
Principles of AI Planning
5. Planning as search: progression and regression

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller
October 30th, 2013

Search
Introduction

Classification

Progression

Regression

SummaryPlanning as (classical)
search

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 2 / 49

Search
Introduction

Classification

Progression

Regression

Summary

What do we mean by search?

Search is a very generic term.
 Every algorithm that tries out various alternatives can be

said to “search” in some way.
Here, we mean classical search algorithms.

Search nodes are expanded to generate successor
nodes.
Examples: breadth-first search, A∗, hill-climbing, . . .

To be brief, we just say search in the following
(not “classical search”).

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 4 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Do you know this stuff already?

We assume prior knowledge of basic search algorithms:
uninformed vs. informed
systematic vs. local

There will be a small refresher in the next chapter.
Background: Russell & Norvig, Artificial Intelligence –
A Modern Approach, Ch. 3 (all of it), Ch. 4 (local search)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 5 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Search in planning

search: one of the big success stories of AI
many planning algorithms based on classical AI search
(we’ll see some other algorithms later, though)
will be the focus of this and the following chapters
(the majority of the course)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 6 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Satisficing or optimal planning?

Must carefully distinguish two different problems:
satisficing planning: any solution is OK
(although shorter solutions typically preferred)
optimal planning: plans must have shortest possible
length

Both are often solved by search, but:
details are very different
almost no overlap between good techniques for satisficing
planning and good techniques for optimal planning
many problems that are trivial for satisficing planners are
impossibly hard for optimal planners

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 7 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Planning by search

How to apply search to planning? many choices to make!

Choice 1: Search direction
progression: forward from initial state to goal
regression: backward from goal states to initial state
bidirectional search

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 8 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Planning by search

How to apply search to planning? many choices to make!

Choice 2: Search space representation
search nodes are associated with states
(state-space search)
search nodes are associated with sets of states

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 8 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Planning by search

How to apply search to planning? many choices to make!

Choice 3: Search algorithm
uninformed search:
depth-first, breadth-first, iterative depth-first, . . .
heuristic search (systematic):
greedy best-first, A∗, Weighted A∗, IDA∗, . . .
heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 8 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Planning by search

How to apply search to planning? many choices to make!

Choice 4: Search control
heuristics for informed search algorithms
pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, . . .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 8 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Search-based satisficing planners

FF (Hoffmann & Nebel, 2001)
search direction: forward search
search space representation: single states
search algorithm: enforced hill-climbing (informed local)
heuristic: FF heuristic (inadmissible)
pruning technique: helpful actions (incomplete)

 one of the best satisficing planners

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 9 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Search-based optimal planners

Fast Downward Stone Soup (Helmert et al., 2011)
search direction: forward search
search space representation: single states
search algorithm: A∗ (informed systematic)
heuristic: multiple admissible heuristics combined into a
heuristic portfolio (LM-cut, M&S, blind, . . .)
pruning technique: none

 one of the best optimal planners

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 10 / 49

Search
Introduction

Classification

Progression

Regression

Summary

Our plan for the next lectures

Choices to make:
1 search direction: progression/regression/both
 this chapter

2 search space representation: states/sets of states
 this chapter

3 search algorithm: uninformed/heuristic; systematic/local
 next chapter

4 search control: heuristics, pruning techniques
 following chapters

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 11 / 49

Search

Progression
Overview

Example

Regression

SummaryProgression

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 12 / 49

Search

Progression
Overview

Example

Regression

Summary

Planning by forward search: progression

Progression: Computing the successor state appo(s) of a state
s with respect to an operator o.

Progression planners find solutions by forward search:
start from initial state
iteratively pick a previously generated state and progress
it through an operator, generating a new state
solution found when a goal state generated

pro: very easy and efficient to implement

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 14 / 49

Search

Progression
Overview

Example

Regression

Summary

Search space representation in progression
planners

Two alternative search spaces for progression planners:
1 search nodes correspond to states

when the same state is generated along different paths,
it is not considered again (duplicate detection)
pro: save time to consider same state again
con: memory intensive (must maintain closed list)

2 search nodes correspond to operator sequences
different operator sequences may lead to identical states
(transpositions); search does not notice this
pro: can be very memory-efficient
con: much wasted work (often exponentially slower)

 first alternative usually preferable in planning
(unlike many classical search benchmarks like 15-puzzle)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 15 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression
Overview

Example

Regression

Summary

Progression planning example (depth-first
search)

Example where search nodes correspond to operator
sequences
(no duplicate detection)

s0

S?

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 16 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 17 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Forward search vs. backward search

Going through a transition graph in forward and backward
directions is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states
when applying an operator o in a state s in forward
direction, there is a unique successor state s′;
if we applied operator o to end up in state s′,
there can be several possible predecessor states s

 most natural representation for backward search in
planning associates sets of states with search nodes

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 19 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Planning by backward search: regression

Regression: Computing the possible predecessor states
regro(G) of a set of states G with respect to the last operator o
that was applied.

Regression planners find solutions by backward search:
start from set of goal states
iteratively pick a previously generated state set and
regress it through an operator, generating a new state set
solution found when a generated state set includes the
initial state

Pro: can handle many states simultaneously
Con: basic operations complicated and expensive

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 20 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Search space representation in regression
planners

identify state sets with logical formulae (again):
search nodes correspond to state sets
each state set is represented by a logical formula:
ϕ represents {s ∈ S | s |= ϕ}
many basic search operations like detecting duplicates
are NP-hard or coNP-hard

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 21 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression planning example (depth-first
search)

I

γ

γϕ1ϕ1 = regr−→(γ) ϕ2

ϕ2 = regr−→(ϕ1)

ϕ3

ϕ3 = regr−→(ϕ2), I |= ϕ3

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 22 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression planning example (depth-first
search)

I

γ

γ

ϕ1ϕ1 = regr−→(γ) ϕ2

ϕ2 = regr−→(ϕ1)

ϕ3

ϕ3 = regr−→(ϕ2), I |= ϕ3

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 22 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression planning example (depth-first
search)

I

γ

γϕ1ϕ1 = regr−→(γ)

ϕ2

ϕ2 = regr−→(ϕ1)

ϕ3

ϕ3 = regr−→(ϕ2), I |= ϕ3

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 22 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression planning example (depth-first
search)

I

γ

γϕ1ϕ1 = regr−→(γ) ϕ2

ϕ2 = regr−→(ϕ1)

ϕ3

ϕ3 = regr−→(ϕ2), I |= ϕ3

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 22 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression planning example (depth-first
search)

I

γ

γϕ1ϕ1 = regr−→(γ) ϕ2

ϕ2 = regr−→(ϕ1)

ϕ3

ϕ3 = regr−→(ϕ2), I |= ϕ3

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 22 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression for STRIPS planning tasks

Definition (STRIPS planning task)
A planning task is a STRIPS planning task if all operators are
STRIPS operators and the goal is a conjunction of atoms.

Regression for STRIPS planning tasks is very simple:
Goals are conjunctions of atoms a1∧·· ·∧an.
First step: Choose an operator that makes none of
a1, . . . ,an false.
Second step: Remove goal atoms achieved by the
operator (if any) and add its preconditions.

 Outcome of regression is again conjunction of atoms.
Optimization: only consider operators making some ai true

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 23 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

STRIPS regression

Definition (STRIPS regression)
Let ϕ = ϕ1∧·· ·∧ϕn be a conjunction of atoms, and
let o= 〈χ,e〉 be a STRIPS operator which adds the atoms
a1, . . . ,ak and deletes the atoms d1, . . . ,dl .

The STRIPS regression of ϕ with respect to o is

sregro(ϕ) :=


⊥ if ai = dj for some i, j
⊥ if ϕi = dj for some i, j
χ ∧

∧
({ϕ1, . . . ,ϕn}\{a1, . . . ,ak}) otherwise

Note: sregro(ϕ) is again a conjunction of atoms, or ⊥.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 24 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

STRIPS regression example

Note: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1=〈�on�∧�clr, ¬�on�∧�onT∧�clr〉
o2=〈�on�∧�clr∧�clr, ¬�clr∧¬�on�∧�on�∧�clr〉
o3=〈�onT∧�clr∧�clr, ¬�clr∧¬�onT∧�on�〉

γ =�on�∧�on�
ϕ1= sregro3(γ) =�onT∧�clr∧�clr∧�on�
ϕ2= sregro2(ϕ1) =�on�∧�clr∧�clr∧�onT
ϕ3= sregro1(ϕ2) =�on�∧�clr∧�on�∧�onT

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 25 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression for general planning tasks

With disjunctions and conditional effects, things become
more tricky. How to regress a∨ (b∧c) with respect to
〈q,d B b〉?
The story about goals and subgoals and fulfilling
subgoals, as in the STRIPS case, is no longer useful.
We present a general method for doing regression for any
formula and any operator.
Now we extensively use the idea of representing sets of
states as formulae.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 26 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions

Definition (effect precondition)
The effect precondition EPCl(e) for literal l and effect e is
defined as follows:

EPCl(l) = >
EPCl(l′) = ⊥ if l 6= l ′ (for literals l′)

EPCl(e1∧·· ·∧en) = EPCl(e1)∨·· ·∨EPCl(en)
EPCl(χ B e) = EPCl(e)∧χ

Intuition: EPCl(e) describes the situations in which effect e
causes literal l to become true.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 27 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect precondition examples

Example

EPCa(b∧c) = ⊥∨⊥≡⊥
EPCa(a∧ (bB a)) = >∨ (>∧b)≡>

EPCa((c B a)∧ (bB a)) = (>∧c)∨ (>∧b)≡ c∨b

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 28 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to change
sets

Lemma (A)
Let s be a state, l a literal and e an effect.
Then l ∈ [e]s if and only if s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e= l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) => by definition. Both sides of the equivalence
are true.
Base case 2, e= l ′ for some literal l ′ 6= l: l /∈ [l ′]s = {l ′} by
definition, and s 6|= EPCl(l ′) =⊥ by definition. Both sides are
false.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 29 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to change
sets

Lemma (A)
Let s be a state, l a literal and e an effect.
Then l ∈ [e]s if and only if s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e= l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) => by definition. Both sides of the equivalence
are true.
Base case 2, e= l ′ for some literal l ′ 6= l: l /∈ [l ′]s = {l ′} by
definition, and s 6|= EPCl(l ′) =⊥ by definition. Both sides are
false.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 29 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to change
sets

Lemma (A)
Let s be a state, l a literal and e an effect.
Then l ∈ [e]s if and only if s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e= l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) => by definition. Both sides of the equivalence
are true.
Base case 2, e= l ′ for some literal l ′ 6= l: l /∈ [l ′]s = {l ′} by
definition, and s 6|= EPCl(l ′) =⊥ by definition. Both sides are
false.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 29 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to change
sets

Proof (ctd.)
Inductive case 1, e= e1∧·· ·∧en:
l ∈ [e]s iff l ∈ [e1]s∪·· ·∪ [en]s (Def [e1∧·· ·∧en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . ,en}
iff s |= EPCl(e′) for some e′ ∈ {e1, . . . ,en} (IH)
iff s |= EPCl(e1)∨·· ·∨EPCl(en)
iff s |= EPCl(e1∧·· ·∧en). (Def EPC)

Inductive case 2, e= χ B e′:
l ∈ [χ B e′]s iff l ∈ [e′]s and s |= χ (Def [χ B e′]s)

iff s |= EPCl(e′) and s |= χ (IH)
iff s |= EPCl(e′)∧χ

iff s |= EPCl(χ B e′). (Def EPC)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 30 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to change
sets

Proof (ctd.)
Inductive case 1, e= e1∧·· ·∧en:
l ∈ [e]s iff l ∈ [e1]s∪·· ·∪ [en]s (Def [e1∧·· ·∧en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . ,en}
iff s |= EPCl(e′) for some e′ ∈ {e1, . . . ,en} (IH)
iff s |= EPCl(e1)∨·· ·∨EPCl(en)
iff s |= EPCl(e1∧·· ·∧en). (Def EPC)

Inductive case 2, e= χ B e′:
l ∈ [χ B e′]s iff l ∈ [e′]s and s |= χ (Def [χ B e′]s)

iff s |= EPCl(e′) and s |= χ (IH)
iff s |= EPCl(e′)∧χ

iff s |= EPCl(χ B e′). (Def EPC)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 30 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Effect preconditions: connection to normal
form

Remark: EPC vs. effect normal form
Notice that in terms of EPCa(e), any operator 〈χ,e〉 can be
expressed in effect normal form as〈

χ,
∧
a∈A

((EPCa(e)B a)∧ (EPC¬a(e)B ¬a))

〉
,

where A is the set of all state variables.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 31 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables

The formula EPCa(e)∨ (a∧¬EPC¬a(e)) expresses
the value of state variable a ∈ A after applying o
in terms of values of state variables before applying o.

Either:
a became true, or
a was true before and it did not become false.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 32 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: examples

Example
Let e= (bB a)∧ (c B ¬a)∧b∧¬d.

variable x EPCx(e)∨ (x∧¬EPC¬x(e))
a b∨ (a∧¬c)
b >∨ (b∧¬⊥)≡>
c ⊥∨ (c∧¬⊥)≡ c
d ⊥∨ (d ∧¬>)≡⊥

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 33 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Lemma (B)
Let a be a state variable, o= 〈χ,e〉 an operator,
s a state, and s′ = appo(s).
Then s |= EPCa(e)∨ (a∧¬EPC¬a(e)) if and only if s′ |= a.

Proof.
(⇒): Assume s |= EPCa(e)∨ (a∧¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma A, we have
a ∈ [e]s and hence s′ |= a.

2 Assume that s |= a∧¬EPC¬a(e). By Lemma A, we have
¬a /∈ [e]s. Hence a remains true in s′.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 34 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Lemma (B)
Let a be a state variable, o= 〈χ,e〉 an operator,
s a state, and s′ = appo(s).
Then s |= EPCa(e)∨ (a∧¬EPC¬a(e)) if and only if s′ |= a.

Proof.
(⇒): Assume s |= EPCa(e)∨ (a∧¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma A, we have
a ∈ [e]s and hence s′ |= a.

2 Assume that s |= a∧¬EPC¬a(e). By Lemma A, we have
¬a /∈ [e]s. Hence a remains true in s′.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 34 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Lemma (B)
Let a be a state variable, o= 〈χ,e〉 an operator,
s a state, and s′ = appo(s).
Then s |= EPCa(e)∨ (a∧¬EPC¬a(e)) if and only if s′ |= a.

Proof.
(⇒): Assume s |= EPCa(e)∨ (a∧¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma A, we have
a ∈ [e]s and hence s′ |= a.

2 Assume that s |= a∧¬EPC¬a(e). By Lemma A, we have
¬a /∈ [e]s. Hence a remains true in s′.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 34 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Lemma (B)
Let a be a state variable, o= 〈χ,e〉 an operator,
s a state, and s′ = appo(s).
Then s |= EPCa(e)∨ (a∧¬EPC¬a(e)) if and only if s′ |= a.

Proof.
(⇒): Assume s |= EPCa(e)∨ (a∧¬EPC¬a(e)).
Do a case analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma A, we have
a ∈ [e]s and hence s′ |= a.

2 Assume that s |= a∧¬EPC¬a(e). By Lemma A, we have
¬a /∈ [e]s. Hence a remains true in s′.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 34 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regressing state variables: correctness

Proof (ctd.)
(⇐): We showed that if the formula is true in s, then a is true in
s′. For the second part, we show that if the formula is false in
s, then a is false in s′.

So assume s 6|= EPCa(e)∨ (a∧¬EPC¬a(e)).
Then s |= ¬EPCa(e)∧ (¬a∨EPC¬a(e)) (de Morgan).
Case distinction: a is true or a is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a∨EPC¬a(e).
Hence by Lemma A ¬a ∈ [e]s and we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma A
we get a /∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 35 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition (general regression)
Let ϕ be a propositional formula and o= 〈χ,e〉 an operator.
The regression of ϕ with respect to o is

regro(ϕ) = χ ∧ϕr∧κ

where
1 ϕr is obtained from ϕ by replacing each a ∈ A by

EPCa(e)∨ (a∧¬EPC¬a(e)), and
2 κ =

∧
a∈A¬(EPCa(e)∧EPC¬a(e)).

The formula κ expresses that operators are only applicable in
states where their change sets are consistent.
October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 36 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression examples

regr〈a,b〉(b)≡ a∧ (>∨ (b∧¬⊥))∧>≡ a
regr〈a,b〉(b∧c∧d)
≡ a∧(>∨(b∧¬⊥))∧(⊥∨(c∧¬⊥))∧(⊥∨(d∧¬⊥))∧>
≡ a∧c∧d
regr〈a,cBb〉(b)≡ a∧ (c∨ (b∧¬⊥))∧>≡ a∧ (c∨b)
regr〈a,(cBb)∧(bB¬b)〉(b)≡ a∧ (c∨ (b∧¬b))∧¬(c∧b)
≡ a∧c∧¬b
regr〈a,(cBb)∧(dB¬b)〉(b)≡ a∧ (c∨ (b∧¬d))∧¬(c∧d)
≡ a∧ (c∨b)∧ (c∨¬d)∧ (¬c∨¬d)
≡ a∧ (c∨b)∧¬d

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 37 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Regression example: binary counter

(¬b0Bb0)∧
((¬b1∧b0)B(b1∧¬b0))∧

((¬b2∧b1∧b0)B(b2∧¬b1∧¬b0))

EPCb2(e)=¬b2∧b1∧b0
EPCb1(e)=¬b1∧b0
EPCb0(e)=¬b0

EPC¬b2(e)=⊥
EPC¬b1(e)=¬b2∧b1∧b0
EPC¬b0(e)=(¬b1∧b0)∨ (¬b2∧b1∧b0)≡ (¬b1∨¬b2)∧b0

Regression replaces state variables as follows:
b2 by (¬b2∧b1∧b0)∨ (b2∧¬⊥)≡ (b1∧b0)∨b2
b1 by (¬b1∧b0)∨ (b1∧¬(¬b2∧b1∧b0))

≡ (¬b1∧b0)∨ (b1∧ (b2∨¬b0))
b0 by ¬b0∨ (b0∧¬((¬b1∨¬b2)∧b0))≡ ¬b0∨ (b1∧b2)

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 38 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Theorem (correctness of regro(ϕ))
Let ϕ be a formula, o an operator and s a state.
Then s |= regro(ϕ) iff o is applicable in s and appo(s) |= ϕ .

Proof.
Let o= 〈χ,e〉. Recall that regro(ϕ) = χ ∧ϕr∧κ , where ϕr and
κ are as defined previously.

If o is inapplicable in s, then s 6|= χ ∧κ , both sides of the “iff”
condition are false, and we are done. Hence, we only further
consider states s where o is applicable. Let s′ := appo(s).

We know that s |= χ ∧κ (because o is applicable), so the “iff”
condition we need to prove simplifies to:

s |= ϕr iff s′ |= ϕ.
October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 39 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Theorem (correctness of regro(ϕ))
Let ϕ be a formula, o an operator and s a state.
Then s |= regro(ϕ) iff o is applicable in s and appo(s) |= ϕ .

Proof.
Let o= 〈χ,e〉. Recall that regro(ϕ) = χ ∧ϕr∧κ , where ϕr and
κ are as defined previously.

If o is inapplicable in s, then s 6|= χ ∧κ , both sides of the “iff”
condition are false, and we are done. Hence, we only further
consider states s where o is applicable. Let s′ := appo(s).

We know that s |= χ ∧κ (because o is applicable), so the “iff”
condition we need to prove simplifies to:

s |= ϕr iff s′ |= ϕ.
October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 39 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Theorem (correctness of regro(ϕ))
Let ϕ be a formula, o an operator and s a state.
Then s |= regro(ϕ) iff o is applicable in s and appo(s) |= ϕ .

Proof.
Let o= 〈χ,e〉. Recall that regro(ϕ) = χ ∧ϕr∧κ , where ϕr and
κ are as defined previously.

If o is inapplicable in s, then s 6|= χ ∧κ , both sides of the “iff”
condition are false, and we are done. Hence, we only further
consider states s where o is applicable. Let s′ := appo(s).

We know that s |= χ ∧κ (because o is applicable), so the “iff”
condition we need to prove simplifies to:

s |= ϕr iff s′ |= ϕ.
October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 39 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Theorem (correctness of regro(ϕ))
Let ϕ be a formula, o an operator and s a state.
Then s |= regro(ϕ) iff o is applicable in s and appo(s) |= ϕ .

Proof.
Let o= 〈χ,e〉. Recall that regro(ϕ) = χ ∧ϕr∧κ , where ϕr and
κ are as defined previously.

If o is inapplicable in s, then s 6|= χ ∧κ , both sides of the “iff”
condition are false, and we are done. Hence, we only further
consider states s where o is applicable. Let s′ := appo(s).

We know that s |= χ ∧κ (because o is applicable), so the “iff”
condition we need to prove simplifies to:

s |= ϕr iff s′ |= ϕ.
October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 39 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
To show: s |= ϕr iff s′ |= ϕ .

We show that for all formulae ψ , s |= ψr iff s′ |= ψ , where ψr is
ψ with every a ∈ A replaced by EPCa(e)∨ (a∧¬EPC¬a(e)).

The proof is by structural induction on ψ .

Induction hypothesis s |= ψr if and only if s′ |= ψ .
Base cases 1 & 2 ψ => or ψ =⊥: trivial, as ψr = ψ .

Base case 3 ψ = a for some a ∈ A:
Then ψr = EPCa(e)∨ (a∧¬EPC¬a(e)).
By Lemma B, s |= ψr iff s′ |= ψ .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 40 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
To show: s |= ϕr iff s′ |= ϕ .

We show that for all formulae ψ , s |= ψr iff s′ |= ψ , where ψr is
ψ with every a ∈ A replaced by EPCa(e)∨ (a∧¬EPC¬a(e)).

The proof is by structural induction on ψ .

Induction hypothesis s |= ψr if and only if s′ |= ψ .
Base cases 1 & 2 ψ => or ψ =⊥: trivial, as ψr = ψ .

Base case 3 ψ = a for some a ∈ A:
Then ψr = EPCa(e)∨ (a∧¬EPC¬a(e)).
By Lemma B, s |= ψr iff s′ |= ψ .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 40 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
To show: s |= ϕr iff s′ |= ϕ .

We show that for all formulae ψ , s |= ψr iff s′ |= ψ , where ψr is
ψ with every a ∈ A replaced by EPCa(e)∨ (a∧¬EPC¬a(e)).

The proof is by structural induction on ψ .

Induction hypothesis s |= ψr if and only if s′ |= ψ .
Base cases 1 & 2 ψ => or ψ =⊥: trivial, as ψr = ψ .

Base case 3 ψ = a for some a ∈ A:
Then ψr = EPCa(e)∨ (a∧¬EPC¬a(e)).
By Lemma B, s |= ψr iff s′ |= ψ .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 40 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
To show: s |= ϕr iff s′ |= ϕ .

We show that for all formulae ψ , s |= ψr iff s′ |= ψ , where ψr is
ψ with every a ∈ A replaced by EPCa(e)∨ (a∧¬EPC¬a(e)).

The proof is by structural induction on ψ .

Induction hypothesis s |= ψr if and only if s′ |= ψ .
Base cases 1 & 2 ψ => or ψ =⊥: trivial, as ψr = ψ .

Base case 3 ψ = a for some a ∈ A:
Then ψr = EPCa(e)∨ (a∧¬EPC¬a(e)).
By Lemma B, s |= ψr iff s′ |= ψ .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 40 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
To show: s |= ϕr iff s′ |= ϕ .

We show that for all formulae ψ , s |= ψr iff s′ |= ψ , where ψr is
ψ with every a ∈ A replaced by EPCa(e)∨ (a∧¬EPC¬a(e)).

The proof is by structural induction on ψ .

Induction hypothesis s |= ψr if and only if s′ |= ψ .
Base cases 1 & 2 ψ => or ψ =⊥: trivial, as ψr = ψ .

Base case 3 ψ = a for some a ∈ A:
Then ψr = EPCa(e)∨ (a∧¬EPC¬a(e)).
By Lemma B, s |= ψr iff s′ |= ψ .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 40 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
Inductive case 1 ψ = ¬ψ ′:

s |= ψr iff s |= (¬ψ
′)r iff s |= ¬(ψ ′r) iff s 6|= ψ

′
r

iff (IH) s′ 6|= ψ
′ iff s′ |= ¬ψ

′ iff s′ |= ψ

Inductive case 2 ψ = ψ ′∨ψ ′′:
s |= ψr iff s |= (ψ ′∨ψ

′′)r iff s |= ψ
′
r ∨ψ

′′
r

iff s |= ψ
′
r or s |= ψ

′′
r

iff (IH, twice) s′ |= ψ
′ or s′ |= ψ

′′

iff s′ |= ψ
′∨ψ

′′ iff s′ |= ψ

Inductive case 3 ψ = ψ ′∧ψ ′′: Very similar to inductive case 2,
just with ∧ instead of ∨ and “and” instead of
“or”.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 41 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
Inductive case 1 ψ = ¬ψ ′:

s |= ψr iff s |= (¬ψ
′)r iff s |= ¬(ψ ′r) iff s 6|= ψ

′
r

iff (IH) s′ 6|= ψ
′ iff s′ |= ¬ψ

′ iff s′ |= ψ

Inductive case 2 ψ = ψ ′∨ψ ′′:
s |= ψr iff s |= (ψ ′∨ψ

′′)r iff s |= ψ
′
r ∨ψ

′′
r

iff s |= ψ
′
r or s |= ψ

′′
r

iff (IH, twice) s′ |= ψ
′ or s′ |= ψ

′′

iff s′ |= ψ
′∨ψ

′′ iff s′ |= ψ

Inductive case 3 ψ = ψ ′∧ψ ′′: Very similar to inductive case 2,
just with ∧ instead of ∨ and “and” instead of
“or”.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 41 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General regression: correctness

Proof (ctd.)
Inductive case 1 ψ = ¬ψ ′:

s |= ψr iff s |= (¬ψ
′)r iff s |= ¬(ψ ′r) iff s 6|= ψ

′
r

iff (IH) s′ 6|= ψ
′ iff s′ |= ¬ψ

′ iff s′ |= ψ

Inductive case 2 ψ = ψ ′∨ψ ′′:
s |= ψr iff s |= (ψ ′∨ψ

′′)r iff s |= ψ
′
r ∨ψ

′′
r

iff s |= ψ
′
r or s |= ψ

′′
r

iff (IH, twice) s′ |= ψ
′ or s′ |= ψ

′′

iff s′ |= ψ
′∨ψ

′′ iff s′ |= ψ

Inductive case 3 ψ = ψ ′∧ψ ′′: Very similar to inductive case 2,
just with ∧ instead of ∨ and “and” instead of
“or”.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 41 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Emptiness and subsumption testing

The following two tests are useful when performing regression
searches to avoid exploring unpromising branches:

Test that regro(ϕ) does not represent the empty set
(which would mean that search is in a dead end).
For example, regr〈a,¬p〉(p)≡ a∧⊥≡⊥.
Test that regro(ϕ) does not represent a subset of ϕ

(which would make the problem harder than before).
For example, regr〈b,c〉(a)≡ a∧b.

Both of these problems are NP-hard.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 42 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Formula growth

The formula regro1(regro2(. . . regron−1(regron(ϕ)))) may have
size O(|ϕ||o1||o2| . . . |on−1||on|), i. e., the product of the sizes
of ϕ and the operators.
 worst-case exponential size O(mn)

Logical simplifications
⊥∧ϕ ≡⊥, >∧ϕ ≡ ϕ , ⊥∨ϕ ≡ ϕ , >∨ϕ ≡>
a∨ϕ ≡ a∨ϕ[⊥/a], ¬a∨ϕ ≡ ¬a∨ϕ[>/a],
a∧ϕ ≡ a∧ϕ[>/a], ¬a∧ϕ ≡ ¬a∧ϕ[⊥/a]
idempotency, absorption, commutativity, associativity, . . .

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 43 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Restricting formula growth in search trees

Problem very big formulae obtained by regression
Cause disjunctivity in the (NNF) formulae

(formulae without disjunctions easily convertible to
small formulae l1∧·· ·∧ ln where li are literals and n
is at most the number of state variables.)

Idea handle disjunctivity when generating search trees

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 44 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Unrestricted regression: search tree example

Unrestricted regression: do not treat disjunctions specially

Goal γ = a∧b, initial state I = {a 7→ 0,b 7→ 0,c 7→ 0}.

γ = a∧b

¬a∧a

(¬c∨a)∧b

(¬c∨a)∧¬a

(¬c∨a)∧b

〈¬a,b〉

〈b,¬
c B a〉

〈¬a,b〉

〈b,¬c B a〉

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 45 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

Full splitting: search tree example

Full splitting: always remove all disjunctivity

Goal γ = a∧b, initial state I = {a 7→ 0,b 7→ 0,c 7→ 0}.
(¬c∨a)∧b in DNF: (¬c∧b)∨ (a∧b)
 split into ¬c∧b and a∧b

γ = a∧b

¬a∧a

¬c∧b

(duplicate of γ) a∧b

¬c∧¬a

¬c∧b

〈¬a,b〉

〈b,¬
c B

a〉

〈b,¬c B a〉

〈¬a,b〉

〈b,¬c B a〉

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 46 / 49

Search

Progression

Regression
Overview

Example

STRIPS

General case

Practical issues

Summary

General splitting strategies

Alternatives:
1 Do nothing (unrestricted regression).
2 Always eliminate all disjunctivity (full splitting).
3 Reduce disjunctivity if formula becomes too big.

Discussion:
With unrestricted regression the formulae may have size
that is exponential in the number of state variables.
With full splitting search tree can be exponentially bigger
than without splitting.
The third option lies between these two extremes.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 47 / 49

Search

Progression

Regression

Summary

Summary

(Classical) search is a very important planning approach.
Search-based planning algorithms differ along many
dimensions, including

search direction (forward, backward)
what each search node represents
(a state, a set of states, an operator sequence)

Progression search proceeds forwards from the initial
state.

If we use duplicate detection, each search node
corresponds to a unique state.
If we do not use duplicate detection, each search node
corresponds to a unique operator sequence.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 48 / 49

Search

Progression

Regression

Summary

Summary (ctd.)

Regression search proceeds backwards from the goal.
Each search node corresponds to a set of states
represented by a formula.
Regression is simple for STRIPS operators.
The theory for general regression is more complex.
When applying regression in practice, additional
considerations such as when and how to perform splitting
come into play.

October 30th, 2013 B. Nebel, R. Mattmüller – AI Planning 49 / 49

	Planning as (classical) search
	Introduction
	Classification of search-based planners

	Progression
	Overview
	Example

	Regression
	Overview
	Example
	Regression for STRIPS tasks
	Regression for general planning tasks
	Practical issues

