In this chapter, we will consider the simplest case of nondeterministic planning by restricting attention to strong plans.

Definition (strong plan)
Let S be the set of states of a planning task Π. Then a strong plan for Π is a function $\pi: S_\pi \rightarrow O$ for some subset $S_\pi \subseteq S$ such that:

- $\pi(s)$ is applicable in s for all $s \in S_\pi$,
- $S_\pi(s_0) \subseteq S_\pi \cup S_\star$ (\(\pi\) is closed),
- $S_\pi(s') \cap S_\star \neq \emptyset$ for all $s' \in S_\pi(s_0)$ (\(\pi\) is proper), and
- there is no state $s' \in S_\pi(s_0)$ such that s' is reachable from s' following π in a strictly positive number of steps (\(\pi\) is acyclic).
Strong plans

Execution of a strong plan
1. Determine the current state s.
2. If s is a goal state then terminate.
3. Execute action $\pi(s)$.
4. Repeat from first step.

Images

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

Definition (image of a state)
$$img_o(s) = \{s' \in S \mid s \xrightarrow{o} s'\} = app_o(s)$$

Definition (image of a set of states)
$$img_o(T) = \bigcup_{s \in T} img_o(s)$$
Weak preimages

Weak preimage

The weak preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

\[wpreimg_o(T) = \{ s \in S | \exists s' \in S : s \xrightarrow{o} s' \land img_o(s) \subseteq T \} \]

Strong preimages

Strong preimage

The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

\[spreimg_o(T) = \{ s \in S | \exists s' \in T : s \xrightarrow{o} s' \land img_o(s) \subseteq T \} \]
2 Algorithms

- Regression
- Efficient implementation of regression
- Progression

Algorithms for strong planning

1. **Dynamic programming** (backward)
 - Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
 - Zero actions needed for goal states.
 - If states with i actions to goals are known, states with $\leq i + 1$ actions to goals can be easily identified.
 - Automatic reuse of plan suffixes already found.

2. **Heuristic search** (forward)
 - Strong planning can be viewed as AND/OR graph search.
 - OR nodes: Choice between operators
 - AND nodes: Choice between effects
 - Heuristic AND/OR search algorithms: AO*, Proof Number Search, ...

Dynamic programming

Planning by dynamic programming

If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

- **Base case** $i = 0$: In goal states there is nothing to do.
- **Inductive case** $i \geq 1$: If $\pi(s)$ is still undefined and there is $o \in O$ such that for all $s' \in \text{img}_o(s)$, the state s' is a goal state or $\pi(s')$ was assigned in an earlier iteration, then assign $\pi(s) = o$.

Backward distances

If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i. The dynamic programming algorithm essentially computes the backward distances of states.

Example

\[
\begin{array}{cccc}
\infty & 3 & 2 & 1 & 0 \\
\end{array}
\]

\[\text{distance to } G\]

\[\text{G}\]
Backward distances

Definition (backward distance sets)
Let G be a set of states and O a set of operators. The backward distance sets D_{i}^{bwd} for G and O consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications using operators in O:

\[
D_{0}^{\text{bwd}} := G \\
D_{i}^{\text{bwd}} := D_{i-1}^{\text{bwd}} \cup \bigcup_{o \in O} \text{spreimg}_{o}(D_{i-1}^{\text{bwd}}) \quad \text{for all } i \geq 1
\]

Strong plans based on distances

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a nondeterministic planning task with state set S and goal states S_\star.

Extraction of a strong plan from distance sets
1. Let $S' \subseteq S$ be those states having a finite backward
distance for $G = S_\star$ and O.
2. Let $s \in S'$ be a state with distance $i = \delta_{G}^{\text{bwd}}(s) \geq 1$.
3. Assign to $\pi(s)$ any operator $o \in O$ such that
 $\text{img}_{o}(s) \subseteq D_{i-1}^{\text{bwd}}$. Hence o decreases the backward
distance by at least one.

Then π is a strong plan for \mathcal{T} iff $I \in S'$.

Question: What is the worst-case runtime of the algorithm?
Question: What is the best-case runtime of the algorithm
if most states have a finite backward distance?

Making the algorithm a logic-based algorithm

- An algorithm that represents the states explicitly stops
 being feasible at about 10^8 or 10^9 states.
- For planning with bigger transition systems structural
 properties of the transition system have to be taken
 advantage of.
- As before, representing state sets as propositional
 formulae (or BDDs) often allows taking advantage of the
 structural properties: a formula (or BDD) that represents a
 set of states or a transition relation that has certain
 regularities may be very small in comparison to the set or
 relation.
- In the following, we will present an algorithm using a
 boolean-formula representation (without going into the
 details of how to implement it using BDDs).
Making the algorithm a logic-based algorithm

Remark: The following algorithm assumes a propositional representation of the state space as opposed to a finite-domain representation. We have already seen how to translate an FDR encoding into a propositional encoding in Chapter 9 (cf. definition of the “induced propositional planning task”). Therefore, for the rest of the present section, we will assume without loss of generality that all $v \in V$ are propositional variables with domain $\mathcal{D}_v = \{0, 1\}$.

Breadth-first search with progression and state sets (deterministic case)

Regression breadth-first search

```
def bfs-regression(V, I, O, γ):
  init := I
  reached := formula-to-set(γ)
  loop:
    if init ∈ reached:
      return solution found
    new-reached := reached ∪ \bigcup_{o ∈ O} wpreimg_o(reached)
    if new-reached = reached:
      return no solution exists
    reached := new-reached
```

This algorithm is very similar to the dynamic programming algorithm for the nondeterministic case!

Breadth-first search with regression and state sets (strong nondeterministic case)

Regression breadth-first search

```
def bfs-regression(V, I, O, γ):
  init := I
  reached := formula-to-set(γ)
  loop:
    if init ∈ reached:
      return solution found
    new-reached := reached ∪ \bigcup_{o ∈ O} spreimg_o(reached)
    if new-reached = reached:
      return no solution exists
    reached := new-reached
```

How do we define $spreimg$ with logic (or BDD) operations?
Transition formula for nondeterministic operators

Let V be the set of state variables and $V' := \{v' \mid v \in V\}$ a set of primed copies of the variables in V. Intuition:

- Variables in V describe the current state s.
- Variables in V' describe the next state s'.

We would like to define a formula $\tau_V(o)$ that describes the transitions labeled with o between states s (over V) and s' (over V') in terms of V and V'.

The formula $\tau_V(o)$ must express

- the conditions for applicability of o,
- how o changes state variables, and
- which state variables o does not change.

A significant difficulty lies in the third requirement because different variables may be affected depending on nondeterministic choices.

τ_V(o) for deterministic operators o = ⟨χ, e⟩

$$
\tau_V(o) = \chi \land \bigwedge_{v \in V} ((EPC_V(e) \lor (v \land \neg EPC_V(e))) \iff v') \\
\land \bigwedge_{v \in V} \neg (EPC_V(e) \land EPC_V(e))
$$

Assume that $e = \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d$ for $A = \{a_1, \ldots, a_k\}$ and $D = \{d_1, \ldots, d_l\}$ with $A \cap D = \emptyset$. Then this becomes simpler.

τ_V(o) for STRIPS operators o = ⟨χ, \bigwedge_{a \in A} a \land \bigwedge_{d \in D} \neg d⟩

$$
\tau_V(o) = \chi \land \bigwedge_{a \in A} a' \land \bigwedge_{d \in D} \neg d' \land \bigwedge_{v \in V' \setminus (A \cup D)} (v \iff v')
$$

Example

Let $V = \{a, b\}$, $V' = \{a', b'\}$, and $o = \langle \neg a, \{a, a \land \neg b\} \rangle$. Then

$$
\tau_V(o) = \neg a \land \bigl((a' \land (b \iff b')) \lor (a' \land \neg b')\bigr)
$$
Computing strong preimages

Definition (substitution)

Let $\varphi, t_1, \ldots, t_n$ be propositional formulas and v_1, \ldots, v_n atomic propositions. We denote the formula obtained from φ by simultaneous replacement of all variables v_i by the corresponding formulas t_i, $i = 1, \ldots, n$, by $\varphi[t_1, \ldots, t_n/v_1, \ldots, v_n]$.

Computing strong preimages

Definition (existential abstraction)

Let φ be a propositional formula and v_1, \ldots, v_n be atomic propositions. Then the *existential abstraction* of φ wrt. v_1, \ldots, v_n is recursively defined as follows:

\[
\exists v \cdot \varphi := \varphi[T/v] \lor \varphi[\bot/v]
\]

\[
\exists v_1 \ldots \exists v_n \cdot \varphi := \exists v_1 \ldots \exists v_{n-1} \cdot (\varphi[T/v_1] \lor \varphi[\bot/v_n])
\]

For a set of variables $V = \{v_1, \ldots, v_n\}$ we use the abbreviation $\exists V \cdot \varphi := \exists v_1 \ldots \exists v_n \cdot \varphi$.

Note: Even with intermediate formula simplifications this can lead to an exponential blowup. BDDs can be useful here.

Computing strong preimages with boolean function operations

\[
\text{spreimg}_o(T) = \{s \in S \mid (\exists s' \in S : s \xrightarrow{o} s' \land s' \in T) \land \neg \exists s' \in S : s \xrightarrow{o} s' \land (s' \in T)\}.
\]

Strong preimages with boolean functions

For formula φ characterizing set T of strongly backward-reached states:

\[
\text{spreimg}_o(\varphi) = (\exists V' \cdot (\tau_V o) \land \varphi[\tau_{V'}, v'/v_1, \ldots, v_n]) \land (\neg \exists V' \cdot (\tau_V o) \land \neg \varphi[\tau_{V'}, v'/v_1, \ldots, v_n])
\]

We can use this regression formula for efficient symbolic regression search. BDDs support all necessary operations (atomic propositions, \neg, \land, \lor, substitution, \exists, \ldots).
Computing strong preimages with boolean function operations

Example
Let $V = \{a, b\}$, $V' = \{a', b'\}$, and

$$o = \{\neg a, \{a \land \neg b\}\},$$
i.e.,

$$\tau_V(o) = \neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b') \right).$$

Moreover, let $\varphi = a$. Then

$$\spreimg_0(\varphi) = \exists a' \exists b'. \left(\neg a \land \left((a' \land (b \leftrightarrow b')) \lor (a' \land \neg b') \right) \land a' \land \neg a' \right).$$

$\equiv \neg a$

Progression Search

- We saw a generalization of regression search to strong planning.
- However, this search is uninformed (breadth-first search).
- Is there an analogue to A* search for strong planning?
- Yes: AO* search
 - Progression search (like A*)
 - Guided by a heuristic (like A*)
 - Guaranteed optimality (under certain conditions, like A*)

AND/OR search
Progression Search

- We describe AO* on a graph representation without intermediate nodes, i.e., as in the first figure.
- There are different variants of AO*, depending on whether the graph that is being searched is an AND/OR tree, an AND/OR DAG, or a general, possibly cyclic, AND/OR graph.
- The graphs we want to search, $T(\Pi)$, are in general cyclic.
- However, AO* becomes a bit more involved when dealing with cycles, so we only discuss AO* under the assumption of acyclicity and leave the generalization to cyclic state spaces as an exercise.

AO* Search

Definition (solution graph)

A solution graph for a nondeterministic transition system $\mathcal{T} = \langle S, L, T, s_0, S_* \rangle$ is an acyclic subgraph of \mathcal{T} (viewed as a graph), $\mathcal{T}' = \langle S', L, T' \rangle$, such that

- $S_0 \in S'$,
- for each $s' \in S' \setminus S_*$, there is exactly one label $l \in L$ s.t.
 - T' contains at least one outgoing transition from s' labeled with l,
 - T' contains all outgoing transitions from s' labeled with l (and S' contains the states reached via such transitions),
 - T' contains no outgoing transitions from s' labeled with any $l \neq l$, and
- every directed path in \mathcal{T}' terminates at a goal state.

Conceptually, there are three graphs/transition systems:

- The induced transitions system $\mathcal{T} = \mathcal{T}(\Pi)$, which only exists as a mathematical object, but is in general not made explicit completely during AO* search,
- The current portion of \mathcal{T} explicitly represented by the search algorithm, \mathcal{T}_e, and
- The current portion of \mathcal{T}_e considered by the algorithm as the cheapest/best current partial solution graph, \mathcal{T}_p.
AO* Search

Definition (partial solution graph)
A partial solution graph for a nondeterministic transition system $T = \langle S, L, T, s_0, S^* \rangle$ is an acyclic subgraph of T (viewed as a graph), $T_p = \langle S_p, L, T_p, s_0, S^* \rangle$, s.t.
- $S_0 \subseteq S_p$,
- for each $s' \in S_p$ that is not an unexpanded leaf node in T_p there is exactly one label $l \in L$ such that
 - T_p contains at least one outgoing transition from s' labeled with l,
 - T_p contains all outgoing transitions from s' labeled with l (and S_p contains the states reached via such transitions),
 - T_p contains no outgoing transitions from s' labeled with any $\tilde{l} \neq l$, and
- every directed path in T_p terminates at a goal state or an unexpanded leaf node in T_p.

AO* Search

AO* Search

Correctness (proof sketch)
- Solution graphs directly correspond to strong plans.
- Algorithm eventually terminates (finite number of possible node expansions).
- Acyclicity guarantees that extraction of T_p and dynamic programming back-propagation of f values always terminates.
- Marking makes sure that existing solutions are eventually marked.
Details
- Pseudocode omits bookkeeping of solved states (can improve performance).
- Choice of unexpanded non-goal node of best partial solution graph is unspecified.
 - Correctness/optimality not affected.
 - One possibility: choose node with lowest cost estimate.
 - Alternative: expand several nodes simultaneously.
- Algorithm can be extended to deal with cycles in the AND/OR graph.
Heuristic Evaluation Function

- **Desirable**: informative, domain-independent heuristic to initialize cost estimates.
- Heuristic should estimate (strong) goal distances.
- Heuristic does not necessarily have to be admissible (unless we seek optimal solutions).
- We can adapt many heuristics we already know from classical planning (details omitted).

Summary

- We have considered the special case of nondeterministic planning where planning tasks are fully observable and we are interested in strong plans.
- We have introduced important concepts also relevant to other variants of nondeterministic planning such as images and weak and strong preimages.
- We have discussed some basic classes of algorithms:
 - backward induction by dynamic programming, and
 - forward search in AND/OR graphs.