1 Motivation
Why complexity theory?

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
2 Basic Notions: a Reminder

- Algorithms and Turing machines
- Problems, solutions, and complexity
- Complexity classes P and NP
- Upper and lower bounds
- Polynomial reductions
- NP-completeness
We use Turing machines as formal models of algorithms.

This is justified, because:

- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the deterministic one: DTM (or simply TM)

Often, however, we use the notion of nondeterministic TMs: NDTM
Problems, solutions, and complexity

A **problem** is a set of pairs \((I,A)\) of strings in \(\{0,1\}^*\).

- \(I\): instance; \(A\): answer
- If all answers \(A \in \{0,1\}\): **decision problem**

A **decision problem** is the same as a **formal language**: the set of strings formed by the instances with answer 1.

- An algorithm **solves** (or **decides**) a problem if it computes the right answer for all instances.

Complexity of an algorithm: function

\[T : \mathbb{N} \rightarrow \mathbb{N}, \]

measuring the **number of basic steps** (or memory requirement) the algorithm needs to compute an answer depending on the **size** of the instance.

Complexity of a problem: complexity of the most efficient algorithm that solves this problem.
Complexity classes P and NP

Problems are categorized into **complexity classes** according to the requirements of computational resources:

- The class of problems decidable on **deterministic Turing machines** in polynomial time: P
 - Problems in P are assumed to be **efficiently solvable** (although this might not be true if the exponent is very large)
 - In practice, this notion appears to be more often reasonable than not

- The class of problems decidable on **non-deterministic Turing machines** in polynomial time: NP

- More classes are definable using other resource bounds on time and memory
Upper and lower bounds

- **Upper bounds** *(membership in a class)* are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- **Lower bounds** *(hardness for a class)* are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Given languages L_1 and L_2, L_1 can be polynomially reduced to L_2, written $L_1 \leq_p L_2$, if there exists a polynomially computable function f such that

$$x \in L_1 \iff f(x) \in L_2.$$

Rationale: it cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) if all languages of this class can be reduced to L.
- L is complete for C (C-complete) if L is C-hard and $L \in C$.

Motivation

Basic Notions: a Reminder

Algorithms and Turing machines

Problems, solutions, and complexity

Complexity classes

P and NP

Upper and lower bounds

Polynomial reductions

NP-completeness

Beyond NP

Oracle TMs and the Polynomial Hierarchy

Literature
A problem is **NP-complete** iff it is **NP-hard** and in **NP**.

Example: **SAT** (the satisfiability problem for propositional logic) is NP-complete (Cook/Karp)

- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae.
3 Beyond NP

- The class co-NP
- The class PSPACE
- Other classes
The complexity class co-NP

- Note that there is some **asymmetry** in the definition of NP:
 - It is clear that we can decide **SAT** by using a **NDTM** with polynomially bounded computation
 - There exists an accepting computation of polynomial length iff the formula is satisfiable
 - What if we want to solve **UNSAT**, the complementary problem?
 - It seems necessary to check **all** possible truth-assignments!
- Define **co-C** = \{\Sigma^* \setminus L : L \subseteq \Sigma^* and L \in C\} (provided \Sigma is our alphabet)
- **co-NP** = \{\Sigma^* \setminus L : L \subseteq \Sigma^* and L \in NP\}
- Examples: **UNSAT**, **TAUT** ∈ co-NP!
- **Note**: P is closed under complement, in particular,
 \[P \subseteq NP \cap \text{co-NP} \]
PSPACE

There are problems even more difficult than NP and co-NP...

Definition ((N)PSPACE)

PSPACE (**NPSPACE**) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- **PSPACE** is closed under complements (... as all other deterministic classes)
- **PSPACE** is identical to **NPSPACE** (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- **NP ⊆ PSPACE** (because in polynomial time one can “visit” only polynomial space, i.e., **NP ⊆ NPSPACE**)
- It is unknown whether **NP ≠ PSPACE**, but it is believed that...
PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is **PSPACE-complete** if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, **PSPACE-complete** problems are the “hardest” problems in PSPACE (similar to NP-completeness). They appear to be “harder” than **NP-complete** problems from a practical point of view.

An example for a PSPACE-complete problem is the **NDFA equivalence problem**:

Instance: Two non-deterministic finite state automata A_1 and A_2.

Question: Are the languages accepted by A_1 and A_2 identical?
Other complexity classes …

- There are complexity classes **above PSPACE** (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME …)
- There are (infinitely many) classes **between NP and PSPACE** (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes **inside P** (circuit classes with different depths)
- … and for most of the classes we do not know whether the containment relationships are **strict**
4 Oracle TMs and the Polynomial Hierarchy

- Oracle Turing machines
- Turing reduction
- Complexity classes based on OTMs
- QBF
An **Oracle Turing machine** ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an **oracle** (i.e., a different Turing machine **without resource restrictions**) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?
Turing reductions

- **OTMs** allow us to define a more general type of reduction
- **Idea:** The “classical” reduction can be seen as calling a subroutine once.
- L_1 is **Turing-reducible** to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.
- Polynomial reducibility implies Turing reducibility, but not **vice versa**!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are **equivalent**!
- Turing reducibility can also be applied to general search problems!
Complexity classes based on Oracle TMs

1. \(P^{NP} \) = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.
2. \(NP^{NP} \) = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
3. \(co-NP^{NP} \) = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.
4. \(NP^{NP^{NP}} \) = ...

... and so on
Example

Consider the **Minimum Equivalent Expression (MEE)** problem:

Instance: A well-formed Boolean formula \(\varphi \) using the standard connectives (not \(\leftrightarrow \)) and a non-negative integer \(k \).

Question: Is there a well-formed Boolean formula \(\varphi' \) that contains \(k \) or fewer literal occurrences and that is logically equivalent to \(\varphi \)?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle . . .
- \(\text{MEE} \in \text{NP}^{\text{NP}} \).
The polynomial hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy \(\text{PH} \)

\[
\begin{align*}
\Sigma^p_0 &= P \\
\Pi^p_0 &= P \\
\Sigma^p_{i+1} &= \text{NP} \Sigma^p_i \\
\Pi^p_{i+1} &= \text{co-} \Sigma^p_{i+1} \\
\Delta^p_0 &= P \\
\Delta^p_{i+1} &= P \Sigma^p_i \\
\text{PH} &= \bigcup_{i \geq 0} \left(\Sigma^p_i \cup \Pi^p_i \cup \Delta^p_i \right) \subseteq \text{PSPACE} \\
\text{NP} &= \Sigma^p_1 \\
\text{co-NP} &= \Pi^p_1
\end{align*}
\]
Quantified Boolean formulae: definition

- If \(\varphi \) is a propositional formula, \(P \) is the set of Boolean variables used in \(\varphi \) and \(\sigma \) is a sequence of \(\exists p \) and \(\forall p \), one for every \(p \in P \), then \(\sigma \varphi \) is a QBF.

- A formula \(\exists x \varphi \) is true if and only if \(\varphi[x/\top] \lor \varphi[x/\bot] \) is true (equivalently, \(\varphi[x/\top] \) is true or \(\varphi[x/\bot] \) is true).

- A formula \(\forall x \varphi \) is true if and only if \(\varphi[x/\top] \land \varphi[x/\bot] \) is true (equivalently, \(\varphi[x/\top] \) is true and \(\varphi[x/\bot] \) is true).

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.
Quantified Boolean formulae: definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are NP-complete and co-NP-complete, resp., whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
The Polynomial Hierarchy: connection to QBF

Truth of QBFs with prefix $\forall \exists \ldots$ is Π^p_i-complete.

Truth of QBFs with prefix $\exists \forall \exists \ldots$ is Σ^p_i-complete.

Special cases corresponding to SAT and TAUT:

- The truth of QBFs with prefix $\exists x_1^1 \ldots x_n^1$ is $\text{NP} = \Sigma^p_1$-complete.
- The truth of QBFs with prefix $\forall x_1^1 \ldots x_n^1$ is $\text{co-NP} = \Pi^p_1$-complete.
M. R. Garey and D. S. Johnson.
Computers and Intractability – A Guide to the Theory of
NP-Completeness.

C. H. Papadimitriou.
Computational Complexity.