1 Motivation

Motivation for studying modal logics

- Notions like believing and knowing require a more general semantics than e.g. propositional logic has.
- Some KR formalisms can be understood as (fragments of) a propositional modal logic.
- Application 1: Spatial representation formalism RCC8
- Application 2: Description logics
- Application 3: Reasoning about time
- Application 4: Reasoning about actions, strategies, etc.

Motivation for modal logics

Often, we want to state something where we have an "embedded proposition":

- John believes that it is Sunday.
- I know that $2^{10} = 1024$.

Reasoning with embedded propositions:

- John believes that if it is Sunday, then shops are closed.
- John believes that it is Sunday.
- This implies (assuming belief is closed under modus ponens):
 John believes that shops are closed.

~⇒ How to formalize this?
2 Syntax

Motivation
Syntax
Semantics
Different Logics
Analytic Tableaux
Embedding in FOL
Outlook & literature

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 7 / 50

Syntax

Propositional logic + operators □ & ◊ (Box & Diamond):

\[\varphi \rightarrow \ldots \text{classical propositional formula} \]

<table>
<thead>
<tr>
<th>□\varphi'</th>
<th>Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>◊\varphi'</td>
<td>Diamond</td>
</tr>
</tbody>
</table>

□ and ◊ have the same operator precedence as ¬.

Some possible readings of □\varphi:
- Necessarily \varphi (alethic)
- Always \varphi (temporal)
- \varphi should be true (deontic)
- Agent A believes that \varphi (doxastic)
- Agent A knows that \varphi (epistemic)

\[\varphi \rightarrow \ldots \text{Different semantics for different intended readings} \]

3 Semantics

Motivation
Syntax
Semantics
Different Logics
Analytic Tableaux
Embedding in FOL
Outlook & literature

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 8 / 50

Truth-functional semantics?

- Is it possible to define the meaning of □\varphi truth-functionally, i.e. by referring to the truth value of \varphi only?
- An attempt to interpret necessity truth-functionally:
 - If \varphi is false, then □\varphi should be false.
 - If \varphi is true, then □\varphi should be true.

...□\varphi should be true \[\varphi \rightarrow □\varphi \] is the identity function
...□\varphi should be false \[\varphi \rightarrow □\varphi \] is identical to falsity

Note: There are only 4 different unary Boolean functions \[\{ T, F \} \rightarrow \{ T, F \} \].
For a given set of propositional variables

Definition (Kripke model)

For W non-empty set (of worlds) and A (Kripke, relational) frame is a pair

$R \subseteq W \times W$ is a binary relation on W (accessibility relation).

For $(w, v) \in R$ we write also $w R v$. We say that v is an R-successor of w or that v is R-reachable from w.

Definition (Kripke model)

For a given set of propositional variables Σ, a Kripke model (or interpretation) based on the frame $F = (W, R)$ is a triple

$I = (W, R, \pi)$, where π is a function that maps worlds w to truth assignments $\pi_w : \Sigma \rightarrow \{T, F\}$, i.e.:

$$\pi : W \rightarrow \{T, F\}^\Sigma, \ w \mapsto \pi_w.$$
Satisfiability and validity

A formula φ is **satisfiable in an interpretation** I if there exists a world w in I such that $I,w \models \varphi$.

A formula φ is **satisfiable in a frame** \mathcal{F} (satisfiable in a class of frames \mathcal{C}) if it is satisfiable in an interpretation I based on \mathcal{F} (satisfiable in an interpretation I based on some frame contained in \mathcal{C}).

A formula φ is **true in an interpretation** I (symbolically $I \models \varphi$) if φ is true in all worlds of I.

A formula φ is **valid in a frame** \mathcal{F} or \mathcal{F}-valid (symb. $\mathcal{F} \models \varphi$) if φ is true in all interpretations based on \mathcal{F}.

A formula φ is **valid in a class of frames** \mathcal{C} or \mathcal{C}-valid (symb. $\mathcal{C} \models \varphi$) if $\mathcal{F} \models \varphi$ for all $\mathcal{F} \in \mathcal{C}$.

Validities in K

K denotes the class of all frames – named after Saul Kripke, who invented this semantics.

Some validities in K:
- $\varphi \lor \neg \varphi$
- $\Box (\varphi \lor \neg \varphi)$
- $\Box \varphi$, if φ is a classical tautology
- $\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ (axiom schema K)

Moreover, it holds:

If φ is K-valid, then $\Box \varphi$ is K-valid.

Non-validity: example

Proposition

$\Diamond \top$ is not K-valid.

Proof.

A counterexample is the following interpretation $I = \langle W, R, \pi \rangle$ with:

$W := \{w\}$,

$R := \emptyset$,

$\pi_w(a) := T \ (a \in \Sigma)$.

We have $I,w \not\models \Diamond \top$ because there is no u such that wRu.

Thank you!
Non-validity: example

Proposition
\(\Box \varphi \rightarrow \varphi \) is not \(K \)-valid.

Proof.
A counterexample is the following interpretation \(I = (W, R, \pi) \) with:
\[
W := \{ w \}, \\
R := \emptyset, \\
\pi_a(a) := F \quad (a \in \Sigma).
\]
We have \(I, w \models \Box a \), but \(I, w \not\models \Box \varphi \).

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 20 / 50

Non-validity: another example

Proposition
\(\Box \varphi \rightarrow \Box \Box \varphi \) is not \(K \)-valid.

Proof.
A counterexample is the following interpretation:
\[
I = (\{ u, v, w \}, \{(u, v), (v, w)\}, \pi)
\]
with
\[
\pi_u(a) := T \\
\pi_v(a) := T \\
\pi_w(a) := F
\]
Hence, \(I, u \models \Box a \), but \(I, u \not\models \Box \Box a \).

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 21 / 50

Accessibility and axiom schemata

Let us consider the following axiom schemata:
\[
\begin{align*}
T & : \Box \varphi \rightarrow \varphi \quad \text{(knowledge axiom)} \\
4 & : \Box \varphi \rightarrow \Box \Box \varphi \quad \text{(positive introspection)} \\
5 & : \Diamond \varphi \rightarrow \Box \Diamond \varphi \quad \text{(or } \neg \Box \varphi \rightarrow \Box \neg \Box \varphi: \text{ negative introspection)} \\
B & : \varphi \rightarrow \Box \Diamond \varphi \\
D & : \Box \varphi \rightarrow \Diamond \varphi \quad \text{(or } \Box \Diamond \varphi \rightarrow \Diamond \Box \Diamond \varphi: \text{ disbelief in the negation)}
\end{align*}
\]

… and the following classes of frames, for which the accessibility relation is restricted as follows:
\[
\begin{align*}
T & : \text{reflexive (} wRw \text{ for each world } w) \\
4 & : \text{transitive (} wRu \text{ and } uRv \text{ implies } wRv) \\
5 & : \text{euclidian (} wRu \text{ and } wRv \text{ implies } uRv) \\
B & : \text{symmetric (} wRu \text{ implies } uRw) \\
D & : \text{serial (for each } w \text{ there exists } v \text{ with } wRv)
\end{align*}
\]

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 22 / 50

Correspondence between accessibility relations and axiom schemata (1)

Theorem
Axiom schema \(T \) (4, 5, B, D) is \(T \)-valid (4-, 5-, B-, or D-valid, respectively).

Proof.
For \(T \) and \(T \): Let \(F \) be a frame from class \(T \). Let \(I \) be an interpretation based on \(F \) and let \(w \) be an arbitrary world in \(I \).
If \(\Box \varphi \) is not true in world \(w \), then axiom \(T \) is true in \(w \).
If \(\Box \varphi \) is true in \(w \), then \(\varphi \) is true in all accessible worlds. Since the accessibility relation is reflexive, \(w \) is among the accessible worlds, i.e., \(\varphi \) is true in \(w \). Thus also in this case \(T \) is true in \(w \).
We conclude: \(T \) is true in all worlds in all interpretations based on \(T \)-frames.

November 4, 6, & 11, 2013 Nebel, Wölfl, Hué – KRR 23 / 50
Correspondence between accessibility relations and axiom schemata (2)

Theorem
If \(T \) (4, 5, B, D) is valid in a frame \(\mathcal{F} \), then \(\mathcal{F} \) is a \(T \)-frame (4-, 5-, B-, or D-frame, respectively).

Proof.
For \(T \) and \(T \): Assume that \(\mathcal{F} \) is not a \(T \)-frame. We will construct an interpretation based on \(\mathcal{F} \) that falsifies \(T \).
Because \(\mathcal{F} \) is not a \(T \)-frame, there is a world \(w \) such that \(w \not R w \).
Construct an interpretation \(I \) such that \(I, w \not| = a \) and \(I, v | = a \) for all \(v \) such that \(w \not R v \).
Now \(I, w | = \Box a \) and \(I, w \not| = a \), and hence \(I, w | = \Box a \rightarrow a \).

Different modal logics

<table>
<thead>
<tr>
<th>Name</th>
<th>Property</th>
<th>Axiom schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)</td>
<td>(-)</td>
<td>(\Box (\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi))</td>
</tr>
<tr>
<td>(T)</td>
<td>reflexivity</td>
<td>(\Box \varphi \rightarrow \varphi)</td>
</tr>
<tr>
<td>4</td>
<td>transitivity</td>
<td>(\Box \varphi \rightarrow \Box \Box \varphi)</td>
</tr>
<tr>
<td>5</td>
<td>euclideicity</td>
<td>(\Diamond \varphi \rightarrow \Box \Diamond \varphi)</td>
</tr>
<tr>
<td>(B)</td>
<td>symmetry</td>
<td>(\varphi \rightarrow \Box \Diamond \varphi)</td>
</tr>
<tr>
<td>(D)</td>
<td>seriality</td>
<td>(\Box \varphi \rightarrow \Diamond \varphi)</td>
</tr>
</tbody>
</table>

Some basic modal logics:

\[
\begin{align*}
K & \quad KT4 = S4 \\
KT5 & \quad S5 \\
\end{align*}
\]
5 Analytic Tableaux

- Tableau rules
- Logical consequence

Proof methods

- How can we show that a formula is C-valid?
- In order to show that a formula is not C-valid, one can construct a counterexample (= an interpretation that falsifies it).
- When trying out all ways of generating a counterexample without success, this counts as a proof of validity.

\Rightarrow Method of (analytic/semantic) tableaux

Tableaux method

A tableau is a tree with nodes marked as follows:

- $w \models \varphi$,
- $w \not\models \varphi$, and
- $w R v$.

A branch that contains nodes marked with $w \models \varphi$ and $w \not\models \varphi$ is closed. All other branches are open. If all branches are closed, the tableau is called closed.

A tableau is constructed by using the tableau rules.

Tableau rules for propositional logic

\[
\begin{align*}
 w & \models \varphi \lor \psi & & \quad w \not\models \varphi \lor \psi \\
 w & \not\models \varphi & & w \not\models \psi \\
 w & \not\models \varphi \\
 w & \not\models \psi \\
 w & \models \varphi \land \psi & & w \not\models \varphi \land \psi \\
 w & \not\models \varphi & & w \not\models \psi \\
 w & \models \varphi \\
 w & \not\models \psi \\
 w & \models \varphi \rightarrow \psi & & w \not\models \varphi \rightarrow \psi \\
 w & \not\models \varphi & & w \not\models \psi \\
 w & \models \varphi \\
 w & \not\models \psi
\end{align*}
\]
Properties of K tableaux

Proposition
If a K-tableau is closed, the truth condition at the root cannot be satisfied.

Theorem (Soundness)
If a K-tableau with root \(w \not\models \varphi \) is closed, then \(\varphi \) is K-valid.

Theorem (Completeness)
If \(\varphi \) is K-valid, then there is a closed tableau with root \(w \not\models \varphi \).

Proposition (Termination)
There are strategies for constructing K-tableaux that always terminate after a finite number of steps, and result in a closed tableau whenever one exists.

Complexity of simple modal logics

How hard is it to check whether a modal logic formula is satisfiable or valid?
The answer depends in fact on the considered class of frames!
For example, one can show that each formula \(\varphi \) that is satisfiable in some S5-frame is satisfiable in an S5-frame with \(|W| \leq |\varphi|\).

Proposition
Checking whether a modal formula is satisfiable in some S5-model is NP-complete (and hence checking S5-validity is coNP-complete).

For other modal logics, such as K, KT, KD, K4, S4, these problems are PSPACE-complete.
Testing logical consequence with tableaux

Let X be a class of frames.
Let Θ denote a (finite) set of formulae.
Define a consequence relation $\Theta \models_X \varphi$ as follows:
For each interpretation I based on a frame in X, if $I \models \psi$ for each $\psi \in \Theta$, then $I \models \varphi$.
- How can we check whether $\Theta \models \varphi$?
- Can we apply some kind of deduction theorem as in propositional logic:

$$\Theta \cup \{\psi\} \models_{PL} \varphi \Rightarrow \Theta \models_{PL} \psi \rightarrow \varphi$$

- Example: $a \models_K \Box a$ holds, but $a \rightarrow \Box a$ is not K-valid.
- There is no deduction theorem as in propositional logic, and logical consequence cannot be directly reduced to validity!

Tableaux and logical consequence

For testing logical consequence, we can use the following tableau rule:
- If w is a world on a branch and $\psi \in \Theta$, then we can add $w \models \psi$ to our branch.
- Soundness is obvious.
- Completeness is non-trivial.

Connection between propositional modal logic and FOL?

- There are similarities between predicate logic and propositional modal logics:
 1. $\Box \text{ vs. } \forall$
 2. $\Diamond \text{ vs. } \exists$
 3. possible worlds vs. objects of the universe
- In fact, many propositional modal logics can be embedded in the predicate logic.
 $$\Rightarrow$$ Modal logics can be understood as a sublanguage of FOL.
Theorem

ϕ is K-valid if and only if ∀x τ(ϕ, x) is valid in FOL.

Theorem

ϕ is T-valid if and only if in FOL the logical consequence

\[\{ ∀x R(x, x) \} \models ∀x τ(ϕ, x) \]

holds.

Example

□p ∧ ♦(p → q) → ♦q is K-valid, because

\[∀x(∀x'(R(x, x') → p(x')) ∧ ∃x'(R(x, x') ∧ (p(x') → q(x')))) \rightarrow ∃x'(R(x, x') ∧ q(x')) \]

is valid in FOL.

7 Outlook & literature

We only looked at some basic propositional modal logics. There are also:

- modal first order logics (with quantification ∀ and ∃ and predicates)
- multi-modal logics: more than one modality, e.g. knowledge/belief operators for several agents
- temporal and dynamic logics (modalities that refer to time or programs, respectively)
Did we really do something new? Couldn’t we have done everything in propositional modal logic in FOL already?

- Yes – but now we know much more about the (restricted) system and have decidable problems!

Literature I

- **Anil Nerode.**
 Some lectures on modal logic.

- **Melvin Fitting.**
 Basic Modal Logic.

- **P. Blackburn. P., M. de Rijke, and Y. Venema.**
 Modal Logic.

Literature II

- **M. Fitting.**
 Proof Methods for Modal and Intuitionistic Logic.
 Reidel, 1983.

- **Robert Goldblatt.**
 Logics of Time and Computation.
 Stanford University, 1992.

- **B. F. Chellas.**
 Modal Logic: An Introduction.
 Cambridge University, 1980.

- **J. Y. Halpern, R. Fagin, Y. Moses, and M. Y. Vardi**
 Reasoning About Knowledge.