proof.

\Rightarrow: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \sqcap C) \in \mathcal{\tilde{T}}$. Then set $A^*_{\mathcal{I}'} := A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\mathcal{\tilde{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model \mathcal{I}' of $\mathcal{\tilde{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother \equiv Woman $\sqcap \ldots$ is unfolded to Mother \equiv (Human \sqcap Female) $\sqcap \ldots$

We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.

We say that T is unfolded if $U(T) = T$.

$U^n(T)$ is called the unfolding of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology T if and only if it is a model of \hat{T}.

Proof sketch.

\Rightarrow: Let I be a model of T. Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

\Leftarrow: Let I be a model for $U(T)$. Clearly, this is also a model of T (with the same argument as above). This means that any model \hat{T} is also a model of T.

February 3, 2014 Nebel, Wölfl, Hué – KRR
Generating models

All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.

Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T if and only if \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model \mathcal{I} of T. This satisfies T as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C.

4 General TBox Reasoning Services

- Subsumption
- Subsumption vs. Satisfiability
- Classification
Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq_{\mathcal{T}} D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of \mathcal{T}, i.e. $C^\mathcal{I} \subseteq D^\mathcal{I}$?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} into FOL?

Example

Given our family TBox, it holds Grandmother $\sqsubseteq_{\mathcal{T}}$ Mother.
Subsumption (without a TBox)

Given two concept descriptions \(C \) and \(D \), is \(C \) subsumed by \(D \) regardless of a TBox (or in an empty TBox) (symb. \(C \sqsubseteq D \))?

Test:
- Is \(C \) interpreted as a subset of \(D \) for all interpretations \(\mathcal{I} \) (\(C^\mathcal{I} \subseteq D^\mathcal{I} \))?
- Is the formula \(\forall x (C(x) \rightarrow D(x)) \) logically valid?

Example
Clearly, \(\text{Human} \sqcap \text{Female} \sqsubseteq \text{Human} \).
Subsumption in a TBox can be reduced to subsumption in the empty TBox:

\[\ldots \text{normalize and unfold TBox and concept descriptions.} \]

Subsumption in the empty TBox can be reduced to unsatisfiability:

\[\ldots C \sqsubseteq D \text{ iff } C \cap \neg D \text{ is unsatisfiable.} \]

 Unsatisfiability can be reduced to subsumption:

\[\ldots C \text{ is unsatisfiable iff } C \sqsubseteq (C \cap \neg C). \]
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example

```
Living_Entity
  ^
 /   
|     |
Woman  Man
     |
 Parent
     |
Mother  Father
       |
Mother-wo-d  Mother-w-m-c  Grandmother
  ^       ^            |
 /       /             |
Female Human Male
```

February 3, 2014 Nebel, Wölfl, Hué – KRR
5 General ABox Reasoning Services

- ABox Satisfiability
- Instances
- Realization and Retrieval
Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- *Notice*: ABoxes representing the real world, should always have a model.

Example

The ABox

\[
X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r
\]

is not satisfiable.
ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

MARGRET: Woman
(DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Problem is reducible to satisfiability of an ABox:

... normalize terminology, then unfold all concept and role descriptions in the ABox
Instance relations

Which additional ABox formulae of the form $a: C$ follow logically from a given ABox and TBox?

- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $a: C$ holds in $\mathcal{A} \iff \mathcal{A} \cup \{a: \neg C\}$ is unsatisfiable
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes

- ELIZABETH: Mother-without-daughter?
 no (no CWA!)

- ELIZABETH: Grandmother?
 no (only male, but not necessarily human!)
Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept `Male`.
For our TBOX/ABox we will get the answer `CHARLES, ANDREW, EDWARD, WILLIAM`.

- **Reduction**: Compute the set of instances by testing the instance relation for each object!
- **Implementation**: Realization can be used to speed this up
6 Summary and Outlook
Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?