- What is the problem? instead of How to solve the problem?
- Outsourcing the Computation part to an external Solver
Negation as failure

- Another interpretation for negation: \(\neg x \equiv "I \text{ cannot show that } x \text{ is true}" \)
- For example, you are innocent until proven guilty

Example

\[\text{innocent} \leftarrow \neg \text{guilty}. \]
Nonmonotonic logic programs: background

- **Answer set semantics**: a formalization of *negation as failure* in logic programming (**Prolog**)
- Several formalizations: *well-founded semantics*, *perfect-model semantics*, *inflationary semantics*, ...
- Can be viewed as a simpler variant of *default logic*
Let \mathcal{A} be a set of first-order atoms.

Rules:

\[
c \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k
\]

where $\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq \mathcal{A}$

- Meaning similar to default logic:
 - If
 1. we have derived b_1, \ldots, b_m and
 2. cannot derive any of d_1, \ldots, d_k,
 - then derive c.

- Rules without right-hand side (facts): $c \leftarrow \top$

- Rules without left-hand side (constraints):
 \[
 \bot \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k
 \]
Let \mathcal{A} be a set of first-order atoms.

Rules:

$$c \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k$$

where $\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq \mathcal{A}$

- c is called the **head** of the rule, denoted by $\text{head}(r)$
- b_1, \ldots, b_m is the **positive body** of r, denoted by $\text{body}^+(r)$
- $\neg d_1, \ldots, \neg d_k$ is the **negative body** of r, denoted by $\text{body}^-(r)$
- The **body** of r consists in its positive and negative part $\text{body}(r) = \text{body}^+(r) \cup \text{body}^-(r)$
Nonmonotonic logic programs: examples

Example

\[\text{fly}(\text{tweety}) \leftarrow \text{bird}(\text{tweety}), \text{not abnormal}(\text{tweety}).\]
\[\text{bird}(\text{tweety}) \leftarrow \text{penguin}(\text{tweety}).\]
\[\text{abnormal}(\text{tweety}) \leftarrow \text{penguin}(\text{tweety}).\]
Nonmonotonic logic programs: examples

Example

\[
\begin{align*}
\text{fly}(\text{tweety}) & \leftarrow \text{bird}(\text{tweety}), \text{not abnormal}(\text{tweety}). \\
\text{bird}(\text{tweety}) & \leftarrow \text{penguin}(\text{tweety}) . \\
\text{abnormal}(\text{tweety}) & \leftarrow \text{penguin}(\text{tweety}).
\end{align*}
\]
Interpretation and Satisfiability
The Herbrand Universe, denoted by U_{Π}, is the set of ground terms constructed from the function symbols and constants in Π.

The Herbrand Base, denoted by B_{Π}, is the set of ground atoms constructed from predicate symbols and ground terms from the Herbrand Universe.

From now on, a program will refer to the set of its grounded rules.

The set of atoms in Π is denoted by $Atoms(\Pi)$.
Herbrand base and Grounded rules

Example

\[\Pi = \begin{cases}
 \text{fly}(X) & \leftarrow \text{bird}(X), \text{not abnormal}(X). \\
 \text{bird}(X) & \leftarrow \text{penguin}(X). \\
 \text{abnormal}(X) & \leftarrow \text{penguin}(X). \\
 \text{penguin}(t) & \leftarrow \top.
\end{cases} \]

\[U_\Pi = \{ t \} \]
\[B_\Pi = \{ \text{fly}(t), \text{bird}(t), \text{abnormal}(t), \text{penguin}(t) \} \]

\[\Pi = \begin{cases}
 \text{fly}(t) & \leftarrow \text{bird}(t), \text{not abnormal}(t). \\
 \text{bird}(t) & \leftarrow \text{penguin}(t). \\
 \text{abnormal}(t) & \leftarrow \text{penguin}(t). \\
 \text{penguin}(t) & \leftarrow \top.
\end{cases} \]
Herbrand base and Grounded rules

Example

\[\Pi = \left\{ \begin{array}{l}
\text{fly}(X) \leftarrow \text{bird}(X), \text{not abnormal}(X).
\text{bird}(X) \leftarrow \text{penguin}(X).
\text{abnormal}(X) \leftarrow \text{penguin}(X).
\text{penguin}(t) \leftarrow \top.
\end{array} \right. \]

\[U_\Pi = \{ t \} \]
\[B_\Pi = \{ \text{fly}(t), \text{bird}(t), \text{abnormal}(t), \text{penguin}(t) \} \]

\[\Pi = \left\{ \begin{array}{l}
\text{fly}(t) \leftarrow \text{bird}(t), \text{not abnormal}(t).
\text{bird}(t) \leftarrow \text{penguin}(t).
\text{abnormal}(t) \leftarrow \text{penguin}(t).
\text{penguin}(t) \leftarrow \top.
\end{array} \right. \]
Herbrand base and Grounded rules

Example

\[\Pi = \begin{cases}
\text{fly}(X) & \leftarrow \text{bird}(X), \neg \text{abnormal}(X). \\
\text{bird}(X) & \leftarrow \text{penguin}(X). \\
\text{abnormal}(X) & \leftarrow \text{penguin}(X). \\
\text{penguin}(t) & \leftarrow \top.
\end{cases} \]

\[U_{\Pi} = \{t\} \]
\[B_{\Pi} = \{\text{fly}(t), \text{bird}(t), \text{abnormal}(t), \text{penguin}(t)\} \]

\[\Pi = \begin{cases}
\text{fly}(t) & \leftarrow \text{bird}(t), \neg \text{abnormal}(t). \\
\text{bird}(t) & \leftarrow \text{penguin}(t). \\
\text{abnormal}(t) & \leftarrow \text{penguin}(t). \\
\text{penguin}(t) & \leftarrow \top.
\end{cases} \]
An Herbrand Interpretation is a subset \(I \) of the Herbrand Base.

- \(I \models a \) if \(a \in I \)
- \(I \models \text{head}(r) \) if \(\text{head}(r) \cap I \neq \emptyset \)
- \(I \models \text{body}(r) \) if \(\text{body}^+(r) \subseteq I \) and \(\text{body}^-(r) \cap I \neq \emptyset \)
- \(I \) satisfies a rule \(r \) if \(I \models \text{head}(r) \) or \(I \not\models \text{body}(r) \)
- \(I \) satisfies a program if it satisfies all its rules

Idea

The idea is that a solution should both satisfying AND justified
An Herbrand Interpretation is a subset I of the Herbrand Base.

- $I \models a$ if $a \in I$.
- $I \models \text{head}(r)$ if $\text{head}(r) \cap I \neq \emptyset$.
- $I \models \text{body}(r)$ if $\text{body}^+(r) \subseteq I$ and $\text{body}^-(r) \cap I \neq \emptyset$.
- I satisfies a rule r if $I \models \text{head}(r)$ or $I \not\models \text{body}(r)$.
- I satisfies a program if it satisfies all its rules.

Idea

The idea is that a solution should both satisfying AND justified.
not-free logic programs

Definition (Answer Set)

Let Π be a logic program without \textbf{not}, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_{\Pi}(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}$.

Example

$$\Pi = \{ a \leftarrow b. \quad d \leftarrow f. \quad b. \\
 \quad d \leftarrow b. \quad c \leftarrow b,d. \quad e \leftarrow f. \}$$

$$\Gamma_0 = \Gamma(0) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$$
not-free logic programs

Definition (Answer Set)

Let Π be a logic program without **not**, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_\Pi(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}$.

Example

\[
\Pi = \{ \begin{array}{ccc}
a & \leftarrow & b. \\
d & \leftarrow & f. \\
d & \leftarrow & b. \\
c & \leftarrow & b, d. \\
e & \leftarrow & f. \\
\end{array} \}
\]

\[
\Gamma_0 = \Gamma(\emptyset) = \{b\}
\]

\[
\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}
\]

\[
\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}
\]

\[
\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2
\]
not-free logic programs

Definition (Answer Set)
Let Π be a logic program without \textbf{not}, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_\Pi(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}$.

Example
$\Pi = \{a \leftarrow b. \quad d \leftarrow f. \quad b. \quad d \leftarrow b. \quad c \leftarrow b, d. \quad e \leftarrow f.\}$

$\Gamma_0 = \Gamma(\emptyset) = \{b\}$
$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$
$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$
$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$
Definition (Answer Set)

Let Π be a logic program without **not**, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_\Pi(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}.$

Example

$$\Pi = \{ a \leftarrow b, \quad d \leftarrow f, \quad b, \quad d \leftarrow b, \quad c \leftarrow b, d, \quad e \leftarrow f \}$$

$$\Gamma_0 = \Gamma(\emptyset) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$$
not-free logic programs

Definition (Answer Set)
Let Π be a logic program without not, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_\Pi(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}$.

Example
$
\Pi = \begin{\{ \}
\begin{array}{llllll}
 a & \leftarrow & b. & d & \leftarrow & f. & b. \\
 d & \leftarrow & b. & c & \leftarrow & b, d. & e & \leftarrow & f.
\end{array}
\end{\{ }
$

$\Gamma_0 = \Gamma(\emptyset) = \{b\}$
$\Gamma_1 = \Gamma(\Gamma_0) = \{b, d, a\}$
$\Gamma_2 = \Gamma(\Gamma_1) = \{b, d, a, c\}$
$\Gamma_3 = \Gamma(\Gamma_2) = \{b, d, a, c\} = \Gamma_2$

\[\text{November 25, 2013 Nebel, Wölfl, Hué – KRR} \quad 13 / 54\]
Definition 1: Gelfond-Lifschitz reduct

- Deleting all rules whose negative part contradicts X
- Removing all negated atoms from the remaining rules

Definition (Reduct)

The reduct of a program Π with respect to a set of atoms $X \subseteq \text{Atoms}(\Pi)$ is defined as:

$$\Pi^X := \{\text{head}(r) \leftarrow \text{body}^+(r) \mid r \in \Pi, \text{body}^-(r) \cap X = \emptyset\}$$

Definition (Answer set)

$X \subseteq \text{Atoms}(\Pi)$ is an answer set of Π if X is an answer set of Π^X.
Definition 1: Gelfond-Lifschitz reduct

- Deleting all rules whose negative part contradicts X
- Removing all negated atoms from the remaining rules

Definition (Reduct)
The reduct of a program Π with respect to a set of atoms $X \subseteq \text{Atoms}(\Pi)$ is defined as:

$$\Pi^X := \{\text{head}(r) \leftarrow \text{body}^+(r) \mid r \in \Pi, \text{body}^-(r) \cap X = \emptyset\}$$

Definition (Answer set)
$X \subseteq \text{Atoms}(\Pi)$ is an answer set of Π if X is an answer set of Π^X.
Illustration of Gelfond-Lifschitz reduct

Example

\[
\begin{align*}
 a & \leftarrow \text{not} b. \\
 b & \leftarrow \text{not} a. \\
 c & \leftarrow a. \\
 d & \leftarrow b.
\end{align*}
\]

Example

\[
\begin{align*}
 a & \leftarrow \text{not} b. \\
 b & \leftarrow \text{not} a. \\
 b & \leftarrow a. \\
 c & \leftarrow b.
\end{align*}
\]

Example

\[
\begin{align*}
 a & \leftarrow b. \\
 b & \leftarrow a.
\end{align*}
\]

We say that \(X \) satisfies a rule \(r \) iff \(X \models \text{head}(r) \lor \neg \text{body}(r) \).

\(\Rightarrow \) \(X \) can satisfy all rules and not be an answer set.
Illustration of Gelfond-Lifschitz reduct

Example

\begin{align*}
a & \leftarrow \neg b. & b & \leftarrow \neg a. \\
c & \leftarrow a. & d & \leftarrow b.
\end{align*}

Example

\begin{align*}
a & \leftarrow \neg b. & b & \leftarrow \neg a. \\
b & \leftarrow a. & c & \leftarrow b.
\end{align*}

Example

\begin{align*}
a & \leftarrow b. & b & \leftarrow a.
\end{align*}

We say that \(X \) satisfies a rule \(r \) iff \(X \models \text{head}(r) \lor \neg \text{body}(r) \).

\(\Rightarrow \) \(X \) can satisfy all rules and not be an answer set.
We say that X satisfies a rule r iff $X \models \text{head}(r) \lor \neg\text{body}(r)$.
$\Rightarrow X$ can satisfy all rules and not be an answer set.
Illustration of Gelfond-Lifschitz reduct

Example

\[
\begin{align*}
a & \leftarrow \text{not} b. \\
b & \leftarrow \text{not} a. \\
c & \leftarrow a. \\
d & \leftarrow b.
\end{align*}
\]

We say that \(X \) satisfies a rule \(r \) iff \(X \models \text{head}(r) \lor \neg \text{body}(r) \).

\(\Rightarrow \) \(X \) can satisfy all rules and not be an answer set.

Example

\[
\begin{align*}
a & \leftarrow \text{not} b. \\
b & \leftarrow \text{not} a. \\
b & \leftarrow a. \\
c & \leftarrow b.
\end{align*}
\]

Example

\[
\begin{align*}
a & \leftarrow b. \\
b & \leftarrow a.
\end{align*}
\]
Complexity: existence of answer sets is NP-complete

1. **Membership in NP:** Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).

2. **NP-hardness:** Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \neg \hat{p}. \quad \hat{p} \leftarrow \neg p.$$

for every proposition p occurring in the clauses, and

$$\leftarrow \neg l'_1, \neg l'_2, \neg l'_3$$

for every clause $l_1 \lor l_2 \lor l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.
Complexity: existence of answer sets is NP-complete

1 Membership in NP: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).

2 NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

$$p \leftarrow \neg\hat{p}. \quad \hat{p} \leftarrow \neg p.$$

for every proposition p occurring in the clauses, and

$$\leftarrow \neg l_1', \neg l_2', \neg l_3'$$

for every clause $l_1 \lor l_2 \lor l_3$, where $l_i' = p$ if $l_i = p$ and $l_i' = \hat{p}$ if $l_i = \neg p$.
Complexity: existence of answer sets is NP-complete

1. **Membership in NP**: Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).

2. **NP-hardness**: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

 $p \leftarrow \text{not} \hat{p}$. \hspace{1cm} \hat{p} \leftarrow \text{not} p.

 for every proposition p occurring in the clauses and

 $\leftarrow \text{not} l'_1, \text{not} l'_2, \text{not} l'_3$

 for every clause $l_1 \lor l_2 \lor l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.
Complexity: existence of answer sets is NP-complete

1. **Membership in NP:** Guess $X \subseteq \text{Atoms}(\Pi)$ (nondet. polytime), compute Π^X, compute its closure, compare to X (everything det. polytime).

2. **NP-hardness:** Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

 \[p \leftarrow \neg \hat{p}. \quad \hat{p} \leftarrow \neg p. \]

 for every proposition p occurring in the clauses, and

 \[\leftarrow \neg l'_1, \neg l'_2, \neg l'_3 \]

 for every clause $l_1 \lor l_2 \lor l_3$, where $l'_i = p$ if $l_i = p$ and $l'_i = \hat{p}$ if $l_i = \neg p$.
Some properties I

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π.

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

$$(F \cup G)^X = \begin{cases}
F^X \cup G^X, & \text{if } X \models F \cup G \\
\bot, & \text{otherwise}
\end{cases}$$

November 25, 2013 Nebel, Wölfl, Hué – KRR
Some properties I

Proposition

If an atom A belongs to an answer set of a logic program Π then A is the head of one of the rules of Π.

Proposition

Let F and G be sets of rules and let X be a set of atoms. Then the following holds:

\[
(F \cup G)^X = \begin{cases}
F^X \cup G^X, & \text{if } X \models F \cup G \\
\bot, & \text{otherwise}
\end{cases}
\]
Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

\Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ whose least fixpoint is the same as $F^X \cup \neg \bot$ which is equivalent to F^X. Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

\Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

\hfill \square
Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

\Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ whose least fixpoint is the same as $F^X \cup \neg \bot$ which is equivalent to F^X. Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

\Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.
Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

\Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ whose least fixpoint is the same as $F^X \cup \neg \bot$ which is equivalent to F^X. Consequently X is minimal among the sets satisfying F^X iff it is minimal among the sets satisfying $(F \cup G)^X$.

\Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.
Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.
The lparse format: AnsProlog

- propositions are any combination of lowercase letters;
- variables are any combination of letters starting with an uppercase letter;
- integers can be used and so can arithmetic operations (+, −, *, /, %).
- negation as failure is denoted by not.
- implication is denoted by ":-".

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

\begin{align*}
a(1) & : - \text{ not } na(1). & \text{na}(1) & : - \text{ not } a(1). \\
a(2) & : - \text{ not } na(2). & \text{na}(2) & : - \text{ not } a(2). \\
a(3) & : - \text{ not } na(3). & \text{na}(3) & : - \text{ not } a(3). \\
\end{align*}

\{ a(1), a(2), a(3) \}.
propositions are any combination of lowercase letters;
variables are any combination of letters starting with an uppercase letter;
integers can be used and so can arithmetic operations (+, −, *, /, %).
negation as failure is denoted by not.
implication is denoted by ":-".

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

\[\begin{align*}
a(1) & :- \text{not } na(1). \quad na(1) & :- \text{not } a(1). \\
a(2) & :- \text{not } na(2). \quad na(2) & :- \text{not } a(2). \\
a(3) & :- \text{not } na(3). \quad na(3) & :- \text{not } a(3).
\end{align*}\]

\{ a(1), a(2), a(3) \}.
The literal \{b_1, \ldots, b_m\}
is true iff any subset of the set \{b_1, \ldots, b_m\} is true;

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

\begin{verbatim}
a(1) :- not na(1). na(1) :- not a(1).
a(2) :- not na(2). na(2) :- not a(2).
a(3) :- not na(3). na(3) :- not a(3).
\end{verbatim}

\{ a(1), a(2), a(3) \}.

The \texttt{#hide} statement can hide literals from the solution.
AnsProlog (choice functions)

- The literal \{b_1, \ldots, b_m\} is true iff any subset of the set \{b_1, \ldots, b_m\} is true;

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

\[
\begin{align*}
a(1) & \ :- \ not \ na(1). & \ na(1) & \ :- \ not \ a(1). \\
a(2) & \ :- \ not \ na(2). & \ na(2) & \ :- \ not \ a(2). \\
a(3) & \ :- \ not \ na(3). & \ na(3) & \ :- \ not \ a(3). \\
\end{align*}
\]

\{ a(1), a(2), a(3) \}.

- The `#hide` statement can hide literals from the solution.
The literal \{b_1, \ldots, b_m\}
is true iff any subset of the set \{b_1, \ldots, b_m\} is true;

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

```prolog
a(1) :- not na(1). na(1) :- not a(1).
a(2) :- not na(2). na(2) :- not a(2).
a(3) :- not na(3). na(3) :- not a(3).
{ a(1), a(2), a(3) }.
```

The `#hide` statement can hide literals from the solution.
The literal \{b_1, \ldots, b_m\} is true iff any subset of the set \{b_1, \ldots, b_m\} is true;

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

\begin{align*}
a(1) & : - \text{not } na(1). \\
a(2) & : - \text{not } na(2). \\
a(3) & : - \text{not } na(3). \\
\end{align*}

\begin{align*}
na(1) & : - \text{not } a(1). \\
n(2) & : - \text{not } a(2). \\
n(3) & : - \text{not } a(3). \\
\end{align*}

\begin{align*}
\{ a(1), a(2), a(3) \}.
\end{align*}

- The \#\text{hide} statement can hide literals from the solution.
The literal \(l \{ b_1, \ldots, b_m \} u \)
is true iff at least \(l \) and at most \(u \) atoms (included) are true within the set \(\{ b_1, \ldots, b_m \} \);

Example

I want all interpretations over \(\{ a(1), a(2), a(3) \} \) that contain 2 true atoms.

\[
2 \{ a(1), a(2), a(3) \} 2.
\]

I want all interpretations over \(\{ a(1), a(2), a(3) \} \) that donot contain 2 true atoms.

\[
\{ a(1), a(2), a(3) \}.
\]

\[\text{:- } 2 \{ a(1), a(2), a(3) \} 2.\]
The literal $l \{b_1, \ldots, b_m\} u$
is true iff at least l and at most u atoms (included) are true
within the set $\{b_1, \ldots, b_m\}$;

Example

I want all interpretations over $\{a(1), a(2), a(3)\}$ that contain 2 true atoms.

$$2 \{ a(1), a(2), a(3) \} \leq 2.$$

I want all interpretations over $\{a(1), a(2), a(3)\}$ that do not contain 2 true atoms.

$$\{ a(1), a(2), a(3) \}.
:- 2 \{a(1), a(2), a(3)\} \leq 2.$$
The literal $l\{b_1, \ldots, b_m\}u$ is true iff at least l and at most u atoms (included) are true within the set $\{b_1, \ldots, b_m\}$;

Example

I want all interpretations over $\{a(1), a(2), a(3)\}$ that contain 2 true atoms.

$$2 \{ a(1), a(2), a(3) \} 2.$$

I want all interpretations over $\{a(1), a(2), a(3)\}$ that donot contain 2 true atoms.

$$\{ a(1), a(2), a(3) \}. \quad :- \ 2 \{ a(1), a(2), a(3) \} 2.$$
The domains of a variable can be set literal-wise, rule-wise or program wise.

For a scope limited to a literal:
clique(X) : num(X). num(1..3).
will be understood as
clique(1). clique(2). clique(3).

Example
num(1..3).
{ a(X) : num(X) }.
:- 2 { a(X) : num(X) } 2.
The domains of a variable can be set literal-wise, rule-wise or program-wise.

For a scope limited to a rule:

\[a(X) :- \neg \text{na}(X), \text{num}(X). \]

\(X \) takes all the values for which \(\text{num}(X) \) is stated as a fact.

Example

Interpretations over \(\{a, b, c\} \) that does not contain 2 true atoms.

\[\text{num}(1..3). \]

\[a(X) :- \neg \text{na}(X), \text{num}(X). \quad \text{na}(X) :- \neg a(X), \text{num}(X). \]

\[:- 2 \{ \ a(X) : \text{num}(X) \ \} \ 2. \]
Values can be associated to a variable within the scope of the whole logic program.

#domain encodes the possible values in a given domain:

```
#domain a(X). a(1..10).
```

will replace occurrences of X by integers from 1 to 10.

Example

I want all tuples (x,y) (x and y integers between 1 and 10).

```
a(1..10).    b(1..10).
tuple(X,Y) :- a(X), b(Y).
```

```
#domain a(X). a(1..10).
#domain a(Y). tuple(X,Y).
```
Values can be associated to a variable within the scope of the whole logic program

#domain encodes the possible values in a given domain:
#domain a(X). a(1..10).
will replace occurrences of X by integers from 1 to 10

Example
I want all tuples (x,y) (x and y integers between 1 and 10).

a(1..10). b(1..10).
tuple(X,Y) :- a(X), b(Y).

#domain a(X). a(1..10).
#domain a(Y). tuple(X,Y).
Values can be associated to a variable within the scope of the whole logic program.

#domain encodes the possible values in a given domain:
#domain a(X). a(1..10).
will replace occurrences of X by integers from 1 to 10.

Example

I want all tuples (x,y) (x and y integers between 1 and 10).

a(1..10). b(1..10).
tuple(X,Y) :- a(X), b(Y).

#domain a(X). a(1..10).
#domain a(Y). tuple(X,Y).
Domains can be restricted thanks to relations. The rule
\[\text{:- size}(X,Y), X<Y. \]
will be instantiated only for value of \(X\) and \(Y\) s.t. \(X<Y\).

Example

I want all tuples \((x,y)\) (\(x\) and \(y\) integers between 1 and 10) s.t. \(x<y\).

\begin{verbatim}
a(1..10). b(1..10).
tuple(X,Y) :- a(X), b(Y), X<Y.
\end{verbatim}

\begin{verbatim}
#domain a(X). a(1..10).
#domain a(Y). tuple(X,Y) :- X<Y.
\end{verbatim}
Domains can be restricted thanks to relations. The rule

```
:- size(X,Y), X<Y.
```

will be instantiated only for value of X and Y s.t. X<Y.

Example

I want all tuples \((x,y)\) (x and y integers between 1 and 10) s.t. \(x<y\).

```
a(1..10).  b(1..10).
tuple(X,Y) :- a(X), b(Y), X<Y.
```

```
#domain a(X).  a(1..10).
#domain a(Y).  tuple(X,Y) :- X<Y.
```
Domains can be restricted thanks to relations. The rule
\[\text{:- size}(X,Y), X < Y. \]
will be instantiated only for values of \(X \) and \(Y \) s.t. \(X < Y \).

Example

I want all tuples \((x,y)\) (\(x \) and \(y \) integers between 1 and 10) s.t. \(x < y \).

\[
\text{a}(1..10). \quad \text{b}(1..10).
\]
\[
\text{tuple}(X,Y) :- \text{a}(X), \text{b}(Y), X < Y.
\]

\#domain a(X). a(1..10).
\#domain a(Y). tuple(X,Y) :- X < Y.
Domains can be restricted thanks to relations. The rule
\[:- \text{size}(X,Y), \ X<Y. \]
will be instantiated only for value of \(X\) and \(Y\) s.t. \(X<Y\).

Example

Queen problem with board of size 5.

```prolog
row(1..5). col(1..5).
{queen(I,J) : row(I) : col(J)}. 
:- not 5 {queen(I,J)} 5. 
:- queen(I,J), queen(I, JJ), J != JJ. 
:- queen(I,J), queen(II,J), I != II. 
:- queen(I,J), queen(II, JJ), (I,J) != (II, JJ), I-J == II-JJ. 
:- queen(I,J), queen(II, JJ), (I,J) != (II, JJ), I+J == II+JJ. 
```
Domains can be restricted thanks to relations. The rule
:- size(X,Y), X<Y.
will be instantiated only for value of X and Y s.t. X<Y.

Example

Queen problem with board of size 5.

\[
\begin{align*}
\text{row}(1..5). & \quad \text{col}(1..5). \\
\{\text{queen}(I,J) : \text{row}(I) : \text{col}(J)\}. \\
:- & \text{not } 5 \{\text{queen}(I,J)\} 5. \\
:- & \text{queen}(I,J), \text{queen}(I,JJ), J \neq JJ. \\
:- & \text{queen}(I,J), \text{queen}(II,J), I \neq II. \\
:- & \text{queen}(I,J), \text{queen}(II,JJ), (I,J) \neq (II,JJ), I-J = II-JJ. \\
:- & \text{queen}(I,J), \text{queen}(II,JJ), (I,J) \neq (II,JJ), I+J = II+JJ.
\end{align*}
\]
A subset of answer sets can be selected according to some optimization criteria.

#minimize{a,b,c,d}.

will choose the answer sets with the lesser number of atoms from \{a,b,c,d\}.

Attention: Does not change the SAT/UNSAT question, just the answer sets themselves.
The language is even bigger than that! It includes

- Disjunction in the head
- Other operators: #sum, #min, #max, #even, #odd, #avg, ...
- Multi-criteria optimizations
- Heuristic optimizations
- ...

AnsProlog (Miscellaneous)
Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smoodels.
Example

```prolog
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).
```

```
1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2 d(1) 3 c(1) 4 d(2)
5 c(2) 6 a(1) 7 a(2)
```
Example

```prolog
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1).  a(2).
c :- not d(1).  c :- not d(2).
d :- not c(1).  d :- not c(2).
```

```
1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2  d(1)  3  c(1)  4  d(2)
5  c(2)  6  a(1)  7  a(2)
```
Example

```prolog
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).
```

```
1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2 d(1) 3 c(1) 4 d(2)
5 c(2) 6 a(1) 7 a(2)
```
Guess - check - optimize

How to represent a problem in ASP?

- First, define what is a "solution candidate"
- Second, verify it fits the constraints
- Then, keep only the best answer sets

Example

```prolog
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.

#maximize { clique(X) : node(X) }.
```

November 25, 2013 Nebel, WölfI, Hué – KRR
Guess - check - optimize

How to represent a problem in ASP?

- First, define what is a "solution candidate"
- Second, verify it fits the constraints
- Then, keep only the best answer sets

Example

```prolog
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

uedge(X,Y) :- edge(X,Y), X < Y.
uedge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not uedge(X,Y), X < Y.

#maximize { clique(X) : node(X) }.
```

November 25, 2013 Nebel, Wölfli, Hué – KRR
Another Example: Sudoku

Example

\[\text{#domain } \text{num}(X). \text{#domain } \text{num}(X1). \text{#domain } \text{num}(Z).\]
\[\text{#domain } \text{num}(Y). \text{#domain } \text{num}(Y1).\]
\[\text{#domain } \text{three}(W). \text{#domain } \text{three}(W1). \text{#domain } \text{three}(W2).\]
\[\text{#domain } \text{three}(W3). \text{#domain } \text{three}(W4). \text{#domain } \text{three}(W5).\]
\[\text{num}(1..9). \text{three}(1..3).\]

\[\text{sol}(2,6,3). \text{sol}(2,8,8). \text{sol}(2,9,5).\]
\[\text{sol}(3,3,1). \text{sol}(3,5,2). \text{sol}(4,4,5).\]
\[\text{sol}(4,6,7). \text{sol}(5,3,4). \text{sol}(5,7,1).\]
\[\text{sol}(6,2,3). \text{sol}(7,1,5). \text{sol}(7,8,7).\]
\[\text{sol}(7,9,3). \text{sol}(8,3,2). \text{sol}(8,5,1).\]
\[\text{sol}(9,5,4). \text{sol}(9,9,9).\]
\[1 \{ \text{sol}(X,Y,A) : \text{num}(A) \} 1.\]
\[:- \text{sol}(X,Y,Z), \text{sol}(X,Y1,Z), Y \neq Y1.\]
\[:- \text{sol}(X,Y,Z), \text{sol}(X1,Y,Z), X \neq X1.\]
\[:- \text{sol}(W*3+W2,W1*3+W3,Z), \text{sol}(W*3+W4,W1*3+W5,Z), W3 \neq W5.\]
\[:- \text{sol}(W*3+W2,W1*3+W3,Z), \text{sol}(W*3+W4,W1*3+W5,Z), W2 \neq W4.\]
Smodes is:
- a Branch and Bound algorithm;
- based on the Gelfond-Lifschitz reduct;
- using reduct as a Forward-Checking procedure.

Example

\[a \leftarrow \neg b. \]
\[b \leftarrow \neg a. \]
\[c \leftarrow \neg c, a. \]

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\times \\
\times \\
\times \\
\times \\
\sqrt
\end{array}
\]

\[
\begin{array}{c}
\neg a \\
\neg b \\
\neg b \\
\times \\
\times \\
\times \\
\times
\end{array}
\]
Algorithm 1 Smoodels algorithm

1: $A := \text{expand}(P, A)$
2: $A := \text{lookahead}(P, A)$
3: if $\text{conflict}(P, A)$ then
4: return false
5: else if A covers $\text{Atoms}(P)$ then
6: return $\text{stable}(P, A)$
7: else
8: $x := \text{heuristic}(P, A)$
9: if $\text{smodels}(P, A \cup \{X\})$ then
10: return true
11: else
12: return $\text{smodels}(P, A \cup \{\text{not } X\})$
13: end if
14: end if
Smodels example (I)

Example

(1) $a \leftarrow \text{not } b, \text{not } d$.
(2) $d \leftarrow \text{not } a$.
(3) $b \leftarrow \text{not } c$.
(4) $c \leftarrow \text{not } a$.
(5) $e \leftarrow \text{not } f, \text{not } a$.
(6) $f \leftarrow \text{not } e$.

Case 1:

$a \subseteq X$ (4) cannot be fired, $\rightarrow c \not\subseteq X$;

(3) becomes c, $\rightarrow b \subseteq X$;

(1) cannot be fired, $\rightarrow a \not\subseteq X$;

$a \not\subseteq X$ and $a \subseteq X$, \rightarrow contradiction.

Case 2:

$a \not\subseteq X$ (2) becomes d, $\rightarrow d \subseteq X$;

(4) becomes c, $\rightarrow c \subseteq X$;

(3) cannot be fired, $\rightarrow b \not\subseteq X$;

(1) cannot be fired, $\rightarrow a \not\subseteq X$;

Nothing new to be expanded.
Smodels example (I)

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a ← not b, not d.</td>
</tr>
<tr>
<td>2</td>
<td>d ← not a.</td>
</tr>
<tr>
<td>3</td>
<td>b ← not c.</td>
</tr>
<tr>
<td>4</td>
<td>c ← not a.</td>
</tr>
<tr>
<td>5</td>
<td>e ← not f, not a.</td>
</tr>
<tr>
<td>6</td>
<td>f ← not e.</td>
</tr>
</tbody>
</table>

Case 1: a ⊆ X

- (4) cannot be fired,
 → c ∉ X;
- (3) becomes c,
 → b ⊆ X;
- (1) cannot be fired,
 → a ∉ X;
- a ∉ X and a ⊆ X,
 → contradiction.

Case 2: a ⊈ X

- (2) becomes d,
 → d ⊆ X;
- (4) becomes c,
 → c ⊆ X;
- (3) cannot be fired,
 → b ⊈ X;
- (1) cannot be fired,
 → a ⊈ X;
- Nothing new to be expanded.
Interpretation and Satisfiability

Formal properties of answer sets

Language and notations

Computation

SAT translations of ASP

Smodels example (I)

Example

(1) $a \leftarrow \neg b, \neg d$.
(2) $d \leftarrow \neg a$.
(3) $b \leftarrow \neg c$.
(4) $c \leftarrow \neg a$.
(5) $e \leftarrow \neg f, \neg a$.
(6) $f \leftarrow \neg e$.

Case 1: $a \subseteq X$

- (4) cannot be fired,
 $\rightarrow c \not\subseteq X$;

- (3) becomes c,
 $\rightarrow b \subseteq X$;

- (1) cannot be fired,
 $\rightarrow a \not\subseteq X$;

- $a \not\subseteq X$ and $a \subseteq X$,
 \rightarrow contradiction.

Case 2: $a \not\subseteq X$

- (2) becomes d,
 $\rightarrow d \subseteq X$;

- (4) becomes c,
 $\rightarrow c \subseteq X$;

- (3) cannot be fired,
 $\rightarrow b \not\subseteq X$;

- (1) cannot be fired,
 $\rightarrow a \not\subseteq X$;

- Nothing new to be expanded.
Smodels example (II)

Example

(1) \(a \leftarrow \neg b, \neg d\).
(2) \(d \leftarrow \neg a\).
(3) \(b \leftarrow \neg c\).
(4) \(c \leftarrow \neg a\).
(5) \(e \leftarrow \neg f, \neg a\).
(6) \(f \leftarrow \neg e\).

Case 2.1: \(e \subseteq X\)

After reduction:

\(e \leftarrow \neg f\), \(f \leftarrow \neg e\).

- (6) cannot be fired,
 \(\rightarrow f \not\subseteq X\);
- (5) becomes \(e\),
 \(\rightarrow e \subseteq X\);
- \(X\) covers all atoms, there is no contradiction.

Solution: \(\{c, d, e\}\) is a stable model.
SAT translations of ASP
Definition (Dependency graph)

The dependency graph of a program Π is the directed graph G such that the vertexes of G are the atoms in Π, and G has an edge from a_0 to a_1, \ldots, a_m for each rule of the form $a_0 \leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n$ in Π with $a_0 \neq \bot$.

Example

\[\Pi = \{ a \leftarrow b. \quad b \leftarrow a. \quad a \leftarrow \text{not } c. \quad c \leftarrow d. \quad d \leftarrow c. \quad c \leftarrow \text{not } a. \} \]
Clark’s completion

- For each \(p \in \text{Atoms}(\Pi) \), let \(p \leftarrow B_1, \ldots, p \leftarrow B_n \) be all the rules about \(p \in \Pi \), then \(p \equiv B_1 \lor \ldots \lor B_n \) is in \(\text{Comp}(\Pi) \). In particular, if \(n = 0 \) then the equivalence is \(p \equiv \bot \), which is equivalent to \(\neg p \).

- If \(\leftarrow B \) is a constraint in \(\Pi \), then \(\neg B \) is in \(\text{Comp}(\Pi) \).

Example

\[
\Pi = \begin{cases}
 a \leftarrow b. & b \leftarrow a. & a \leftarrow \neg c. \\
 c \leftarrow d. & d \leftarrow c. & c \leftarrow \neg a.
\end{cases}
\]

\[
\text{Comp}(\Pi) = \begin{cases}
 a \equiv \neg c \lor b & b \equiv a \\
 c \equiv \neg a \lor d & d \equiv c
\end{cases}
\]

\(\text{Comp}(\Pi) \) has 3 models: \(\{a, b\} \), \(\{c, d\} \) and \(\{a, b, c, d\} \).
Tight programs

Definition (Tight program)

A logic program Π is said to be **tight** (or positive-order consistent) if its dependency graph is cycle-free.

Example

$$\Pi = \{ \begin{array}{l}
d \leftarrow b. \\
b \leftarrow a. \\
a \leftarrow \text{not} c. \\
d \leftarrow b. \\
b \leftarrow c. \\
c \leftarrow \text{not} a. \\
\end{array} \}$$

A graph representing the tight program:

- **a** → **b** → **d**
- **c** → **b**
Interpretation and Satisfiability

Proposition

If Π is a positive-order consistent logic program, then X is an answer set of Π if and only if X is a model of Comp(Π).

Example

\[
\Pi = \begin{cases}
 a & \leftarrow b, \\
 b & \leftarrow a, \\
 a & \leftarrow \text{not}c, \\
 c & \leftarrow d, \\
 d & \leftarrow c, \\
 c & \leftarrow \text{not}a.
\end{cases}
\]

\[
\text{Comp}(\Pi) = \begin{cases}
 a & \equiv \neg c \lor b, \\
 b & \equiv a, \\
 c & \equiv \neg a \lor d, \\
 d & \equiv c.
\end{cases}
\]

\text{Comp}(\Pi) has 3 models: \{a,b\}, \{c,d\} and \{a,b,c,d\}.
Tightness and Clark’s completion (proof)

Definition (Well-supported model)

M is a **well-supported model** of Π if there exists a grounding sequence for M, i.e., there exists an order $<$ between rules such that for every rule $r \in \Pi$ with $a = \text{head}(r)$ and $M \models \text{body}(r)$, then $\forall b \in \text{body}^+(r), b < a$.

Theorem

*If Π is a tight logic program then the model of $\text{Comp}(\Pi)$ are exactly the answer sets of Π.***
Tightness and Clark’s completion (proof)

Proof.

⇒ If X is an answer set of Π, then it is a well-supported model of Π, then it is a minimal Herbrand model of Π, then it is a model of $\text{Comp}(\Pi)$.

⇐ Assume that M is model of $\text{Comp}(\Pi)$ but not a well-supported model of Π. $\exists x \in M$ that cannot be finitely justified. M being a supported model of (Π), then $\exists r \in \Pi$ with $x = \text{head}(r)$ and $M \models \text{body}(r)$. Thus, there exists $y \in M$ which is upper in the dependency graph that cannot be justified and thus, there exists a $z \in M$ such that, etc... There is an infinite chain in the dependency graph which is contradictory with the tightness hypothesis.

\[\square\]
Loops

Definition (Loop)

A loop of \(\Pi \) is a set \(L \) of atoms such that for each pair \(A, A' \) of atoms in \(L \) there is a path from \(A \) to \(A' \) in the dependency graph of \(\Pi \) whose intermediate nodes belong to \(L \).

\[
R^+(L, \Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \text{ s.t. } q \in G \land q \in L \} \\
R^-(L, \Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) \text{ s.t. } q \in G \land q \in L \}
\]

Example

\[\Pi = \{ a \leftarrow b. \ b \leftarrow a. \ a \leftarrow \text{not}c. \ c \leftarrow d. \ d \leftarrow c. \ c \leftarrow \text{not}a. \} \]

\[
R^+(L_1, \Pi) = \{ a \leftarrow b. \ b \leftarrow a. \} \\
R^+(L_2, \Pi) = \{ c \leftarrow d. \ d \leftarrow c. \} \\
R^-(L_1, \Pi) = \{ a \leftarrow \text{not}c. \} \\
R^-(L_2, \Pi) = \{ c \leftarrow \text{not}a. \}
\]
Loop formulas

Definition (Loop formulas)

Let $R^-(L, \Pi)$ be the following rules:

$$
p_1 \leftarrow B_{11} \quad \cdots \quad p_1 \leftarrow B_{1k_1} \\
\vdots \\
p_n \leftarrow B_{n1} \quad \cdots \quad p_n \leftarrow B_{nk_n}
$$

The loop formula associated with L is the following implication:

$$\neg [B_{11} \lor \cdots \lor B_{1k_1} \lor \cdots \lor B_{n1} \lor \cdots \lor B_{nk_n}] \rightarrow \bigwedge_{p \in L} \neg p$$

Example

$$R^+(L_1, \Pi) = \{ a \leftarrow b. \ b \leftarrow a. \} \quad R^-(L_1, \Pi) = \{ a \leftarrow \text{not} \ c. \}$$

$$R^+(L_2, \Pi) = \{ c \leftarrow d. \ d \leftarrow c. \} \quad R^-(L_2, \Pi) = \{ c \leftarrow \text{not} \ a. \}$$

$$LF(L_1) : c \rightarrow (\neg a \land \neg b) \quad LF(L_2) : a \rightarrow (\neg c \land \neg d)$$
Clark + loop formulae

Theorem

Let \(\Pi \) be a logic program, then the models of \(\text{Comp}(\Pi) \cup \text{LF}(\Pi) \) are exactly the answer sets of \(\Pi \).

Example

\[
\Pi = \left\{ \begin{array}{l}
 a \leftarrow b. \\
 b \leftarrow a. \\
 a \leftarrow \neg c. \\
 c \leftarrow d. \\
 d \leftarrow c. \\
 c \leftarrow \neg a.
\end{array} \right\}
\]

\[
\text{Comp}(\Pi) \cup \text{LF}(\Pi) = \left\{ \begin{array}{l}
 a \equiv \neg c \lor b \\
 b \equiv a \\
 c \equiv \neg a \lor d \\
 d \equiv c \\
 c \rightarrow (\neg a \land \neg b) \\
 a \rightarrow (\neg c \land \neg d)
\end{array} \right\}
\]
CLASP translation I

Definition (Body clauses)

Let β be a body of a rule $\beta = \{p_1, \ldots, p_m, \neg p_{m+1}, \ldots, \neg p_n\}$, then:

- $\delta(\beta) = \{\beta \lor \neg p_1 \lor \ldots \lor p_m \lor \neg p_{m+1} \lor \ldots \lor \neg p_n\}$
- $\Delta(\beta) = \{\neg \beta \lor p_1\}, \ldots, \{\neg \beta \lor p_m\}, \{\neg \beta \lor \neg p_{m+1}\}, \ldots, \{\neg \beta \lor \neg p_n\}$

Example

\[
\Pi = \left\{ \begin{array}{llllll}
 a & \leftarrow & b. & b & \leftarrow & a. & a & \leftarrow & \neg c. \\
 c & \leftarrow & d. & d & \leftarrow & c. & c & \leftarrow & \neg a. \\
\end{array} \right\}
\]

\[
\Pi = \left\{ \begin{array}{llllllll}
 \beta_1 \lor \neg b & \beta_2 \lor \neg a & \beta_3 \lor c & \beta_4 \lor \neg d & \beta_5 \lor \neg c & \beta_6 \lor a \\
 \neg \beta_1 \lor b & \neg \beta_2 \lor a & \neg \beta_3 \lor \neg c & \neg \beta_4 \lor d & \neg \beta_5 \lor c & \neg \beta_6 \lor \neg a \\
\end{array} \right\}
\]
CLASP translation II

Definition (Atoms clauses)

Let \(p \) be an atom appearing as head of rules whose body are \(\{\beta_1, ..., \beta_k\} \), then:

\[\Delta(p) = \{\{p \lor \neg \beta_1\}, ..., \{p \lor \neg \beta_k\}\} \]

\[\delta(p) = \{\neg p \lor \beta_1 \lor ... \lor \beta_k\} \]

Example

\[\Pi = \begin{cases} a & \leftarrow b. \\ b & \leftarrow a. \\ a & \leftarrow \text{not}\ c. \\ c & \leftarrow d. \\ d & \leftarrow c. \\ c & \leftarrow \text{not}\ a. \end{cases} \]

\[\Pi = \begin{cases} a \lor \neg \beta_1 & b \lor \neg \beta_2 & a \lor \neg \beta_3 & c \lor \neg \beta_4 \\ d \lor \neg \beta_5 & c \lor \neg \beta_6 \\ \neg a \lor \beta_1 \lor \beta_3 & \neg b \lor \beta_2 & \neg c \lor \beta_4 \lor \beta_6 & \neg d \lor \beta_5 \end{cases} \]
Definition (External body)

For a program Π and some $U \subseteq \text{Atoms}(\Pi)$, we define the external bodies of U for Π, $EB_\Pi(U)$ as

$$\{ \text{body}(r) \mid r \in \Pi, \text{head}(r) \in U, \text{body}(r) \cap U = \emptyset \}$$

Definition (Loop clause)

For a set $U \subseteq \text{Atoms}(\Pi)$ and an atom $p \in U$:

$$\lambda(p, U) = \{ \beta_1 \lor \ldots \lor \beta_k \lor \neg p \}$$

where $EB_\Pi(U) = \{ \beta_1, \ldots, \beta_k \}$.

We define $\Lambda_\Pi = \bigcup_{U \subseteq \text{Atoms}(\Pi), U \neq \emptyset} \{ \lambda(p, U) \mid p \in U \}$.
Proposition

\[X \text{ is an answer set of } \Pi \text{ iff } X \cap \text{Atoms}(\Pi) \text{ is a model of the following CNF:} \]

\[\Lambda_\Pi \cup \Delta(p) \cup \delta(p) \cup \delta(\beta) \cup \Delta(\beta) \]
Literature

Michael Gelfond and Vladimir Lifschitz.
The stable models semantics for logic programming.

Francois Fages.
Consistency of Clark’s completion and existence of stable models.
Meth. of Logic in CS, p51-60, 1994.

Hudson Turner.
Strong equivalence made easy: nested expressions and weight constraints.
Interpretation and Satisfiability

SAT translations of ASP
Positive-order consistent logic programs
Clark's completion
CLASP solver

Literature

Martin Gebser and Benjamin Kaufmann and André Neumann and Torsten Schaub.

Conflict-Driven Answer Set Solving.

Ilkka Niemelä and Patrik Simons

Efficient Implementation of the Well-founded and Stable Model Semantics.