1 Introduction to search algorithms for planning

- Search nodes & search states
- Search for planning
- Common procedures for search algorithms

Search

- Search algorithms are used to find solutions (plans) for transition systems in general, not just for planning tasks.
- Planning is one application of search among many.
- In this chapter, we describe some popular and/or representative search algorithms, and (the basics of) how they apply to planning.
- Most of this is review of material that should be known (details: Russell and Norvig’s textbook).
Search states vs. search nodes

In search, one distinguishes:
- search states $s \rightsquigarrow$ states (vertices) of the transition system
- search nodes $\sigma \rightsquigarrow$ search states plus information on where/when/how they are encountered during search

What is in a search node?
Different search algorithms store different information in a search node σ, but typical information includes:
- $\text{state}(\sigma)$: associated search state
- $\text{parent}(\sigma)$: pointer to search node from which σ is reached
- $\text{action}(\sigma)$: action leading from $\text{state}(\text{parent}(\sigma))$ to $\text{state}(\sigma)$
- $g(\sigma)$: cost of σ (length of path from the root node)

For the root node, $\text{parent}(\sigma)$ and $\text{action}(\sigma)$ are undefined.

Search states vs. planning states

Search states \neq (planning) states:
- Search states don’t have to correspond to states in the planning sense.
 - progression: search states \approx (planning) states
 - regression: search states \approx sets of states (formulae)
- Search algorithms for planning where search states are planning states are called state-space search algorithms.
- Strictly speaking, regression is not an example of state-space search, although the term is often used loosely.
- However, we will put the emphasis on progression, which is almost always state-space search.

Required ingredients for search

A general search algorithm can be applied to any transition system for which we can define the following three operations:
- $\text{init}()$: generate the initial state
- $\text{is-goal}(s)$: test if a given state is a goal state
- $\text{succ}(s)$: generate the set of successor states of state s, along with the operators through which they are reached (represented as pairs $\langle o, s' \rangle$ of operators and states)

Together, these three functions form a search space (a very similar notion to a transition system).

Search for planning: progression

Let $\Pi = (A, I, O, \gamma)$ be a planning task.

Search space for progression search states: all states of Π (assignments to A)
- $\text{init}() = I$
- $\text{is-goal}(s) = \begin{cases} \text{true} & \text{if } s \models \gamma \\ \text{false} & \text{otherwise} \end{cases}$
- $\text{succ}(s) = \{ \langle o, s' \rangle \mid \text{applicable } o \in O, s' = \text{app}_o(s) \}$
Search for planning: regression

Let $\Pi = \langle A, I, O, \gamma \rangle$ be a planning task.

Search space for regression search

states: all formulae over A (how many?)
- $\text{init}() = \gamma$
- $\text{is-goal}(\varphi) = \begin{cases} \text{true} & \text{if } I \models \varphi \\ \text{false} & \text{otherwise} \end{cases}$
- $\text{succ}(\varphi) = \{ \langle o, \varphi' \rangle \mid o \in O, \varphi' = \text{regr}_o(\varphi), \varphi' \text{ is satisfiable} \}$
 (modified if splitting is used)

Classification of search algorithms

uninformed search vs. heuristic search:
- uninformed search algorithms only use the basic ingredients for general search algorithms
- heuristic search algorithms additionally use heuristic functions which estimate how close a node is to the goal

systematic search vs. local search:
- systematic algorithms consider a large number of search nodes simultaneously
- local search algorithms work with one (or a few) candidate solutions (search nodes) at a time
- not a black-and-white distinction; there are crossbreeds (e.g., enforced hill-climbing)

Classification: what works where in planning?

uninformed vs. heuristic search:
- For satisficing planning, heuristic search vastly outperforms uninformed algorithms on most domains.
- For optimal planning, the difference is less pronounced.

systematic search vs. local search:
- For satisficing planning, the most successful algorithms are somewhere between the two extremes.
- For optimal planning, systematic algorithms are required.

Common procedures for search algorithms

Before we describe the different search algorithms, we introduce three procedures used by all of them:
- make-root-node: Create a search node without parent.
- make-node: Create a search node for a state generated as the successor of another state.
- extract-solution: Extract a solution from a search node representing a goal state.
Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node

```python
def make-root-node(s):
    σ := new node
    state(σ) := s
    parent(σ) := undefined
    action(σ) := undefined
    g(σ) := 0
    return σ
```

Procedure make-node

make-node: Create a search node for a state generated as the successor of another state.

Procedure make-node

```python
def make-node(σ, o, s):
    σ′ := new node
    state(σ′) := s
    parent(σ′) := σ
    action(σ′) := o
    g(σ′) := g(σ) + 1
    return σ′
```

Procedure extract-solution

extract-solution: Extract a solution from a search node representing a goal state.

Procedure extract-solution

```python
def extract-solution(σ):
    solution := new list
    while parent(σ) is defined:
        solution.push-front(action(σ))
        σ := parent(σ)
    return solution
```

2 Uninformed search algorithms

- Breadth-first search without duplicate detection
- Breadth-first search with duplicate detection
- Random walk
Uninformed search algorithms

- Uninformed algorithms are less relevant for planning than heuristic ones, so we keep their discussion brief.
- Uninformed algorithms are mostly interesting to us because we can compare and contrast them to related heuristic search algorithms.

Popular uninformed systematic search algorithms:
- breadth-first search
- depth-first search
- iterated depth-first search

Popular uninformed local search algorithms:
- random walk

Breadth-first search

Breadth-first search without duplicate detection

```
queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():
    σ = queue.pop-front()
    if is-goal(state(σ)):
        return extract-solution(σ)
    for each ⟨o, s⟩ ∈ succ(state(σ)):
        σ′ := make-node(σ, o, s)
        queue.push-back(σ′)
return unsolvable
```

Possible improvement: duplicate detection (see next slide).

Another possible improvement: test if σ’ is a goal node; if so, terminate immediately. (We don’t do this because it obscures the similarity to some of the later algorithms.)

Breadth-first search with duplicate detection

```
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := Ø
while not queue.empty():
    σ = queue.pop-front()
    closed := closed ∪ {state(σ)}
    if is-goal(state(σ)):
        return extract-solution(σ)
    for each ⟨o, s⟩ ∈ succ(state(σ)):
        σ′ := make-node(σ, o, s)
        queue.push-back(σ′)
return unsolvable
```

Breadth-first search with duplicate detection
Random walk

\[
\sigma := \text{make-root-node}(\text{init}())
\]

\[
\text{for} \ \text{ever}:
\]

\[
\text{if } \text{is-goal}(\text{state}(\sigma)):
\]

\[
\text{return } \text{extract-solution}(\sigma)
\]

Choose a random element \(\langle o, s \rangle\) from \(\text{succ}(\text{state}(\sigma))\).

\[
\sigma := \text{make-node}(\sigma, o, s)
\]

- The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.
- Often, it runs indefinitely without making progress.
- It can also fail by reaching a dead end, a state with no successors. This is a weakness of many local search approaches.

Heuristic search algorithms: systematic

- Heuristic search algorithms are the most common and overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:
 - greedy best-first search
 - A*
 - weighted A*
 - IDA*
 - depth-first branch-and-bound search
 - ...
A heuristic search algorithm requires one more operation in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space. A heuristic function or heuristic (for that search space) is a function $h : \Sigma \rightarrow \mathbb{N}_0 \cup \{\infty\}$.

The value $h(\sigma)$ is called the heuristic estimate or heuristic value of heuristic h for node σ. It is supposed to estimate the distance from σ to the nearest goal node.

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

- For most heuristic search algorithms, h does not need to have any strong properties for the algorithm to work (= be correct and complete).
- However, the **efficiency** of the algorithm closely relates to how accurately h reflects the actual goal distance.
- For some algorithms, like A*, we can prove strong formal relationships between properties of h and properties of the algorithm (optimality, dominance, run-time for bounded error, ...) .
- For other search algorithms, “it works well in practice” is often as good an analysis as one gets.

Heuristics applied to nodes or states?

- Most texts apply heuristic functions to states, not nodes.
- This is slightly less general than our definition:
 - Given a state heuristic h, we can define an equivalent node heuristic as $h'(\sigma) := h(\text{state}(\sigma))$.
 - The opposite is not possible. (Why not?)
- There is good justification for only allowing state-defined heuristics: why should the estimated distance to the goal depend on how we ended up in a given state s?
- We call heuristics which don’t just depend on $\text{state}(\sigma)$ pseudo-heuristics.
- In practice there are sometimes good reasons to have the heuristic value depend on the generating path of σ (e.g., landmark pseudo-heuristic, Richter et al. 2008).
Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)
The optimal or perfect heuristic of a search space is the heuristic \(h^* \) which maps each search node \(\sigma \) to the length of a shortest path from state(\(\sigma \)) to any goal state.

Note: \(h^*(\sigma) = \infty \) iff no goal state is reachable from \(\sigma \).

Properties of heuristics

A heuristic \(h \) is called
- **safe** if \(h^*(\sigma) = \infty \) for all \(\sigma \in \Sigma \) with \(h(\sigma) = \infty \)
- **goal-aware** if \(h(\sigma) = 0 \) for all goal nodes \(\sigma \in \Sigma \)
- **admissible** if \(h(\sigma) \leq h^*(\sigma) \) for all nodes \(\sigma \in \Sigma \)
- **consistent** if \(h(\sigma) \leq h(\sigma') + 1 \) for all nodes \(\sigma, \sigma' \in \Sigma \) such that \(\sigma' \) is a successor of \(\sigma \)

Relationships?

Greedy best-first search

Greedy best-first search (with duplicate detection)

\[
open := \text{new} \text{ min-heap ordered by } (\sigma \mapsto h(\sigma)) \\
open.\text{insert}(\text{make-root-node}(\text{init}())) \\
closed := \emptyset \\
\text{while not open.\text{empty}():} \\
\quad \sigma = \text{open.\text{pop-min}()} \\
\quad \text{if state(}\sigma) \notin \text{closed:} \\
\quad \quad \text{closed} := \text{closed} \cup \{\text{state}(\sigma)\} \\
\quad \quad \text{if is-goal(state(}\sigma)):\ \\
\quad \quad \quad \text{return extract-solution}(\sigma) \\
\quad \quad \text{for each } (o, s) \in \text{succ(state}(\sigma)): \\
\quad \quad \quad \sigma' := \text{make-node}(\sigma, o, s) \\
\quad \quad \quad \text{if } h(\sigma') < \infty:\ \\
\quad \quad \quad \quad \text{open.\text{insert}}(\sigma') \\
\text{return unsolvable}
\]
A∗ (with duplicate detection and reopening)

\[A^* := \text{new } \text{min-heap ordered by } (\sigma \mapsto g(\sigma) + h(\sigma)) \]
\[\text{open} \cdot \text{insert} \left(\text{make-root-node}(\text{init}) \right) \]
\[\text{closed} := \emptyset \]
\[\text{distance} := 0 \]

\[\text{while not } \text{open}.\text{empty}: \]
\[\quad \sigma := \text{open}.\text{pop-min}() \]
\[\quad \text{if } \text{state}(\sigma) \notin \text{closed} \text{ or } g(\sigma) < \text{distance}(\text{state}(\sigma)):\]
\[\quad \quad \text{closed} := \text{closed} \cup \{ \text{state}(\sigma) \} \]
\[\quad \quad \text{distance}(\text{state}(\sigma)) := g(\sigma) \]
\[\quad \text{if } \text{is-goal}(\text{state}(\sigma)):\]
\[\quad \quad \text{return} \text{extract-solution}(\sigma) \]
\[\quad \text{for each } (o, s) \in \text{succ}(\text{state}(\sigma)):\]
\[\quad \quad \sigma' := \text{make-node}(\sigma, o, s) \]
\[\quad \quad \text{if } h(\sigma') < \infty : \text{open}.\text{insert}(\sigma') \]
\[\text{return unsolvable} \]

A∗ example

Example

\[\gamma \]

A∗ example

Example

\[\gamma \]
A* example

Example

Terminology for A*

- **f value** of a node: defined by \(f(\sigma) := g(\sigma) + h(\sigma) \)
- **generated nodes**: nodes inserted into open at some point
- **expanded nodes**: nodes \(\sigma \) popped from open for which the test against closed and distance succeeds
- **reexpanded nodes**: expanded nodes for which \(\text{state}(\sigma) \in \text{closed} \) upon expansion (also called reopened nodes)

Properties of A*

- the most commonly used algorithm for optimal planning
- rarely used for satisficing planning
- **complete** for safe heuristics (even without duplicate detection)
- **optimal** if \(h \) is admissible (even without duplicate detection)
- never reopens nodes if \(h \) is consistent

Implementation notes:

- in the heap-ordering procedure, it is considered a good idea to break ties in favour of lower \(h \) values
- can simplify algorithm if we know that we only have to deal with consistent heuristics
- common, hard to spot bug: test membership in closed at the wrong time
Weighted A* (with duplicate detection and reopening)

```
open := new min-heap ordered by (σ → g(σ) + W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():
    σ = open.pop-min()
    if state(σ) ∉ closed or g(σ) < distance(state(σ)):
        closed := closed ∪ {state(σ)}
        distance(σ) := g(σ)
        if is-goal(state(σ)):
            return extract-solution(σ)
        for each ⟨o, s⟩ ∈ succ(state(σ)):
            σ′ := make-node(σ, o, s)
            if h(σ′) < ∞: open.insert(σ′)
    return unsolvable
```

Properties of weighted A*

The weight \(W \in \mathbb{R}_0^+ \) is a parameter of the algorithm.
- for \(W = 0 \), behaves like breadth-first search
- for \(W = 1 \), behaves like A*
- for \(W \to \infty \), behaves like greedy best-first search

Properties:
- one of the most commonly used algorithms for satisficing planning
- for \(W > 1 \), can prove similar properties to A*, replacing optimal with bounded suboptimal: generated solutions are at most a factor \(W \) as long as optimal ones

Hill-climbing

```
σ := make-root-node(init())
forever:
    if is-goal(state(σ)):
        return extract-solution(σ)
Σ′ := { make-node(σ, o, s) | ⟨o, s⟩ ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)
```

Enforced hill-climbing

```
def improve(σ₀):
    queue := new fifo-queue
    queue.push-back(σ₀)
    closed := ∅
    while not queue.empty():
        σ = queue.pop-front()
        if state(σ) ∉ closed:
            closed := closed ∪ {state(σ)}
            if h(σ) < h(σ₀):
                return σ
        for each ⟨o, s⟩ ∈ succ(state(σ)):
            σ′ := make-node(σ, o, s)
            queue.push-back(σ′)
    fail
```

Hill-climbing

- can easily get stuck in local minima where immediate improvements of \(h(σ) \) are not possible
- many variations: tie-breaking strategies, restarts
Enforced hill-climbing (ctd.)

Enforced hill-climbing

\[\sigma := \text{make-root-node}(\text{init}(\cdot)) \]

while not is-goal(state(\sigma)):

\[\sigma := \text{improve}(\sigma) \]

return extract-solution(\sigma)

- one of the three most commonly used algorithms for satisficing planning
- can fail if procedure improve fails (when the goal is unreachable from \(\sigma_0\))
- complete for undirected search spaces (where the successor relation is symmetric) if \(h(\sigma) = 0\) for all goal nodes and only for goal nodes

Summary

- distinguish: planning states, search states, search nodes
 - planning state: situation in the world modelled by the task
 - search state: subproblem remaining to be solved
 - \(h\) (heuristic)
 - In state-space search (usually progression search), planning states and search states are identical.
 - In regression search, search states usually describe sets of states ("subgoals").
- search node: search state + info on "how we got there"
- search algorithms mainly differ in order of node expansion
 - uninformed vs. informed (heuristic) search
 - local vs. systematic search

Summary (ctd.)

- heuristics: estimators for "distance to goal node"
 - usually: the more accurate, the better performance
 - desiderata: safe, goal-aware, admissible, consistent
 - the ideal: perfect heuristic \(h^*\)
- most common algorithms for satisficing planning:
 - greedy best-first search
 - weighted A*
 - enforced hill-climbing
- most common algorithm for optimal planning:
 - A*