Principles of Knowledge Representation and Reasoning Qualitative Representation and Reasoning: Introduction

BURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué February 6, 2012

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Literature

Motivation

Quantitative vs. qualitative

Spatio-temporal configurations can be described quantitatively by specifying the coordinates of the relevant objects:

Example: At time point 10.0 object A is at position (11.0, 1.0, 23.7), at time point 11.0 at position (15.2, 3.5, 23.7). From time point 0.0 to 11.0, object B is at position (15.2, 3.5, 23.7). Object C is at time point 11.0 at position (300.9, 25.6, 200.0) and at time point 35.0 at (11.0, 1.0, 23.7).

Motivation

CSP

DRG

Solving CSP

Qualitative CSP

Pathological Relation System

Outlook

Quantitative vs. qualitative

Often, however, a qualitative description (using a finite vocabulary) is more adequate:

Example: Object A hit object B. Afterwards, object C arrived.

Sometimes we want to reason with such descriptions, e.g.:

Object C was not close to object A when it hit object B.

Motivation

CSP

BURG

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Representation of qualitative knowledge

Intention: Description of configurations using a finite vocabulary and reasoning about these descriptions

- Specification of a vocabulary: usually a finite set of relations (often binary) that are pairwise disjoint and exhaustive
- Specification of a language: often sets of atomic formulae (constraint networks), perhaps restricted disjunction
- Specification of a formal semantics
- Analysis of computational properties and design of reasoning methods (often constraint propagation)
- Perhaps, specification of operational semantics for verifying whether a relation holds in a given quantitative configuration

Motivation

CSP

2

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Applications in ...

- Natural language processing
- Specification of abstract spatio-temporal configurations
- Query languages for spatio-temporal information systems
- Layout descriptions of documents (and learning of such layouts)
- Action planning

Motivation

CSP

BURG

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Literature

Qualitative temporal relations: The Point Algebra

- Vocabulary:
 - x equals y: x = y
 - *x* before *y*: *x* < *y*
 - x after y: x > y
- Language:
 - Allow for disjunctions of basic relations to express indefinite information. Use set of relations to express that. For instance, {<,=} expresses ≤.
 - 2³ different relations (including the impossible and the universal relation)
 - Use sets of atomic formulae with these relations to describe configurations. For example:

$$\{x\{=\}y, y\{<,>\}z\}$$

Semantics: Interpret the time point symbols and relation symbols over the rational (or real) numbers.

February 6, 2012

Nebel, Wölfl, Hué - KRR

BURG

Motivation

Outlook

Some reasoning problems

$$\left\{x\{<,=\}y,y\{<,=\}z,v\{<,=\}y,w\{>\}y,z\{<,=\}x\right\}$$

- Satisfiability: Are there values for all time points such that all formulae are satisfied?
- Satisfiability with $v \{=\} w$?
- Finding a satisfying instantiation of all time points
- Deduction: Does x{=}y logically follow?
 Does v{<,=}w follow?</p>
- Finding a minimal description: What are the most constrained relations that describe the same set of instantiations?

Motivation

CSP

DRG

Solving CSP

Qualitative CSP

A

Pathological Relation System

Outlook

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Literature

Constraint Satisfaction Problems

From a logical point of view ...

In general, qualitatively described configurations are simple logical theories:

- Only sets of atomic formulae to describe the configuration
- Only existentially quantified variables (or constants)
- A fixed background theory / model that describes the semantics of the relations (e.g., dense linear orders)
- We are interested in satisfiability, model finding, and deduction
- ~> Constraint satisfaction problems

February 6, 2012

Motivation

CSP

JRG

æ

Solving CSP

Qualitative CSP

Pathological Relation System

Outlook

CSP: Definition

Definition

A constraint satisfaction problem (CSP) is given by

- a set *V* of *n* variables $\{v_1, \ldots, v_n\}$,
- for each v_i , a value domain D_i
- constraints (relations over subsets of the variables)

Tasks:

Find one (or all) solution(s), i.e., tuples

$$(d_1,\ldots,d_n)\in D_1 imes\cdots imes D_n$$

such that the assignment $v_i \mapsto d_i$ ($1 \le i \le n$) satisfies all constraints.

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

k-colorability: Can we color the nodes of a graph with *k* colors in a way such that all nodes connected by an edge have different colors?

- The node set is the set of variables
- The domain of each variable is $\{1, \ldots, k\}$
- The constraints are that nodes connected by an edge must have a different value

Note: This CSP has a particular restricted form:

- only binary constraints
- the domains are finite

Other examples: many problems (e.g. cross-word puzzle, *n*-queens problem, configuration, ...) can be cast as a CSP (and solved this way)

February 6, 2012

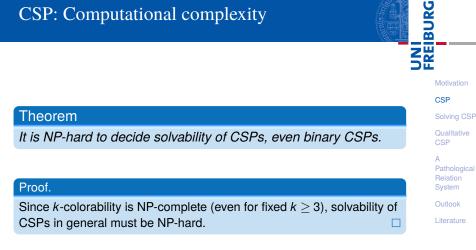
DRG

REIBC

Motivation

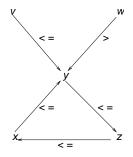
CSP

Outlook



Our example: Point relations

- Our point relation CSP is a binary CSP with infinite domains.
- It can be represented as a constraint graph:



Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Motivation

CSP

NI Reiburg

Solving CSP

Qualitative CSP

.....

Pathological Relation System

Outlook

Literature

Constraint Solving Methods

Nebel, Wölfl, Hué - KRR

19/49

How can we solve CSP with infinite domains?

Many other search methods, e.g., local search, stochastic search, etc.

- Interleaving backtracking and constraint propagation
- values followed by backtracking search
- Constraint propagation: elimination of obviously impossible
- → 1001 different strategies, often "dead" search paths are explored extensively
- Backtracking search

Enumeration of all assignments and testing

Solving CSP

 $\rightarrow \dots$ too costly

Motivation

Solving CSP

Outlook

General assumptions

- Only at most binary constraints (i.e., we can use constraint graph)
- Uniform domain D for all variables
- Unary constraints D_i and binary constraints R_{ij} are sets of values or sets of pairs of values, resp.
- We assume that for all nodes *i*,*j*:

$$(x,y) \in R_{ij} \Rightarrow (y,x) \in R_{ji}$$

Motivation

CSP

DRG

2

Solving CSP

Qualitative CSP

Pathological Relation System

Outlook

A CSP is locally consistent if for particular subsets of the variables, solutions of the restricted CSP can be extended to solutions of a larger set of variables.

Enforcing local consistency: methods to transform a CSP into a tighter, but "equivalent" problem.

Definition

A binary CSP $\langle V, D, C \rangle$ is arc-consistent (or 2-consistent) if for all nodes $1 \le i, j \le n$,

 $x \in D_i \Rightarrow \exists y \in D_j \text{ s.t. } (x, y) \in R_{ij}$

→ When a CSP is arc-consistent, each one variable assignment $\{v_i\} \rightarrow D$ that satisfies all (unary) constraints in v_i , i. e., D_i , can be extended to a two variable assignment $\{v_i, v_j\} \rightarrow D$ that satisfies all unary/binary constraints in these variables, i. e., D_i , D_j , and R_{ij} .

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

EnforceArcConsistency (C): *Input:* a (binary) CSP $C = \langle V, D, C \rangle$ *Output:* an equivalent, but arc-consistent CSP C'

repeat

for each arc (v_i, v_j) with $R_{ij} \in C$ $D_i := D_i \cap \{x \in D_i : \text{ex. } y \in D_j \text{ s. t. } (x, y) \in R_{ij}\}$ endfor until no domain is changed

- Terminates in time O(n³ · k³) if we have finite domains (where k is the maximal number of values in one of the domains).
- There exist different (more efficient) algorithms for enforcing arc consistency.

BURG

Motivation

Solving CSP

Outlook

Arc consistency

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

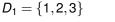
Literature

Lemma

- Enforcing arc consistency yields an arc-consistent CSP.
- Enforcing arc consistency is solution invariant, i. e. it does not change the set of solutions.

Note: Arc-consistent CSPs need not be consistent, and vice versa.

Arc consistency: An example



$$D_2 = \{2,3\}$$

$$D_3 = \{2\}$$

$$R_{ii} = "\neq" \text{ for } i \neq j$$

1
$$D_1 := D_1 \cap \{x : y \in D_3 \land (x, y) \in R_{13}\} = \{1, 3\}$$

2
$$D_2 := D_2 \cap \{x : y \in D_3 \land (x, y) \in R_{23}\} = \{3\}$$

3
$$D_1 := D_1 \cap \{x : y \in D_2 \land (x, y) \in R_{12}\} = \{1\}$$

- 4 CSP is now arc-consistent
- Since all unary constraints are singletons, this defines a solution of the CSP.
- Because enforcing arc consistency does not change the set of solutions, this is the unique solution of the original CSP.

Nebel, Wölfl, Hué - KRR

Solving CSP Qualitative CSP A Pathological Relation System Outlook

Motivation

DRG

2

outoon

Local consistency: Path consistency

Definition

A binary CSP $\langle V, D, C \rangle$ is path-consistent (or 3-consistent) if for all nodes $1 \le i, j, k \le n$,

$$egin{aligned} & x \in \mathcal{D}_i, y \in \mathcal{D}_j, (x,y) \in \mathcal{R}_{ij} \Rightarrow \ & \exists z \in \mathcal{D}_k \text{ s.t. } (x,z) \in \mathcal{R}_{ik} \text{ and } (y,z) \in \mathcal{R}_{jk} \end{aligned}$$

→ When a CSP is path-consistent, each two variable assignment $\{v_i, v_j\} \rightarrow D$ satisfying all constraints in v_i and v_j can be extended to any three variable assignment $\{v_i, v_j, v_k\} \rightarrow D$ such that all constraints in these variables are satisfied.

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Enforcing path consistency

EnforcePathConsistency (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$ of size *n Output:* an equivalent, but path-consistent CSP C'

repeat

for all
$$1 \le i, j, k \le n$$

 $R_{ij} := R_{ij} \cap$
 $\{(x, y) : \text{ex. } z \in D_k \text{ s.t. } (x, z) \in R_{ik} \text{ and } (y, z) \in R_{jk}\}$
endfor

until no binary constraint is changed

- Terminates in time $O(n^5 \cdot k^5)$ if we have finite domains (where k is the maximal number of values).
- Enforcing path consistency is solution invariant.

DRD

Motivation

Solving CSP

Outlook

Local consistency: *k*-consistency and strong *k*-consistency

Definition

- A binary CSP $\langle V, D, C \rangle$ is *k*-consistent if, given variables x_1, \ldots, x_k and an assignment $a : \{x_1, \ldots, x_{k-1}\} \to D$ that satisfies all constraint in these variables, *a* can be extended to an assignment $a' : \{x_1, \ldots, x_k\} \to D$ that satisfies all constraints in these *k* variables.
- A binary CSP $\langle V, D, C \rangle$ is strongly *k*-consistent if it is *k'*-consistent for each $k' \leq k$.
- A binary CSP (*V*,*D*,*C*) is globally consistent if it is strongly *n*-consistent where *n* is the size of *V*.

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Local consistency

- k-consistency: the computation costs grow exponentially with k.
- If a CSP is globally consistent, then
 - a solution can be constructed in polynomial time,
 - its constraints are minimal, and
 - it has a solution if and only if there is no empty constraint.
- *k*-consistent \Rightarrow *k* − 1-consistent

CSP

DRG

Solving CSP

Qualitative CSP

A

Pathological Relation System

Outlook

ve Constraint

Motivation

CSP

REIBURG

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Qualitative reasoning with CSP

If we want to use CSPs for qualitative reasoning, we have

- infinite domains
- mostly only finitely many relations (basic relations and their unions)
- arc-consistent CSPs (usually)

Questions:

- How do we achieve *k*-consistency (for some fixed *k*)?
- Is k-consistency (for some fixed k) enough to guarantee global consistency?
- Is a CSP with only base relations always satisfiable?

Motivation

DRG

Ē

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Operations on binary relations

Composition:

$$R_1 \circ R_2 = \left\{ (x,y) \in D^2 : \exists z \in D \text{ s.t. } (x,z) \in R_1 \text{ and } (z,y) \in R_2
ight\}$$

Converse:

$$R^{-1} = \{(x,y) \in D^2 : (y,x) \in R\}$$

Intersection:

$$R_1 \cap R_2 = \{(x,y) \in D^2 : (x,y) \in R_1 \text{ and } (x,y) \in R_2\}$$

Union:

$$R_1 \cup R_2 = \{(x,y) \in D^2 : (x,y) \in R_1 \text{ or } (x,y) \in R_2\}$$

Complement:

$$\overline{R} = \left\{ (x, y) \in D^2 : (x, y) \notin R \right\}$$

Motivation

CSP

BURG

ZW

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Conditions on vocabulary for qualitative reasoning

Let ${\mathcal B}$ be a finite set of (binary) base relations. We require:

- the relations in *B* are JEPD, i. e., jointly exhaustive and pairwise disjoint.
- \blacksquare \mathcal{B} is closed under converse.

Let \mathcal{A} be the set of relations that can be built by taking the unions of relations from $\mathcal{B} (\rightsquigarrow 2^{|\mathcal{B}|} \text{ different relations})$. Then \mathcal{A} is closed under converse, complement, intersection and union.

■ \mathcal{A} should be closed under composition of base relations, i. e., for all $B, B' \in \mathcal{B}, B \circ B' \in \mathcal{A}$.

If so, \mathcal{A} is closed under composition of arbitrary relations.

Note: This condition does not hold necessarily. For example, $\mathcal{B} = \{<, =, >\}$ interpreted over the integers is not closed under composition (and has no finite closure) (see exercises).

February 6, 2012

2

Motivation

Qualitative

Pathological

Outlook

CSP

Let \mathcal{A} be a relation system over the set of base relations \mathcal{B} that satisfies the conditions spelled out above.

→ We may write relations as sets of base relations:

$$B_1\cup\cdots\cup B_n\sim\{B_1,\ldots,B_n\}$$

Then the operations on the relations can be computed as follows: Composition:

$$\{B_1,\ldots,B_n\}\circ\{B'_1,\ldots,B'_m\}=\bigcup_{i=1}^n\bigcup_{j=1}^m(B_i\circ B'_j)$$

Converse:

$$\{B_1,\ldots,B_n\}^{-1} = \{B_1^{-1},\ldots,B_n^{-1}\}$$

Complement:

$$\overline{\{B_1,\ldots,B_n\}} = \{B \in \mathcal{B} : B \neq B_i, \text{ for each } 1 \le i \le n\}$$

Intersection and union are defined set-theoretically.

February 6, 2012

Nebel, Wölfl, Hué - KRR

REIBL

Motivation

Qualitative CSP

Outlook

Reasoning problems

Given a qualitative CSP:

- CSP-satisfiability (CSAT):
 - Is the CSP satisfiable/solvable?

CSP-entailment (CENT):

Given in addition xRy: Is xRy satisfied in each solution of the CSP?

Computation of an equivalent minimal CSPs (CMIN):

Compute for each pair x, y the strongest constrained (minimal) relation entailed by the CSP.

These problems are equivalent under Turing reductions:

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Reductions between CSP problems

Theorem

CSAT, CENT and CMIN are equivalent under polynomial Turing reductions.

Proof.

CSAT \leq_T CENT and CENT \leq_T CMIN are obvious.

CENT \leq_T CSAT: We solve CENT (*CSP* $\models xRy$?) by testing satisfiability of the CSP extended by $x\{B\}y$ where *B* ranges over all base relations not in *R*. *xRy* is entailed by the CSP iff for all these base relations we get a negative answer.

 $\label{eq:cmin} \begin{array}{l} \text{CMIN} \leq_{\mathcal{T}} \text{CENT: We use entailment for computing the minimal} \\ \text{constraint for each pair. Starting with the universal relation, we remove} \\ \text{one base relation until we have a minimal relation that is still} \\ \text{entailed.} \end{array}$

Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$\mathsf{R}_{ij} := \mathsf{R}_{ij} \cap (\mathsf{R}_{ik} \circ \mathsf{R}_{kj}).$$

Path consistency guarantees ...

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

Nebel, Wölfl, Hué - KRR

All this depends on the vocabulary (and its interpretation).

37 / 49

Motivation CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$\mathsf{R}_{ij} := \mathsf{R}_{ij} \cap (\mathsf{R}_{ik} \circ \mathsf{R}_{kj}).$$

Path consistency guarantees ...

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

All this depends on the vocabulary (and its interpretation).

Solving CS

Motivation

Qualitative CSP

A Pathological Relation System

Outlook

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$\mathsf{R}_{ij} := \mathsf{R}_{ij} \cap (\mathsf{R}_{ik} \circ \mathsf{R}_{kj}).$$

Path consistency guarantees

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

All this depends on the vocabulary (and its interpretation).

00.

Motivation

Qualitative CSP

A Pathological Relation System

Outlook

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$\mathsf{R}_{ij} := \mathsf{R}_{ij} \cap (\mathsf{R}_{ik} \circ \mathsf{R}_{kj}).$$

Path consistency guarantees

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

All this depends on the vocabulary (and its interpretation).

00.

Motivation

Qualitative CSP

A Pathological Relation System

Outlook

Given a qualitative CSP with $R_{ij} = R_{ji}^{-1}$. Then path consistency can be enforced by doing the following:

$$\mathsf{R}_{ij} := \mathsf{R}_{ij} \cap (\mathsf{R}_{ik} \circ \mathsf{R}_{kj}).$$

Path consistency guarantees

- sometimes minimality
- sometimes satisfiability
- however sometimes the CSP is not satisfiable, even if the CSP contains only base relations

Nebel, Wölfl, Hué - KRR

All this depends on the vocabulary (and its interpretation).

37 / 49

Motivation CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Example: Point Algebra

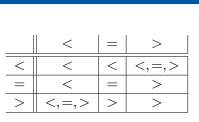


Fig.: Composition table for the point algebra. For example: $\{<\} \circ \{=\} = \{<\}$ Motivation

CSP

URG

M

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

$$\{<,=\} \circ \{<\} = \{<\}$$

$$\{<,>\} \circ \{<\} = \{<,=,>\}$$

$$\{<,=\}^{-1} = \{>,=\}$$

$$\{<,=\} \cap \{>,=\} = \{=\}$$

Some properties of the point relations

Theorem

A path-consistent CSP over the point relations is consistent.

Corollary

CSAT, CENT and CMIN are polynomial problems for the point relations.

Theorem

A path-consistent CSP over all point relations without $\{<,>\}$ is minimal.

Proofs later ...

A Pathological Relation System

Qualitative CSP

Motivation

Outlook

A Pathological Relation System

February 6, 2012

/ 49

BURG

ZW

Motivation

Solving CSP

Pathological Relation System Outlook Literature

A

Let e, d, i be (self-converse) base relations between points on a circle:

- e: Rotation by 72 degrees (left or right)
- *d*: Rotation by 144 degrees (left or right)
- i: Identity

Composition table:

The following CSP is path-consistent and contains only base relations, but it is not satisfiable:

000

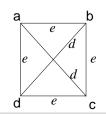
Solving CSP

Qualitative CSP

A

Pathological Relation System

Outlook



Motivation

CSP

Solving CSP

Qualitative CSP

A Pathological Relation System

Outlook

Literature

Outlook

Outlook

- Qualitative representation and reasoning usually starts with a finite vocabulary (a finite set of relations).
- Qualitative descriptions are usually simple logical theories consisting of sets of atomic formulae (and some background theory).
- Reasoning problems are (as usual) satisfiability, model finding, and deduction.
- Can be addressed with CSP methods (but note: infinite domains).
- Path consistency is the basic reasoning step ... sometimes this is enough.
- Usually, path-consistent atomic CSPs are satisfiable.
 However, there exist some pathological relation systems.
- Can be taken further → relation algebra

Solving CSI Qualitative CSP A

Motivation

2

Pathological Relation System

Outlook

Motivation

CSP

Solving CSP

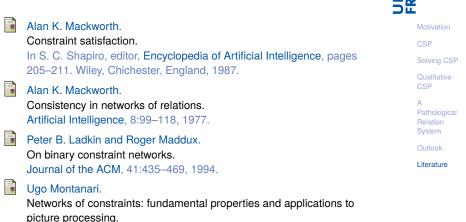
Qualitative CSP

A Pathological Relation System

Outlook

Literature

Literature I



Information Science, 7:95–132, 1974.

DRD

8

Literature II

