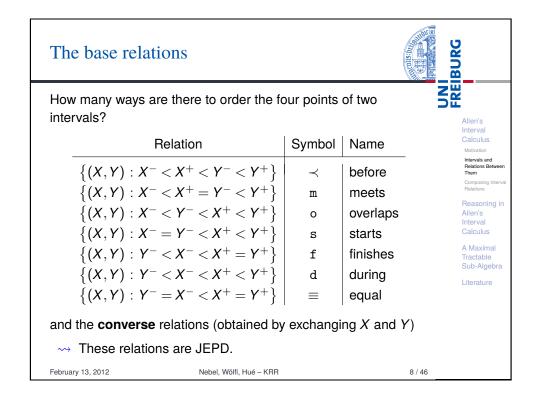
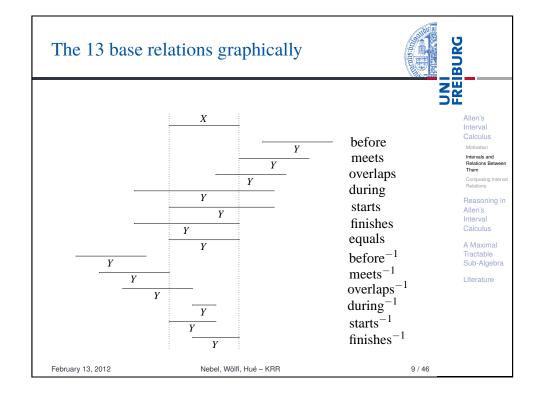


February 13, 2012

Motivation: An example			BURG
Consider a planning scenario for multimedia generation	n:		AND
P1: Display Picture1P2: Say "Put the plug in."P3: Say "The device should be shut off."P4: Point to Plug-in-Picture1.			Allen's Interval Calculus Motivation Intervals and Relations Between Them Composing Interval Relations
Temporal relations between events:			Reasoning in Allen's
 P2 should happen during P3 should happen during P2 should happen before or directly precede P4 should happen during or end together with 	P1 P1 P3 P2		Alterval Calculus A Maximal Tractable Sub-Algebra Literature
 P4 happens before or directly precedes P3 We could add the statement "P4 does not overlap without creating an inconsistency. 	with F	93"	
February 13, 2012 Nebel, Wölfl, Hué – KRR		6 / 46	



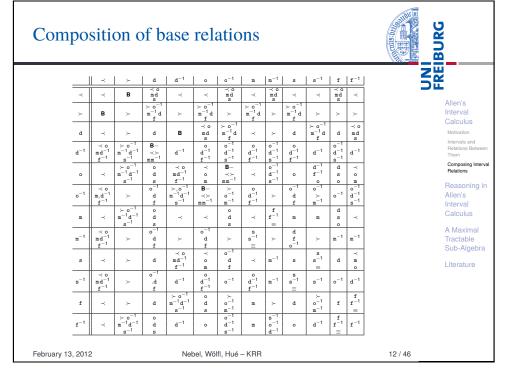
over themCalculuTime intervals: $X = (X^-, X^+)$, where X^- and X^+ are interpreted over the reals and $X^- < X^+$ (\rightsquigarrow naïve approach)Interval RelationsRelations between concrete intervals, e. g.: $(1.0,2.0)$ strictly before $(3.0,5.5)$ $(1.0,3.0)$ meets $(3.0,5.5)$ A Maxie Track Sub-All	Allen's Interv	val Calculus	BURG	
	over them Time intervation interpreted of approach) Relations be (1.0,2.0 (1.0,3.0 (1.0,4.0))	Is: $X = (X^-, X^+)$, where X^- and over the reals and $X^- < X^+$ (\rightsquigarrow r tween concrete intervals, e.g.: 1) strictly before (3.0,5.5) 1) meets (3.0,5.5) 1) overlaps (3.0,5.5)	d X ⁺ are Reasonir naïve Reasonir	al bra
February 13, 2012 Nebel, Wölfi, Hué – KRR 7 / 46	February 13, 2012	Nebel, Wölfl, Hué – KRR	7 / 46	_

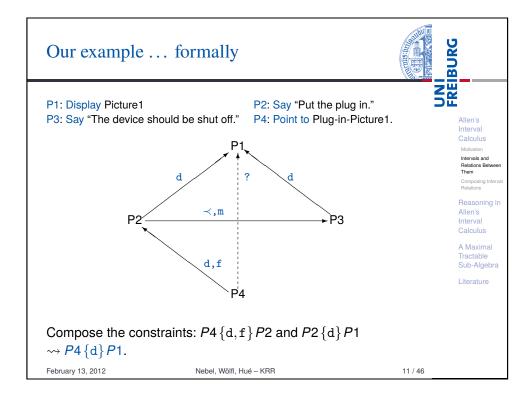


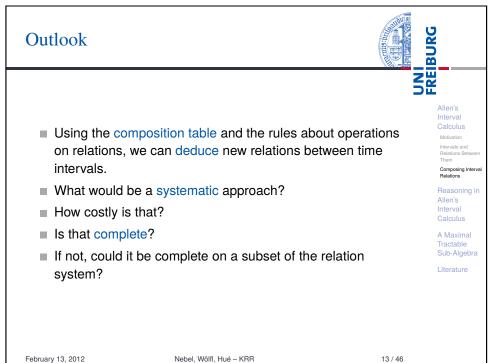
D

Disjunctive descriptions	RUKG
Assumption: We don't have precise information about the relation between X and Y, e.g.:	Allen's Interval Calculus
$X \circ Y$ or $X m Y$	Motivation Intervals and Relations Between Them
 modelled by sets of base relations (meaning the union of the relations): X {o,m} Y 	Composing Interval Relations Reasoning in Allen's Interval Calculus
\rightarrow 2 ¹³ imprecise relations (incl. Ø and B)	A Maximal Tractable Sub-Algebra
Example of an indefinite qualitative description:	Literature
$\left\{X\left\{o,\mathtt{m}\right\}Y,Y\left\{\mathtt{m}\right\}Z,X\left\{o,\mathtt{m}\right\}Z\right\}$	
February 13, 2012 Nebel, Wölfl, Hué – KRR 10 / 46	

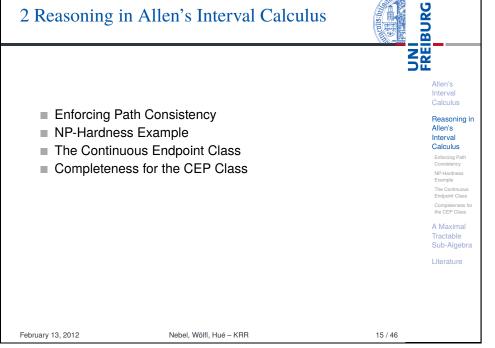
NUDICA

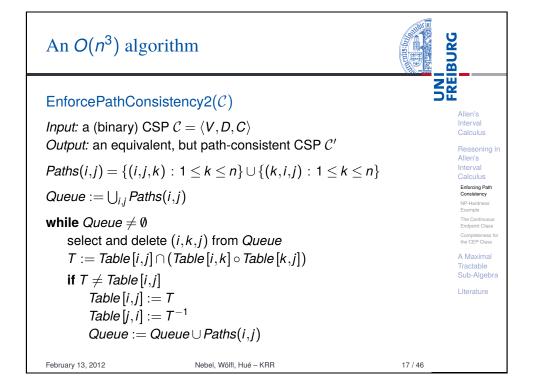






2 Reasoning in Allen's Interval Calculus





Constraint propagation – The naive algorithm

Allen's

Interval

Allen's

Interval

Calculus

Enforcing Path

Consistency

NP-Hardnes

Example

Calculus

Reasoning in

Enforcing path consistency using the straight-forward method: Let *Table* [*i*,*j*] be an array of size $n \times n$ (*n*: number of intervals) in which we record the constraints between the intervals.

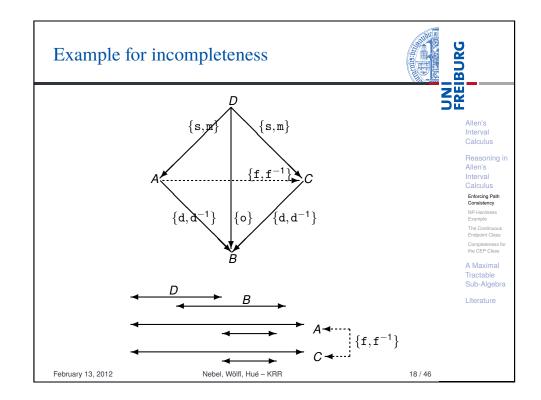
EnforcePathConsistency1(C)

Input: a (binary) CSP $C = \langle V, D, C \rangle$ *Output:* an equivalent, but path-consistent CSP C'

repeat

for each pair (i,j) , $1 \le i,j \le n$	Completeness for the CEP Class
for each k with $1 \le k \le n$ Table $[i,j] :=$ Table $[i,j] \cap (Table[i,k] \circ Table[k,j])$	A Maximal Tractable Sub-Algebra
until no entry in Table is changed	Literature
→ terminates; → needs $O(n^5)$ intersections and compositions.	

16 / 46 February 13, 2012 Nebel, Wölfl, Hué - KRR



NP-hardness

BURG L N N N N N Theorem (Kautz & Vilain) Allen's CSAT is NP-hard for Allen's interval calculus. Interval Calculus Reasoning in Proof. Allen's Interval Reduction from 3-colorability (original proof using 3Sat). Calculus Let G = (V, E), $V = \{v_1, \dots, v_n\}$ be an instance of 3-colorability. Enforcing Path NP-Hardness Then we use the intervals $\{v_1, \ldots, v_n, 1, 2, 3\}$ with the following Example The Continuo constraints: Endpoint Class the CEP Class 1 2 A Maximal 2 $\{m\}$ 3 Tractable Sub-Algebra $\{m, \equiv, m^{-1}\}$ 2 $\forall v_i \in V$ Vi Literature $\{\mathbf{m},\mathbf{m}^{-1},\prec,\succ\}$ v_i $\forall (v_i,v_i) \in E$ Vi This constraint system is satisfiable iff G can be colored with 3 colors. February 13, 2012 Nebel, Wölfl, Hué - KRR 19/46

The Continuous Endpoint Class

February 13, 2012

Continuous Endpoint Class C: This is a subset of A such that there exists a clause form for each relation containing only unit clauses where $\neg(a = b)$ is forbidden.

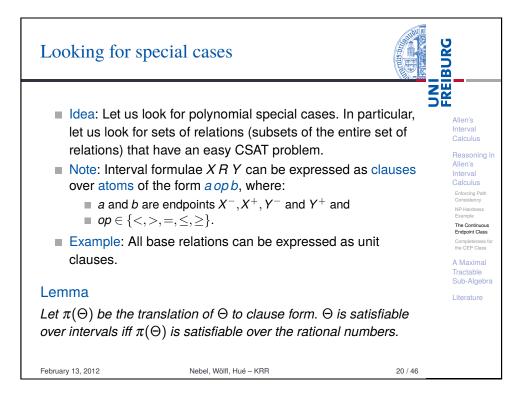
Example: All basic relations and $\{d, o, s\}$, because

 $\pi(X \{d, o, s\} Y) = \{ X^- < X^+, Y^- < Y^+, X^- < Y^+, X^- < Y^+, X^+ > Y^-, X^+ < Y^+ \}$ Y

Nebel, Wölfl, Hué - KRR

February 13, 2012

21 / 46



Why do we have completeness?	BURG
The set C is closed under intersection, composition, and converse (it is a sub-algebra wrt. these three operations on relations). This can be shown by using a computer program.	Allen's Interval Calculus
Lemma Each 3-consistent interval CSP over C is globally consistent.	Reasoning in Allen's Interval Calculus Enforcing Path Consistency
Theorem (van Beek)	NP-Hardness Example
Path consistency solves $CMIN(C)$ and decides $CSAT(C)$.	The Continuous Endpoint Class Completeness for the CEP Class
(Proof: Follows from the above lemma and the fact that a strongly <i>n</i> -consistent CSP is minimal.)	A Maximal Tractable Sub-Algebra
Corollary	Literature
A path-consistent interval CSP consisting of base relations only is satisfiable.	

Nebel, Wölfl, Hué - KRR

22 / 46

Helly's theorem

Allen's Interval

Calculus

Allen's

Interval

Calculus

Enforcing Patl

NP-Hardness

Endpoint Class

the CEP Class

A Maximal

Tractable

Literature

23/46

UNI FREIBURG

> Allen's Interval

Calculus

Allen's

Interval

Calculus

Enforcing Patl

NP-Hardness

The Continuous

Endpoint Class

the CEP Class

A Maximal

Sub-Algebra

Tractable

Literature

Completeness for

Example

Sub-Algebra

Completeness fo

Example

Reasoning in

Definition

A set $M \subseteq \mathbb{R}^n$ is convex if and only if for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)

Let *F* be a finite family of at least n + 1 convex sets in \mathbb{R}^n . If all sub-families of *F* with n + 1 sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

February 13, 2012

Nebel, Wölfl, Hué - KRR

Strong *n*-consistency (2): Instantiating the *k*th variable

Proof (Part 2).

The instantiation of the k - 1 variables X_i to (s_i, e_i) restricts the instantiation of X_k .

Note: Since $R_{ij} \in C$ by assumption, these restrictions can be expressed by inequalities of the form:

 $s_i < X_k^+ \land e_j \ge X_k^- \land \dots$

Such inequalities define convex subsets in $\ensuremath{\mathbb{R}}^2.$

 \rightsquigarrow Consider sets of 3 inequalities (= 3 convex sets).

Strong <i>n</i> -consistency	(1)		
------------------------------	----	---	--	--

Allen's

Interval

Calculus

Allen's

Interval

Calculus

NP-Hardnes

The Continuo

Endpoint Class

the CEP Class

A Maximal

Tractable

Literature

Sub-Algebra

Completeness fo

Example

Proof (Part 1).

We prove the claim by induction over *k* with $k \leq n$.

Base case: $k = 1, 2, 3 \sqrt{}$

Induction assumption: Assume strong (k-1)-consistency (and non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an instantiation of k - 1 variables X_i to pairs (s_i, e_i) satisfying the constraints R_{ij} between the k - 1 variables.

We have to show that we can extend the instantiation to any kth variable.

February 13, 2012

Nebel, Wölfl, Hué – KRR

24 / 46

UNI FREIBURG

Strong *n*-consistency (3): Using Helly's theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X_k^- (or mention only X_k^+). Then it suffices to consider only 2 of these inequalities (the strongest). Because of 3-consistency, there exists at least 1 common point satisfying these 2 inequalities.

Case 2: The inequalities mention X_k^- and X_k^+ , but do not contain the inequality $X_k^- < X_k^+$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality $X_k^- < X_k^+$. In this case, only three intervals (incl. X_k) can be involved and by 3-consistency there exists a common point.

- → With Helly's Theorem, there exists an instantiation consistent with all inequalities.
- \rightsquigarrow Strong *k*-consistency for all $k \leq n$.

Allen's Interval Calculus Reasoning in Allen's Interval Calculus Enforcing Path Consistency NP-Hardness Example The Continuous Endpoint Class Completeness for the CEP Class

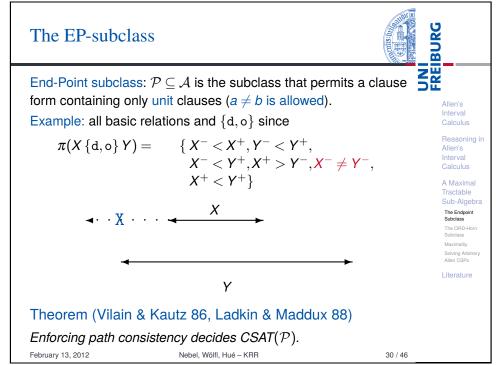
Tractable Sub-Algebra

February 13, 2012

25 / 46

February 13, 2012

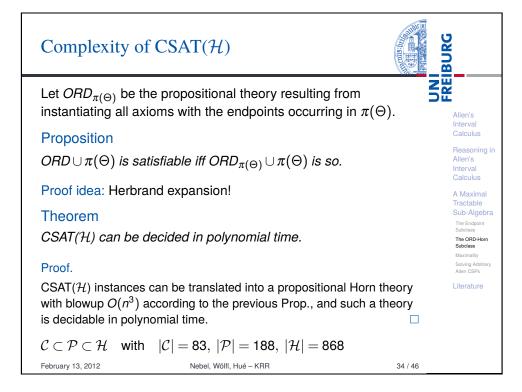
Outlook		BURG	
 number of intervals) C is a set of relations observations are und C contains 83 relation universal relations). Are there larger sets minimal CSPs? Protection 	ns (incl. the impossible and the such that path consistency com pably not. of relations that permit polynom	rithm. Reasoning Allen's Interval Calculus Enforcing Path Consistency NP-Hardness Example The Continuou Endpoint Class the CEP Class A Maximal Tractable Sub-Algeb	s for
February 13, 2012	Nebel, Wölfl, Hué – KRR	27 / 46	



3 A Maximal Tract	able Sub-Algebra		,
 The Endpoint Subc The ORD-Horn Sul Maximality Solving Arbitrary A 	bclass	N	Allen's Interval Calculus Reasoning in Allen's Interval Calculus Algebra Tractable Sub-Algebra The Endpoint Subclass The ORD-Hom Subclass Maximality Sadving Abditrary Allen CSPs Literature
February 13, 2012	Nebel, Wölfl, Hué – KRR	29 / 46	

The ORD-Horn subclass	BURG
ORD-Horn subclass: $\mathcal{H} \subseteq \mathcal{A}$ is the subclass that clause form containing only Horn clauses where following literals are allowed:	
$a \le b, a = b, a \ne b$ $\neg a \le b$ is not allowed! Example: all $R \in \mathcal{P}$ and $\{o, s, f^{-1}\}$:	Reasoning in Allen's Interval Calculus A Maximal Tractable Sub-Algebra
$\pi(X\{o,s,f^{-1}\}Y) = \begin{cases} X^- \leq X^+, X^- \neq Y \\ Y^- \leq Y^+, Y^- \neq Y \\ X^- \leq Y^-, \end{cases}$	The Federal
$X^{-} \leq Y^{+}, X^{-} \neq Y$ $Y^{-} \leq X^{+}, X^{+} \neq Y$ $X^{+} \leq Y^{+},$ $X^{-} \neq Y^{-} \lor X^{+} \neq Y$	Y ⁻ ,
February 13, 2012 Nebel, Wölfl, Hué – KRR	31 / 46

Partial or	ders: The OR	D-theory		BURG
$ \begin{array}{l} \forall x, y, z: \\ \forall x: \\ \forall x, y: \\ \forall x, y: \\ \forall x, y: \end{array} $	$x \leq y \land y \leq x$ $x = y$	$ \begin{array}{c} \rightarrow x \leq z \\ \rightarrow x = y \\ \rightarrow x \leq y \end{array} $	 (transitivity) (reflexivity) (anti-symmetry) (weakening of =) (weakening of =). 	Allen's Interval Calculus Reasoning ir Allen's Interval Calculus A Maximal Tractable Sub-Algebra The Endoort
relation <i>ORD</i> is			ts, \leq being the ordering ar orders?	Subclass The ORD-Hom Subclass Maximality Solving Antitrary Allen CSPs Literature
February 13, 2012	Nebel,	Wölfl, Hué – KRR	32 / 46	i



Satisfiability over partial orders

33 / 46

Allen's

Interval Calculus

Allen's

Interval Calculus

A Maxima Tractable

The Endpoint

The ORD-Horn

Subclass

Maximality Solving Arbitrar

Allen CSPs

Proposition

Let Θ be a CSP over \mathcal{H} . Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof.

 \Rightarrow : Since the reals form a partially ordered set (i. e., satisfy *ORD*), this direction is trivial.

⇐: Each extension of a partial order to a linear order satisfies all formulae of the form $a \le b$, a = b, and $a \ne b$ which have been satisfied over the original partial order.

February 13, 2012

Nebel, Wölfl, Hué - KRR

UNI FREIBURG Path consistency and the OH-class Lemma Allen's Let Θ be a path-consistent set over \mathcal{H} . Then Interval Calculus Reasoning i $(X{} Y) \notin \Theta$ iff Θ is satisfiable Allen's Interval Calculus Proof idea: One can show that $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt. A Maximal positive unit resolution. Since this inference rule is refutation Tractable complete for Horn theories, the claim follows. The Endpoint The ORD-Horn Subclass Theorem Maximality Solving Arbitrar Enforcing path consistency decides $CSAT(\mathcal{H})$. Allen CSPs \rightsquigarrow Maximality of \mathcal{H} ? → Do we have to check all 8192 – 868 extensions? February 13, 2012 Nebel, Wölfl, Hué - KRR 35 / 46

Complexity of sub-algebras

Allen's

Interval

Allen's

Interval

Calculus

A Maximal Tractable

The Endpoint

The ORD-Horn

Solving Arbitrar

Subclass

Maximality

Allen CSPs

Literature

36 / 46

Calculus

Reasoning in

Let \hat{S} be the closure of $S \subseteq A$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by *S*).

Theorem

 $CSAT(\hat{S})$ can be polynomially transformed to CSAT(S).

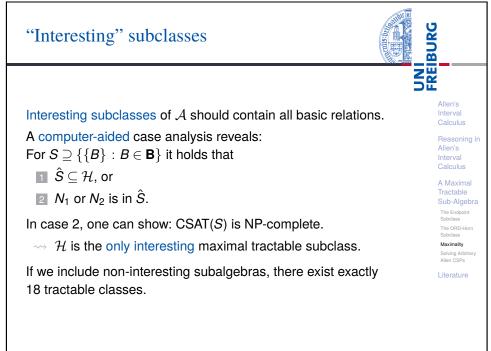
Proof Idea.

All relations in $\hat{S} - S$ can be modeled by a fixed number of compositions, intersections, and conversions of relations in *S*, introducing perhaps some fresh variables.

- \rightsquigarrow Polynomiality of *S* extends to \hat{S} .
- \rightsquigarrow NP-hardness of \hat{S} is inherited by all generating sets *S*.
- \rightsquigarrow Note: $\mathcal{H} = \hat{\mathcal{H}}$.

February 13, 2012

Nebel, Wölfl, Hué – KRR



Minimal	extensions	of the	\mathcal{H} -subclass
---------	------------	--------	-------------------------

37 / 46

Allen's

Interval

Calculus

Allen's

Interval

Calculus A Maximal

Tractable

The Endpoint

Subclass

Maximality

Solving Arbitrar

Allen CSPs

A computer-aided case analysis leads to the following result:

Lemma

There are only two minimal sub-algebras, X_1 and X_2 , that strictly contain H:

$N_1 = \{\mathtt{d}, \mathtt{d}^{-1}, \mathtt{o}^{-1}, \mathtt{s}^{-1}, \mathtt{f}\} \in \mathcal{X}_1$	
$N_2 = \{ \mathtt{d}^{-1}, \mathtt{o}, \mathtt{o}^{-1}, \mathtt{s}^{-1}, \mathtt{f}^{-1} \} \in \mathcal{X}$, 2

The clause form of these relations contain "proper" disjunctions!

Theorem $CSAT(\mathcal{H} \cup \{N_i\})$ is NP-complete.

Question: Are there other maximal tractable subclasses?

February 13, 2012

Nebel, Wölfl, Hué – KRR

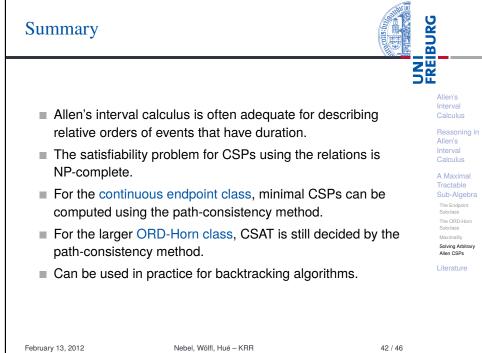
UNI FREIBURG **Relevance**? Allen's Interval Calculus polynomial and NP-hard reasoning problems Reasoning i Allen's along the dimension expressiveness. Interval Calculus Practice: \ominus All known applications either need only \mathcal{P} or A Maximal Tractable they need more than $\mathcal{H}!$ The Endpoint Subclass Backtracking methods might profit from the result by Subclass reducing the branching factor. Maximality Solving Arbitrar \rightsquigarrow How difficult is CSAT(\mathcal{A}) in practice? Allen CSPs \rightsquigarrow What are the relevant branching factors?

February 13, 2012

Solving general Allen CSPs

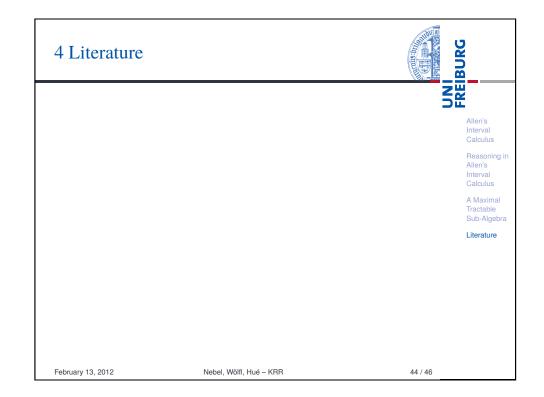
Solving general Allen CSPs	
 Backtracking algorithm using path consistency as a forward-checking method Relies on tractable fragments of Allen's calculus: split relations into relations of a tractable fragment, and backtrack over these. Refinements and evaluation of different heuristics Which tractable fragment should one use? 	Allen's Interval Calculus Reasoning in Allen's Interval Calculus A Maximal Tractable Sub-Algebra The Endpoint Subclass Maximality Solving Arbitrary Allen CSPs Literature

40 / 46



Nebel, Wölfl, Hué - KRR

Branching factors		BURG
If the labels are spl label is split into	it into base relations, then 6.5 relations	on average a
If the labels are spl average a label is s	it into pointizable relations split into	(\mathcal{P}) , then on Reasoning i Allen's Interval Calculus
	2.955 relations	A Maximal Tractable Sub-Algebra The Endpoint Subclass
If the labels are spl average a label is s	it into ORD-Horn relations split into	
	2.533 relations	Literature
\sim A difference of 0.42	22	
\rightsquigarrow This makes a differ	ence for "hard" instances.	
February 13, 2012	Nebel, Wölfl, Hué – KRR	41 / 46



February 13, 2012

Literature I

Literat	ture I	BURG	
Mair Com Also P. va Exac Com B. N Reas Aller Jour B. N Solv effici	Allen. taining knowledge about temporal intervals. inunications of the ACM 26(11):832–843, 1983. in Readings in Knowledge Representation . In Beek and R. Cohen. et and approximate reasoning about temporal relations. inputational Intelligence , 6:132–144, 1990. ebel and HJ. Bürckert. soning about temporal relations: A maximal tractable subclass of r's interval algebra. inal of the ACM 42(1):43–66, 1995. ebel. ing hard qualitative temporal reasoning problems: Evaluating the ency of using the ORD-Horn class. straints 1(3):175–190, 1997.	Allen's Interval Calculus Reasoning in Allen's Interval Calculus A Maximal Tractable Sub-Algebra Literature	
February 13, 2	012 Nebel, Wölfl, Hué – KRR 4	15 / 46	

Lit	erature II			
	of a non-trivial basic rela In Proceedings of the Intelligence (IJCAI 200 A. Krokhin, P. Jeavons a	n of complexity in Allen's algebr ation. 17th Internation Joint Confere 1), pp. 83–88, Seattle, WA, 200 and P. Jonsson. Dral Relations: The Tractable Su	enc on Artificial	Allen's Interval Calculus Reasoning in Allen's Interval Calculus A Maximal Tractable Sub-Algebra Literature
Februa	ary 13, 2012	Nebel, Wölfl, Hué – KRR	46 / 46	