Principles of Knowledge Representation and Reasoning

Qualitative Representation and Reasoning: Allen's Interval Calculus

Bernhard Nebel, Stefan Wölfl, and Julien Hué
February 13, 2012

1 Allen’s Interval Calculus

Motivation
Intervals and Relations Between Them
Composing Interval Relations

Qualitative temporal representation and reasoning

Often we do not want to talk about precise times:

- NLP – we do not have precise time points
- Planning – we do not want to commit to time points too early
- Scenario descriptions – we do not have the exact times or do not want to state them

What are the primitives in our representation system?

- Time points: actions and events are instantaneous, or we consider their beginning and ending
- Time intervals: actions and events have duration
- Reducibility? Expressiveness? Computational costs for reasoning?
Motivation: An example

Consider a planning scenario for multimedia generation:

P1: Display Picture1
P2: Say “Put the plug in.”
P3: Say “The device should be shut off.”
P4: Point to Plug-in-Picture1.

Temporal relations between events:

- P2 should happen during P1
- P3 should happen during P1
- P2 should happen before or directly precede P3
- P4 should happen during or end together with P2
- P4 happens before or directly precedes P3
- We could add the statement “P4 does not overlap with P3” without creating an inconsistency.

The base relations

How many ways are there to order the four points of two intervals?

<table>
<thead>
<tr>
<th>Relation</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>((X, Y) : X^- < X^+ < Y^- < Y^+)</td>
<td><</td>
<td>before</td>
</tr>
<tr>
<td>((X, Y) : X^- < X^+ = Y^- < Y^+)</td>
<td>m</td>
<td>meets</td>
</tr>
<tr>
<td>((X, Y) : X^- = Y^- < X^+ < Y^+)</td>
<td>o</td>
<td>overlaps</td>
</tr>
<tr>
<td>((X, Y) : Y^- < X^- < X^+ = Y^+)</td>
<td>s</td>
<td>starts</td>
</tr>
<tr>
<td>((X, Y) : Y^- < X^- < X^+ < Y^+)</td>
<td>f</td>
<td>finishes</td>
</tr>
<tr>
<td>((X, Y) : Y^- = X^- = X^+ < Y^+)</td>
<td>d</td>
<td>during</td>
</tr>
<tr>
<td>((X, Y) : Y^- = X^- < X^+ = Y^+)</td>
<td>≡</td>
<td>equal</td>
</tr>
</tbody>
</table>

and the converse relations (obtained by exchanging X and Y)

~~ These relations are JEPD.

Allen’s Interval Calculus

- Allen’s interval calculus: time intervals and binary relations over them
- Time intervals: \(X = (X^-, X^+)\), where \(X^-\) and \(X^+\) are interpreted over the reals and \(X^- < X^+\) (⇝ naive approach)
- Relations between concrete intervals, e.g.:
 - \((1.0, 2.0)\) strictly before \((3.0, 5.5)\)
 - \((1.0, 3.0)\) meets \((3.0, 5.5)\)
 - \((1.0, 4.0)\) overlaps \((3.0, 5.5)\)

~~ Which relations are conceivable?
Disjunctive descriptions

- Assumption: We don’t have precise information about the relation between X and Y, e.g.: $X \circ Y$ or $X \cdot Y$
- ...modelled by sets of base relations (meaning the union of the relations): $X \{o,m\} Y$
- $\sim 2^{13}$ imprecise relations (incl. \emptyset and B)

Example of an indefinite qualitative description:

$$\{ X \{o,m\} Y, \ Y \{m\} Z, X \{o,m\} Z \}$$

Our example … formally

P1: Display Picture1
P2: Say “Put the plug in.”
P3: Say “The device should be shut off.”
P4: Point to Plug-in-Picture1.

Composition of base relations

<table>
<thead>
<tr>
<th><</th>
<th>s</th>
<th>o</th>
<th>i</th>
<th>s</th>
<th>i</th>
<th>o</th>
<th>s</th>
<th>i</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<$</td>
<td>s</td>
<td>o</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>o</td>
</tr>
<tr>
<td>$=$</td>
<td>s</td>
<td>o</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>o</td>
</tr>
<tr>
<td>$>$</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>o</td>
</tr>
<tr>
<td>\ll</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>o</td>
</tr>
<tr>
<td>\gg</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>o</td>
<td>s</td>
<td>i</td>
<td>o</td>
</tr>
</tbody>
</table>

Outlook

- Using the composition table and the rules about operations on relations, we can deduce new relations between time intervals.
- What would be a systematic approach?
- How costly is that?
- Is that complete?
- If not, could it be complete on a subset of the relation system?
2 Reasoning in Allen’s Interval Calculus

- Enforcing Path Consistency
- NP-Hardness Example
- The Continuous Endpoint Class
- Completeness for the CEP Class

Constraint propagation – The naive algorithm

Enforcing path consistency using the straight-forward method:
Let \(\text{Table}[i,j] \) be an array of size \(n \times n \) (\(n \): number of intervals) in which we record the constraints between the intervals.

\[
\text{EnforcePathConsistency1}(C)
\]

\[\text{Input: a (binary) CSP } C = \langle V, D, C \rangle\]

\[\text{Output: an equivalent, but path-consistent CSP } C'\]

\[
\text{repeat}
\]

\[\text{for each pair } (i,j), 1 \leq i,j \leq n\]

\[\text{for each } k \text{ with } 1 \leq k \leq n\]

\[\text{Table}[i,j] := \text{Table}[i,j] \cap (\text{Table}[i,k] \circ \text{Table}[k,j])\]

\[\text{until } \text{no entry in Table is changed}\]

\[\Rightarrow \text{terminates};\]

\[\Rightarrow \text{needs } O(n^5) \text{ intersections and compositions.}\]

An \(O(n^3) \) algorithm

\[
\text{EnforcePathConsistency2}(C)
\]

\[\text{Input: a (binary) CSP } C = \langle V, D, C \rangle\]

\[\text{Output: an equivalent, but path-consistent CSP } C'\]

\[\text{Paths}(i,j) = \{(i,j,k) : 1 \leq k \leq n\} \cup \{(k,i,j) : 1 \leq k \leq n\}\]

\[\text{Queue} := \bigcup_{i,j} \text{Paths}(i,j)\]

\[\text{while } \text{Queue} \neq \emptyset\]

\[\text{select and delete } (i,k,j) \text{ from Queue}\]

\[T := \text{Table}[i,j] \cap (\text{Table}[i,k] \circ \text{Table}[k,j])\]

\[\text{if } T \neq \text{Table}[i,j]\]

\[\text{Table}[i,j] := T\]

\[\text{Table}[i,j] := T^{-1}\]

\[\text{Queue} := \text{Queue} \cup \text{Paths}(i,j)\]

Example for incompleteness
THEOREM (Kautz & Vilain)

CSAT is NP-hard for Allen's interval calculus.

Proof.
Reduction from 3-colorability (original proof using 3Sat).
Let $G = (V, E), V = \{v_1, \ldots, v_n\}$ be an instance of 3-colorability.
Then we use the intervals $\{v_1, \ldots, v_n, 1, 2, 3\}$ with the following constraints:

1. $\{m\}$ 2
2. $\{m\}$ 3
$v_i \{m, m^{-1}\} 2 \; \forall v_i \in V$
$v_i \{m, m^{-1}, <, >\} \; v_j \; \forall (v_i, v_j) \in E$

This constraint system is satisfiable iff G can be colored with 3 colors.

Why do we have completeness?

The set C is closed under intersection, composition, and converse (it is a sub-algebra wrt. these three operations on relations). This can be shown by using a computer program.

Lemma

Each 3-consistent interval CSP over C is globally consistent.

Theorem (van Beek)

Path consistency solves $\text{CMIN}(C)$ and decides $\text{CSAT}(C)$.

(Proof: Follows from the above lemma and the fact that a strongly n-consistent CSP is minimal.)

Corollary

A path-consistent interval CSP consisting of base relations only is satisfiable.
Helly’s theorem

Definition
A set $M \subseteq \mathbb{R}^n$ is convex if and only if for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)
Let F be a finite family of at least $n + 1$ convex sets in \mathbb{R}^n. If all sub-families of F with $n + 1$ sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

Strong n-consistency (1)

Proof (Part 1).
We prove the claim by induction over k with $k \leq n$.

- **Base case:** $k = 1, 2, 3$ \(\checkmark\)
- **Induction assumption:** Assume strong $(k - 1)$-consistency (and non-emptiness of all relations)
- **Induction step:** From the assumption, it follows that there is an instantiation of $k - 1$ variables X_i to pairs (s_i, e_i) satisfying the constraints R_{ij} between the $k - 1$ variables.

We have to show that we can extend the instantiation to any kth variable.

Strong n-consistency (2): Instantiating the kth variable

Proof (Part 2).
The instantiation of the $k - 1$ variables X_i to (s_i, e_i) restricts the instantiation of X_k.

Note: Since $R_{ij} \in C$ by assumption, these restrictions can be expressed by inequalities of the form:

$$s_i < X_k^+ \land e_j \geq X_k^- \land \ldots$$

Such inequalities define convex subsets in \mathbb{R}^2.

\(\Rightarrow\) Consider sets of 3 inequalities (= 3 convex sets).

Strong n-consistency (3): Using Helly’s theorem

Proof (Part 3).

- **Case 1:** All 3 inequalities mention only X_k^- (or mention only X_k^+). Then it suffices to consider only 2 of these inequalities (the strongest).

Because of 3-consistency, there exists at least 1 common point satisfying these 2 inequalities.

- **Case 2:** The inequalities mention X_k^- and X_k^+, but do not contain the inequality $X_k^- < X_k^+$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1.

- **Case 3:** The set contains the inequality $X_k^- < X_k^+$. In this case, only three intervals (incl. X_k) can be involved and by 3-consistency there exists a common point.

\(\Rightarrow\) With Helly’s Theorem, there exists an instantiation consistent with all inequalities.

\(\Rightarrow\) Strong k-consistency for all $k \leq n$. \(\square\)
Outlook

- CMIN(\(C\)) can be computed in \(O(n^3)\) time (for \(n\) being the number of intervals) using the path consistency algorithm.
- \(C\) is a set of relations occurring “naturally” when observations are uncertain.
- \(C\) contains 83 relations (incl. the impossible and the universal relations).
- Are there larger sets such that path consistency computes minimal CSPs? Probably not.
- Are there larger sets of relations that permit polynomial satisfiability testing? Yes.

The EP-subclass

End-Point subclass: \(P \subseteq A\) is the subclass that permits a clause form containing only unit clauses (\(a \neq b\) is allowed).

Example: all basic relations and \(\{d, o\}\) since

\[\pi(X\{d, o\} Y) = \begin{cases} X^- < X^+, Y^- < Y^+, \\
X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, \\
X^+ < Y^+ \end{cases}\]

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

Enforcing path consistency decides CSAT(\(P\)).

The ORD-Horn subclass

ORD-Horn subclass: \(H \subseteq A\) is the subclass that permits a clause form containing only Horn clauses where only the following literals are allowed:

\[a \leq b, a = b, a \neq b\]

\(-a \leq b\) is not allowed!

Example: all \(R \in P\) and \(\{o, s, f^{-1}\}\):

\[\pi(X\{o, s, f^{-1}\} Y) = \begin{cases} X^- \leq X^+, X^- \neq X^+, \\
Y^- \leq Y^+, Y^- \neq Y^+,
X^- \leq Y^-,
X^- \leq Y^+, X^- \neq Y^+,
Y^- \leq X^+, X^- \neq Y^-,
X^+ \leq Y^+, \\
X^- \neq Y^- \lor X^+ \neq Y^+ \end{cases}\]
Partial orders: The \textit{ORD}-theory

Let \textit{ORD} be the following theory:

\begin{align*}
\forall x, y, z : & \quad x \leq y \land y \leq z \rightarrow x \leq z \quad \text{(transitivity)} \\
\forall x : & \quad x \leq x \quad \text{(reflexivity)} \\
\forall x, y : & \quad x \leq y \land y \leq x \rightarrow x = y \quad \text{(anti-symmetry)} \\
\forall x, y : & \quad x = y \rightarrow x \leq y \quad \text{(weakening of =)} \\
\forall x, y : & \quad x = y \rightarrow y \leq x \quad \text{(weakening of =)}.
\end{align*}

\textit{ORD} describes partially ordered sets, \(\leq\) being the ordering relation.

\textit{ORD} is a Horn theory

What is missing wrt. dense and linear orders?

Satisfiability over partial orders

Proposition

Let \(\Theta\) be a CSP over \(\mathcal{H}\). \(\Theta\) is satisfiable over interval interpretations if \(\pi(\Theta) \cup \text{ORD}\) is satisfiable over arbitrary interpretations.

Proof.

\(\Rightarrow\): Since the reals form a partially ordered set (i.e., satisfy \textit{ORD}), this direction is trivial.

\(\Leftarrow\): Each extension of a partial order to a linear order satisfies all formulae of the form \(a \leq b\), \(a = b\), and \(a \neq b\) which have been satisfied over the original partial order.

Complexity of \text{CSAT}(\mathcal{H})

Let \(\text{ORD}_{\pi(\Theta)}\) be the propositional theory resulting from instantiating all axioms with the endpoints occurring in \(\pi(\Theta)\).

Proposition

\(\text{ORD} \cup \pi(\Theta)\) is satisfiable iff \(\text{ORD}_{\pi(\Theta)} \cup \pi(\Theta)\) is so.

Proof idea: Herbrand expansion!

Theorem

\text{CSAT}(\mathcal{H}) can be decided in polynomial time.

Proof.

\text{CSAT}(\mathcal{H}) instances can be translated into a propositional Horn theory with blowup \(O(n^3)\) according to the previous Prop., and such a theory is decidable in polynomial time.

\[C \subset P \subset \mathcal{H} \quad \text{with} \quad |C| = 83, \quad |P| = 188, \quad |\mathcal{H}| = 868 \]

Path consistency and the \textit{OH}-class

Lemma

\(X \nsubseteq Y \notin \Theta\) iff \(\Theta\) is satisfiable

Proof idea: One can show that \(\text{ORD}_{\pi(\Theta)} \cup \pi(\Theta)\) is closed wrt. positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Theorem

Enforcing path consistency decides \text{CSAT}(\mathcal{H}).

\(\Rightarrow\) Maximaliy of \(\mathcal{H}\)?

\(\Rightarrow\) Do we have to check all \(8192 - 868\) extensions?
Complexity of sub-algebras

Let \(\hat{S} \) be the closure of \(S \subseteq A \) under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by \(S \)).

Theorem

CSAT(\(\hat{S} \)) can be polynomially transformed to CSAT(S).

Proof Idea.

All relations in \(\hat{S} - S \) can be modeled by a fixed number of compositions, intersections, and conversions of relations in \(S \), introducing perhaps some fresh variables.

\(\Rightarrow \) Polynomiaality of \(S \) extends to \(\hat{S} \).

\(\Rightarrow \) NP-hardness of \(\hat{S} \) is inherited by all generating sets \(S \).

\(\Rightarrow \) Note: \(H = \hat{H} \).

Minimal extensions of the \(H \)-subclass

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras, \(\lambda_1 \) and \(\lambda_2 \), that strictly contain \(H \):

\[N_1 = \{ d, d^{-1}, o^{-1}, s^{-1}, f \} \in \lambda_1 \]

\[N_2 = \{ d^{-1}, o, o^{-1}, s^{-1}, f^{-1} \} \in \lambda_2 \]

The clause form of these relations contain “proper” disjunctions!

Theorem

CSAT(\(H \cup \{ N_i \} \)) is NP-complete.

Question: Are there other maximal tractable subclasses?

“Interesting” subclasses

Interesting subclasses of \(A \) should contain all basic relations.

A computer-aided case analysis reveals:

For \(S \supseteq \{ \{ B \} : B \in B \} \) it holds that

\(\Rightarrow \) \(\hat{S} \subseteq H \), or

\(\Rightarrow \) \(N_1 \) or \(N_2 \) is in \(\hat{S} \).

In case 2, one can show: CSAT(S) is NP-complete.

\(\Rightarrow \) \(H \) is the only interesting maximal tractable subclass.

If we include non-interesting subalgebras, there exist exactly 18 tractable classes.

Relevance?

Theory: We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

Practice: All known applications either need only \(P \) or they need more than \(H! \)

Backtracking methods might profit from the result by reducing the branching factor.

\(\Rightarrow \) How difficult is CSAT(\(A \)) in practice?

\(\Rightarrow \) What are the relevant branching factors?
Solving general Allen CSPs

- Backtracking algorithm using **path consistency** as a forward-checking method
- Relies on tractable fragments of Allen's calculus: split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics
 ¬¬ Which tractable fragment should one use?

Branching factors

- If the labels are split into **base relations**, then on average a label is split into **6.5 relations**
- If the labels are split into **pointizable relations** \((P) \), then on average a label is split into **2.955 relations**
- If the labels are split into **ORD-Horn relations** \((H) \), then on average a label is split into **2.533 relations**

¬¬ A difference of 0.422
¬¬ This makes a difference for “hard” instances.

Summary

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the **continuous endpoint class**, minimal CSPs can be computed using the path-consistency method.
- For the larger **ORD-Horn class**, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.

4 Literature
Literature I

[Image]

J. F. Allen.
Maintaining knowledge about temporal intervals.
Also in *Readings in Knowledge Representation*.

P. van Beek and R. Cohen.
Exact and approximate reasoning about temporal relations.

B. Nebel and H.-J. Bürckert.
Reasoning about temporal relations: A maximal tractable subclass of
Allen’s interval algebra.

B. Nebel.
Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-Horn class.

February 13, 2012
Nebel, Wölfl, Hué – KRR
45 / 46

Literature II

[Image]

A complete classification of complexity in Allen’s algebra in the presence
of a non-trivial basic relation.
In *Proceedings of the 17th International Joint Conference on Artificial

Reasoning about Temporal Relations: The Tractable Subalgebras of
Allen’s Interval Algebra.