Interpretation and Satisfiability of ASP

Negation as failure

- Another interpretation for negation: \(\neg x \equiv \text{"I cannot show that } x \text{ is true"} \)
- For example, you are innocent until proven guilty

Example

\[
\text{innocent } \leftarrow \text{not guilty}.
\]

Nonmonotonic logic programs: background

- **Answer set semantics**: a formalization of negation as failure in logic programming (Prolog)
- Several formalizations: well-founded semantics, perfect-model semantics, inflationary semantics, ...
- Can be viewed as a simpler variant of default logic
Let \mathcal{A} be a set of first-order atoms.

Rules:
\[c \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k \]
where \(\{c, b_1, \ldots, b_m, d_1, \ldots, d_k\} \subseteq \mathcal{A}\)

- Meaning similar to default logic:
 - If we have derived b_1, \ldots, b_m and cannot derive any of d_1, \ldots, d_k,
 - then derive c.
- Rules without right-hand side (facts): $c \leftarrow \top$
- Rules without left-hand side (constraints):
 - $\bot \leftarrow b_1, \ldots, b_m, \neg d_1, \ldots, \neg d_k$

Example

\[\text{fly}(\text{tweety}) \leftarrow \text{bird}(\text{tweety}), \neg \text{abnormal}(\text{tweety}). \]
\[\text{bird}(\text{tweety}) \leftarrow \text{penguin}(\text{tweety}). \]
\[\text{abnormal}(\text{tweety}) \leftarrow \text{penguin}(\text{tweety}). \]
Herbrand base and Grounded rules

- The Herbrand Universe, denoted by U_Π, is the set of ground terms constructed from the function symbols and constants in Π.
- The Herbrand Base, denoted by B_Π, is the set of ground atoms constructed from predicate symbols and ground terms from the Herbrand Universe.
- From now on, a program will refer to the set of its grounded rules.
- The set of atoms in Π is denoted by $\text{Atoms}(\Pi)$.

Satisfaction

An Herbrand Interpretation is a subset I of the Herbrand Base.

- $I \models a$ if $a \in I$.
- $I \models \text{head}(r)$ if $\text{head}(r) \cap I \neq \emptyset$.
- $I \models \text{body}(r)$ if $\text{body}^+(r) \subseteq I$ and $\text{body}^-(r) \cap I \neq \emptyset$.
- I satisfies a rule r if $I \models \text{head}(r)$ or $I \models \text{body}(r)$.
- I satisfies a program if it satisfies all its rules.

Idea

The idea is that a solution should both satisfying AND justified.

not-free logic programs

Definition (Answer Set)

Let Π be a logic program without not, $X \subseteq \text{Atoms}(\Pi)$. X is the unique Answer Set of Π if it is the least fixpoint of $\Gamma_\Pi(X) = \{\text{head}(r) \mid X \models \text{body}(r)\}$.

Example

$$\Pi = \{\text{fly}(X) \leftarrow \text{bird}(X), \text{not abnormal}(X). \}$$

$$U_\Pi = \{t\}$$

$$B_\Pi = \{\text{fly}(t), \text{bird}(t), \text{abnormal}(t), \text{penguin}(t)\}$$

$$\Gamma_0 = \Gamma(\emptyset) = \{b\}$$

$$\Gamma_1 = \Gamma(\Gamma_0) = \{b,d,a\}$$

$$\Gamma_2 = \Gamma(\Gamma_1) = \{b,d,a,c\}$$

$$\Gamma_3 = \Gamma(\Gamma_2) = \{b,d,a,c\} = \Gamma_2$$
Definition 1: Gelfond-Lifschitz reduct

- Deleting all rules whose negative part contradicts \(X \)
- Removing all negated atoms from the remaining rules

Definition (Reduct)
The reduct of a program \(\Pi \) with respect to a set of atoms \(X \subseteq \text{Atoms}(\Pi) \) is defined as:

\[
\Pi^X := \{ \text{head}(r) \leftarrow \text{body}^+(r) \mid r \in \Pi, \text{body}^-(r) \cap X = \emptyset \}
\]

Definition (Answer set)
\(X \subseteq \text{Atoms}(\Pi) \) is an answer set of \(\Pi \) if \(X \) is an answer set of \(\Pi^X \).

Complexity: existence of answer sets is NP-complete

1. Membership in NP: Guess \(X \subseteq \text{Atoms}(\Pi) \) (nondet.
polytime), compute \(\Pi^X \), compute its closure, compare to \(X \) (everything det.
polytime).
2. NP-hardness: Reduction from 3SAT: an answer set exists iff clauses are satisfiable:

\[
p \leftarrow \neg \hat{p}. \quad \hat{p} \leftarrow \neg p.
\]

for every proposition \(p \) occurring in the clauses, and

\[
\leftarrow \neg \hat{l}'_1, \neg \hat{l}'_2, \neg \hat{l}'_3
\]

for every clause \(l_1 \lor l_2 \lor l_3 \), where \(\hat{l}'_i = p \) if \(l_i = p \) and \(\hat{l}'_i = \hat{p} \) if \(l_i = \neg p \).

Some properties I

Proposition
If an atom \(A \) belongs to an answer set of a logic program \(\Pi \) then \(A \) is the head of one of the rules of \(\Pi \).

Proposition
Let \(F \) and \(G \) be sets of rules and let \(X \) be a set of atoms. Then the following holds:

\[
(F \cup G)^X = \begin{cases} F^X \cup G^X, & \text{if } X \models F \cup G \\ \bot, & \text{otherwise} \end{cases}
\]
Some properties II

Proposition

Let F be a set of (non-constraint) rules and G be a set of constraints. A set of atoms X is an answer set of $F \cup G$ iff it is an answer set of F which satisfies G.

Proof.

\Rightarrow X satisfies $F \cup G$. Then X satisfies the constraints in G and $(F \cup G)^X$ whose least fixpoint is the same as $F^X \cup \neg \bot$ which is equivalent to F^X. Consequently X is minimal among the sets satisfying F^X if it is minimal among the sets satisfying $(F \cup G)^X$.

\Leftarrow X does not satisfy $F \cup G$. Then there exists a rule in F or a rule in G which is not satisfied, then X cannot be a model of F that satisfies G.

AnsProlog and Solvers

Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.

The lparse format: AnsProlog

- propositions are any combination of lowercase letters;
- variables are any combination of letters starting with an uppercase letter;
- integers can be used and so can arithmetic operations (+, −, *, /, %).
- negation as failure is denoted by not.
- implication is denoted by " :- ".

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

a(1) :- not na(1). na(1) :- not a(1).
a(2) :- not na(2). na(2) :- not a(2).
a(3) :- not na(3). na(3) :- not a(3).

\{ a(1), a(2), a(3) \}.

AnsProlog (choice functions)

- The literal \{b1, ..., bm\} is true iff any subset of the set \{b1, ..., bm\} is true;

Example

I want all interpretations over \{a(1), a(2), a(3)\}.

a(1) :- not na(1). na(1) :- not a(1).
a(2) :- not na(2). na(2) :- not a(2).
a(3) :- not na(3). na(3) :- not a(3).

\{ a(1), a(2), a(3) \}.

- The #hide statement can hide literals from the solution
Remember that a literal $l\{b_1,\ldots,b_m\}u$ is true if at least l and at most u atoms (included) are true within the set $\{b_1,\ldots,b_m\}$.

Example

I want all interpretations over $\{a(1),a(2),a(3)\}$ that contain 2 true atoms.

$$\exists (a(1),a(2),a(3))$$ \iff 2

I want all interpretations over $\{a(1),a(2),a(3)\}$ that do not contain 2 true atoms.

$$\{a(1),a(2),a(3)\}$$ \iff \neg 2

The domains of a variable can be set literal-wise, rule-wise or program-wise.

Example

For a scope limited to a rule:

$$a(X) := \neg na(X), \text{num}(X).$$

X takes all the values for which $\text{num}(X)$ is stated as a fact.

Example

I want all tuples (x,y) (x and y integers between 1 and 10).

$$\text{num}(1..10). a(X) := \neg \text{na}(X), \text{num}(X).$$

$$\text{na}(X) := \neg a(X), \text{num}(X).$$

$$\exists (a(X) : \text{num}(X)).$$

$$\neg 2 \{ a(X) : \text{num}(X) \}.$$
AnsProlog (Domain restriction)

- Domains can be restricted thanks to relations. The rule:
 \[- \text{size}(X,Y), X < Y.\]
 will be instantiated only for value of X and Y s.t. X < Y.

Example

I want all tuples (x,y) (x and y integers between 1 and 10) s.t. x < y.

\[a(1..10). \quad b(1..10). \quad \text{tuple}(X,Y) :- a(X), b(Y), X < Y.\]

AnsProlog (optimization)

- A subset of answer sets can be selected according to some optimization criteria.
 \[\#\text{minimize}\{a,b,c,d\}.\]
 will choose the answer sets with the lesser number of atoms from \{a,b,c,d\}.
 Attention: Does not change the SAT/UNSAT question, just the answer sets themselves.

AnsProlog (Miscellaneous)

The language is even bigger than that! It includes:
- Disjunction in the head
- Other operators: \#sum, \#min, \#max, \#even, \#odd, \#avg, ...
- Multi-criteria optimizations
- Heuristic optimizations
- ...
AnsProlog and Solvers

- Based on the Gelfond-Lifschitz reduction, Syrjanen created the ASP solver Smodels.

AnsProlog

Preprocessing

Smodels

Solving

Solution

Lparse and smodels II

Example

```prolog
#domain a(X). a(1..2).
c(X) :- not d(X). d(X) :- not c(X).

a(1). a(2).
c :- not d(1). c :- not d(2).
d :- not c(1). d :- not c(2).
```

1 2 1 1 3
1 4 1 1 5
1 3 1 1 2
1 5 1 1 4
1 6 0 0
1 7 0 0
0
2 d(1) 3 c(1) 4 d(2)
5 c(2) 6 a(1) 7 a(2)
```

Guess - check - optimize

How to represent a problem in ASP?
- First, define what is a "solution candidate"
- Second, verify it fits the constraints
- Then, keep only the best answer sets

**Example**

```prolog
#domain node(X). #domain node(Y).
node(1..5). edge(1,2). edge(3,4).
edge(4,5). edge(4,2). edge(1,4).

edge(X,Y) :- edge(X,Y), X < Y.
edge(Y,X) :- edge(X,Y), Y < X.

{ clique(X) : node(X) }.
:- clique(X), clique(Y), not edge(X,Y), X < Y.
```

```prolog
#maximize { clique(X) : node(X) }.
```

Another Example: Sudoku

**Example**

```prolog
#domain num(X). #domain num(X1). #domain num(Y).
#domain num(Y1). #domain num(Z).
#domain three(W). #domain three(W1). #domain three(W2).
#domain three(W3). #domain three(W4). #domain three(W5).
num(1..9). three(1..3).
sol(2,6,3). sol(2,8,8). sol(2,9,5).
sol(3,3,1). sol(3,5,2). sol(4,4,5).
sol(4,6,7). sol(5,3,4). sol(5,7,1).
sol(6,2,3). sol(7,1,5). sol(7,8,7).
sol(7,9,3). sol(8,3,2). sol(8,5,1).
sol(9,5,4). sol(9,9,9).
```

```prolog
1 { sol(X,Y,Z) : num(A) } 1.
:- sol(X,Y,Z), sol(X,Y1,Z), Y != Y1.
:- sol(X,Y,Z), sol(X1,Y,Z), X != X1.
```
Smodels: principles

Smodels is:
- a Branch and Bound algorithm;
- based on the Gelfond-Lifschitz reduct;
- using reduct as a Forward-Checking procedure.

Example

\[
\begin{array}{c}
a \leftarrow \neg b. \\
b \leftarrow \neg a. \\
c \leftarrow \neg c, a.
\end{array}
\]

Case 1: \( a \subseteq X \)
- (4) cannot be fired, \( \rightarrow c \not\subseteq X \);
- (3) becomes \( c \), \( \rightarrow b \not\subseteq X \);
- (1) cannot be fired, \( \rightarrow a \not\subseteq X \);
- \( a \not\subseteq X \) and \( a \subseteq X \), \( \rightarrow \) contradiction.

Case 2: \( a \not\subseteq X \)
- (2) becomes \( d \), \( \rightarrow d \subseteq X \);
- (4) becomes \( c \), \( \rightarrow c \subseteq X \);
- (3) cannot be fired, \( \rightarrow b \not\subseteq X \);
- \( a \not\subseteq X \) and \( a \subseteq X \), \( \rightarrow \) contradiction.

Smodels example (I)

Example

\[
\begin{array}{c}
(1) a \leftarrow \neg b, \neg d. \\
(2) d \leftarrow \neg a. \\
(3) b \leftarrow \neg c. \\
(4) c \leftarrow \neg a. \\
(5) e \leftarrow \neg f, \neg a. \\
(6) f \leftarrow \neg e.
\end{array}
\]

Case 1: \( a \subseteq X \)
- (4) cannot be fired, \( \rightarrow c \not\subseteq X \);
- (3) becomes \( c \), \( \rightarrow b \not\subseteq X \);
- (1) cannot be fired, \( \rightarrow a \not\subseteq X \);
- \( a \not\subseteq X \) and \( a \subseteq X \), \( \rightarrow \) contradiction.

Case 2: \( a \not\subseteq X \)
- (2) becomes \( d \), \( \rightarrow d \subseteq X \);
- (4) becomes \( c \), \( \rightarrow c \subseteq X \);
- (3) cannot be fired, \( \rightarrow b \not\subseteq X \);
- \( a \not\subseteq X \) and \( a \subseteq X \), \( \rightarrow \) contradiction.

Nothing new to be expanded.

Smodels example (II)

Example

\[
\begin{array}{c}
(1) a \leftarrow \neg b, \neg d. \\
(2) d \leftarrow \neg a. \\
(3) b \leftarrow \neg c. \\
(4) c \leftarrow \neg a. \\
(5) e \leftarrow \neg f, \neg a. \\
(6) f \leftarrow \neg e.
\end{array}
\]

Case 2.1: \( e \subseteq X \)

After reduction:
- \( e \leftarrow \neg f \).
- \( f \leftarrow \neg e \).
- (6) cannot be fired, \( \rightarrow f \not\subseteq X \);
- (5) becomes \( e \), \( \rightarrow e \subseteq X \);
- \( X \) covers all atoms, there is no contradiction.

Solution: \( \{c, d, e\} \) is a stable model.
Interpretation and Satisfiability
SAT Translations of ASP
Positive-order consistent logic programs
Clark’s completion
CLASP solver

2 SAT translations of ASP

- Positive-order consistent logic programs
- Clark’s completion
- CLASP solver

Dependency graph

Definition (Dependency graph)
The dependency graph of a program $\Pi$ is the directed graph $G$ such that the vertexes of $G$ are the atoms in $\Pi$, and $G$ has an edge from $a_0$ to $a_1, \ldots, a_m$ for each rule of the form $a_0 ← a_1, \ldots, a_m, \neg a_{m+1}, \ldots, \neg a_n$ in $\Pi$ with $a_0 \not= \bot$.

Example
$$\Pi = \{ a ← b. \ b ← a. \ a ← \neg c. \ c ← d. \ d ← c. \ c ← \neg a. \}$$

Tight programs

Definition (Tight program)
A logic program $\Pi$ is said to be tight (or positive-order consistent) if its dependency graph is cycle-free.

Example
$$\Pi = \{ d ← b. \ b ← a. \ a ← \neg c. \ c ← \neg a. \}$$
Tightness and Clark’s completion

Proposition

If \( \Pi \) is a positive-order consistent logic program, then \( X \) is an answer set of \( \Pi \) if and only if \( X \) is a model of \( \text{Comp}(\Pi) \).

Example

\[
\Pi = \{ a \leftarrow b. \quad b \leftarrow a. \quad a \leftarrow \text{not.c.} \}
\]

\[
\text{Comp}(\Pi) = \{ a \equiv \neg c \lor b \quad b \equiv a \}\quad\{ a \equiv \neg c \lor b \quad d \equiv c \}
\]

\( \text{Comp}(\Pi) \) has 3 models: \( \{a,b\}, \{c,d\} \) and \( \{a,b,c,d\} \).

Tightness and Clark’s completion (proof)

Proof.

\( \Rightarrow \) If \( X \) is an answer set of \( \Pi \), then it is a well-supported model of \( \Pi \), hence it is a minimal Herbrand model of \( \Pi \), then it is a model of \( \text{Comp}(\Pi) \).

\( \Leftarrow \) Assume that \( M \) is model of \( \text{Comp}(\Pi) \) but not a well-supported model of \( \Pi \). \( \exists x \in M \) that cannot be finitely justified. \( M \) being a supported model of \( \Pi \), then \( \exists x \in \Pi \) with \( x = \text{head}(r) \) and \( M \models \text{body}(r) \). Thus, there exists \( y \in M \) which is upper in the dependency graph that cannot be justified and thus, there exists a \( z \in M \) such that, etc... There is an infinite chain in the dependency graph which is contradictory with the tightness hypothesis.

Tightness and Clark’s completion (proof) (proof)

Definition (Well-supported model)

\( M \) is a well-supported model of \( \Pi \) if there exists a grounding sequence for \( M \), i.e., there exists an order \( < \) between rules such that for every rule \( r \in \Pi \) with \( a = \text{head}(r) \) and \( M \models \text{body}(r) \), then \( \forall b \in \text{body}^+(r), b < a \).

Theorem

If \( \Pi \) is a tight logic program then the model of \( \text{Comp}(\Pi) \) are exactly the answer sets of \( \Pi \).

Loops

Definition (Loop)

A loop of \( \Pi \) is a set \( L \) of atoms such that for each pair \( A,A' \) of atoms in \( L \) there is a path from \( A \) to \( A' \) in the dependency graph of \( \Pi \) whose intermediate nodes belong to \( L \).

\[
R^+(L,\Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) s.t. q \in G \land q \in L \} \\
R^-(L,\Pi) = \{ p \leftarrow G \mid (p \leftarrow G) \in \Pi, p \in L, (\exists q) s.t. q \in G \land q \in L \}
\]

Example

\[
\Pi = \{ a \leftarrow b. \quad b \leftarrow a. \quad a \leftarrow \text{not.c.} \}
\]

\[
R^+(L_1,\Pi) = \{ a \leftarrow b. \quad b \leftarrow a. \} \quad R^-(L_1,\Pi) = \{ a \leftarrow \text{not.c.} \}
\]

\[
R^+(L_2,\Pi) = \{ c \leftarrow d. \quad d \leftarrow c. \} \quad R^-(L_2,\Pi) = \{ c \leftarrow \text{not.a.} \}
\]
Loop formulas

Definition (Loop formulas)
Let $R^- (L, \Pi)$ be the following rules:
\[
p_1 \leftarrow B_{11} \ldots p_1 \leftarrow B_{1k_1} \\
\vdots \\
p_n \leftarrow B_{n1} \ldots p_n \leftarrow B_{nk_n}
\]
The loop formula associated with $L$ is the following implication:
\[
\neg [B_{11} \lor \ldots \lor B_{1k_1} \lor \ldots \lor B_{n1} \lor \ldots \lor B_{nk_n}] \rightarrow \bigwedge_{p \in L} \neg p
\]

Example
\[
R^+ (L_1, \Pi) = \{a \leftarrow b, b \leftarrow a\} \quad R^- (L_1, \Pi) = \{a \leftarrow \text{notc.}\} \\
R^+ (L_2, \Pi) = \{c \leftarrow d, d \leftarrow c\} \quad R^- (L_2, \Pi) = \{c \leftarrow \text{nota.}\}
\]
\[
LF (L_1): c \rightarrow (\neg a \land \neg b) \quad LF (L_2): a \rightarrow (\neg c \land \neg d)
\]

Clark + loop formulae

Theorem
Let $\Pi$ be a logic program, then the models of $\text{Comp}(\Pi) \cup LF(\Pi)$ are exactly the answer sets of $\Pi$.

Example
\[
\Pi = \{a \leftarrow b, b \leftarrow a, a \leftarrow \text{notc.}\}
\]
\[
\text{Comp}(\Pi) \cup LF(\Pi) = \{a \equiv \neg c \lor b, b \equiv a, c \equiv \neg a \lor d, d \equiv c, c \rightarrow (\neg a \land \neg b), a \rightarrow (\neg c \land \neg d)\}
\]

CLASP translation I

Definition (Body clauses)
Let $\beta$ be a body of a rule $\beta = \{\rho_1, ..., \rho_m, \text{not} \rho_{m+1}, ..., \text{not} \rho_n\}$, then:
\[
\delta(\beta) = \{\beta \lor \neg \rho_1 \lor \ldots \lor \neg \rho_{m+1} \lor \ldots \lor \neg \rho_n\}
\]
\[
\Delta(\beta) = \{\neg \beta \lor \rho_1, \ldots, \neg \beta \lor \rho_m, \neg \beta \lor \neg \rho_{m+1}, \ldots, \neg \beta \lor \neg \rho_n\}
\]

Example
\[
\Pi = \{a \leftarrow b, b \leftarrow a, a \leftarrow \text{notc.}\}
\]
\[
\Pi = \{\beta_1 \lor \neg b, \beta_2 \lor \neg a, \beta_2 \lor c, \beta_4 \lor \neg d, \beta_5 \lor \neg c, \beta_6 \lor a, \neg \beta_1 \lor b, \neg \beta_2 \lor a, \neg \beta_2 \lor c, \neg \beta_4 \lor d, \neg \beta_5 \lor c, \neg \beta_6 \lor a\}
\]

CLASP translation II

Definition (Atoms clauses)
Let $p$ be an atom appearing as head of rules whose body are $\{\beta_1, ..., \beta_k\}$, then:
\[
\Delta(p) = \{p \lor \neg \beta_1, ..., p \lor \neg \beta_k\}
\]
\[
\delta(p) = \{\neg p \lor \beta_1 \lor \ldots \lor \beta_k\}
\]

Example
\[
\Pi = \{a \leftarrow b, b \leftarrow a, a \leftarrow \text{notc.}\}
\]
\[
\Pi = \{a \lor \neg \beta_1, b \lor \neg \beta_2, a \lor \neg \beta_3, c \lor \neg \beta_4, a \lor \neg \beta_3 \land c \lor \neg \beta_4 \land d \lor \neg \beta_5, a \lor \neg \beta_1 \land \neg b \lor \beta_2, a \lor \neg \beta_3 \lor \beta_4 \lor \beta_5 \land \neg d \lor \beta_6\}
\]
CLASP translation III

Definition (External body)
For a program $\Pi$ and some $U \subseteq \text{Atoms}(\Pi)$, we define the external bodies of $U$ for $\Pi$, $EB_\Pi(U)$ as
\[
\{\text{body}(r) \mid r \in \Pi, \text{head}(r) \in U, \text{body}(r) \cap U = \emptyset\}
\]

Definition (Loop clause)
For a set $U \subseteq \text{Atoms}(\Pi)$ and an atom $p \in U$:
\[
\lambda(p, U) = \{\beta_1 \lor \ldots \lor \beta_k \lor \neg p\}
\]
where $EB_\Pi(U) = \{\beta_1, \ldots, \beta_k\}$.

We define $\Lambda_\Pi = \bigcup\limits_{U \subseteq \text{Atoms}(\Pi), U \neq \emptyset} \{\lambda(p, U) \mid p \in U\}$.

CLASP translation IV

Proposition
$X$ is an answer set of $\Pi$ iff $X \cap \text{Atoms}(\Pi)$ is a model of the following CNF:
\[
\Lambda_\Pi \cup \Delta(p) \cup \delta(p) \cup \delta(\beta) \cup \Delta(\beta)
\]

Literature