Exercise 12.1 (Strong cyclic planning, 5 + 5 points)
Consider the planning task that induces the following nondeterministic transition system with two operators o_{red} and o_{blue}.

(a) Apply the nested fixpoint algorithm presented in the lecture, and specify the candidate good state sets C_i as well as, for each iteration of the outer loop, the sets of states W_j from which a goal state can be reached in at most j steps without the danger of leaving the current set of candidate good states C_i. Extract a strong cyclic plan π for all good states.

(b) Apply the determinization-based incremental algorithm presented in the lecture for the initial state a. Assume that the deterministic search algorithm computes the optimal plan in the determinization (e.g., finds the shortest path to the goal). For each iteration specify fail, s, π', π and choose the alphabetically smallest node when selecting a node from fail.

Exercise 12.2 (Maintenance Goals, 5 points)
Simulate the computation of the algorithm for maintenance goals for the following nondeterministic transition system with two operators o_{red} and o_{blue}.

Specify the sets Safe_i and a resulting plan for maintenance π.

You can and should solve the exercise sheets in groups of two. You can send your solution to ortlieb@informatik.uni-freiburg.de. Please give both your names on your solution.