Principles of Knowledge Representation and Reasoning Semantic Networks and Description Logics V: Description Logics – Decidability and Complexity

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué January 30, 2013

UNI FREIBURG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Decidability & Undecidability

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^=$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem

January 30, 2013

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^=$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem

January 30, 2013

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^=$: L_2 plus equality.

Theorem

 $L_2^=$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1} .

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real

<u>problem</u>

January 30, 2013

in TBoxes Outlook

Literature

Undecidability Polynomial Cases

2

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Decidability &

Expressive Power vs. Complexity

 L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^{=}$: L_2 plus equality.

Theorem

 $L_2^{=}$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s, r \sqcup s, \neg r, r^{-1}$.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem. January 30, 2013

2

Decidability & Undecidabilitv

ACC

Power vs.

in TBoxes

Outlook

Undecidability

r ∘ s, r ⊓ s, ¬r, 1 [Schild 88]
 … already shown by Tarski (for relation algebras)

■ $r \circ s$, $r \doteq s$, $C \sqcap D$, $\forall r.C$ [Schmidt-Schauß 89] ... This is, in fact, a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Undecidability

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

r ∘ s, r ⊓ s, ¬r, 1 [Schild 88]
 … already shown by Tarski (for relation algebras)
 r ∘ s, r = s, C ⊓ D, ∀r.C [Schmidt-Schauß 89]
 … This is, in fact, a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

UNI FREIBURG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Polynomial Cases

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

 $C := A |\neg A| \top |\bot| C \sqcap C' |\forall r.C| (\geq nr) | (\leq nr)$ $r := t | r^{-1}$

and

 $C := A | C \sqcap C' | \forall r.C | \exists r$ $r := t | r^{-1} | r \sqcap r' | r \circ r'$

UNI FREIBURG

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

$$C := A |\neg A| \top |\bot| C \sqcap C' |\forall r.C| (\geq nr)| (\leq nr),$$

$$r := t |r^{-1}$$

and

$$C := A | C \sqcap C' | \forall r.C | \exists r$$
$$r := t | r^{-1} | r \sqcap r' | r \circ r'$$

UNI FREIBURG

> Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

$$C := A |\neg A| \top |\bot| C \sqcap C' |\forall r.C| (\geq nr)| (\leq nr),$$

$$r := t |r^{-1}$$

and

$$C := A | C \sqcap C' | \forall r.C | \exists r$$
$$r := t | r^{-1} | r \sqcap r' | r \circ r'$$

UNI FREIBURG

> Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- *FL*⁻ has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

$$C := A |\neg A| \top |\bot| C \sqcap C' |\forall r.C| (\geq nr)| (\leq nr),$$

$$r := t |r^{-1}$$

and

$$C := A | C \sqcap C' | \forall r.C | \exists r$$
$$r := t | r^{-1} | r \sqcap r' | r \circ r'$$

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of \mathcal{ALC} Subsumption

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

 $\psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi')$ $\psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi')$ $\neg \psi \mapsto \neg \pi(\psi)$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

UNI FREIBUI

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

How hard is \mathcal{ALC} subsumption?

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

 $egin{aligned} & \psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi') \ & \psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi') \ &
eg \psi \mapsto
eg \pi(\psi) \end{split}$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

UNI FREIBUR

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

How hard is \mathcal{ALC} subsumption?

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

 $egin{aligned} & \psi_1 \mapsto \psi_1(\psi) & \exists \pi(\psi) & \exists \pi(\psi') \ & \psi' \lor \psi & \mapsto \pi(\psi) & \exists \pi(\psi') \ & \lnot \psi & \mapsto \lnot \pi(\psi) \end{aligned}$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

UNI FREIBUF

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

How hard is \mathcal{ALC} subsumption?

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{array}{lll} a_i &\mapsto a_i \ \psi \wedge \psi' &\mapsto \pi(\psi) \sqcap \pi(\psi') \ \psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi') \
egin{array}{llll}
eta & \psi &\mapsto \psi' \
eta & \psi &\mapsto \psi' \
eta & \psi &\mapsto \psi' \
eta & \psi & \psi & \psi' \
eta & \psi & \psi' \
eta & \psi & \psi & \psi' \
eta & \psi & \psi' \
eta & \psi & \psi & \psi' \
eta & \psi & \psi & \psi' \
eta & \psi' & \psi & \psi' \
eta & \psi' & \psi' \
eta & \
eta & \psi' & \psi' \
eta$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$. Decidability & Undecidability

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{aligned} &a_i\mapsto a_i\ &\psi\wedge\psi'\mapsto\pi(\psi)\sqcap\pi(\psi')\ &\psi'\vee\psi\mapsto\pi(\psi)\sqcup\pi(\psi')\ &\neg\psi\mapsto
egned\ &\neg\pi(\psi) \end{aligned}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

Decidability & Undecidabili-

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{array}{lll} a_i \mapsto a_i \ \psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi') \ \psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi') \ \lnot \psi \mapsto \lnot \pi(\psi) \sqcup \pi(\psi') \end{array}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula.

Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

January 30, 2013

Nebel, Wölfl, Hué - KRR

11/30

Decidability &

Complexity of

ALC Subsumption

Power vs.

in TBoxes

Outlook

Proposition

 \mathcal{ALC} subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

$$egin{array}{lll} a_i \mapsto a_i \ \psi \wedge \psi' \mapsto \pi(\psi) \sqcap \pi(\psi') \ \psi' \lor \psi \mapsto \pi(\psi) \sqcup \pi(\psi') \ \neg \psi \mapsto \neg \pi(\psi) \end{array}$$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

How hard does it get?

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic *K*.
- Satisifiability and unsatisfiability in *K* is PSPACE-complete.

FREIBURG

Decidability & Undecidability

Polynomial Cases

$\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

How hard does it get?

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic K.
- Satisifiability and unsatisfiability in K is PSPACE-complete.

Decidability & Undecidabili-

DRD

m

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Unlikely since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisifiability in the modal logic *K*.
- Satisifiability and unsatisfiability in *K* is PSPACE-complete.

DRD

Ē

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 ${\cal ALC}$ subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules - assuming that *b* is a fixed role name:

 $\Box \psi \mapsto \forall b. \pi(\psi) \ \Diamond \psi \mapsto \exists b. \pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

BUR

Decidability &

Complexity of \mathcal{ALC} Subsumption Expressive Power vs.

The

in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b. \pi(\psi) \ \Diamond \psi \mapsto \exists b. \pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

January 30, 2013

Nebel, Wölfl, Hué - KRR

8

Decidability &

Complexity of

Subsumption

Complexity of Subsumption in TBoxes Outlook

Power vs.

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

2

Decidability &

Complexity of

Subsumption

Power vs.

in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b. \pi(\psi) \\ \Diamond \psi \mapsto \exists b. \pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

2

Decidability &

Complexity of

Subsumption

Power vs.

in TBoxes

Outlook

Lemma (Lower bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

 $\Box \psi \mapsto \forall b.\pi(\psi) \\ \Diamond \psi \mapsto \exists b.\pi(\psi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

January 30, 2013

2

Decidability &

Complexity of

Subsumption

Power vs.

in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all in *PSPACE*.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

UNI FREIBUR

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

UNI FREIBUF

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

UNI FREIBUR

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Lemma (Upper Bound for \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

UNI FREIBUR

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Nebel, Wölfl, Hué - KRR

Lemma (Upper Bound for \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \mathcal{ALC} . Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \mathcal{ALC})

 \mathcal{ALC} subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

January 30, 2013

Nebel, Wölfl, Hué - KRR

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - → ALC (wrt. TBox reasoning) is a notational variant of K_n. [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
 Algorithms and complexity results can be borrowed. Works also the other way around.

Decidability & Undecidability

Polynomial Cases

$\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - → propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
 Algorithms and complexity results can be borrowed. Works also the other way around.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
 Algorithms and complexity results can be borrowed. Works also the other way around.

FREIBURG

Decidability & Undecidability

Polynomial Cases

$\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - → The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
 - $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
 Algorithms and complexity results can be borrowed. Works also the other way around.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Further consequences of the reducibility of K to ALC

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - \rightarrow The multi-modal logic K_n has n different Box operators \Box_i (for *n* different agents).
 - $\rightarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - → propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate $\sim \rightarrow$ logic. However, they are much more similar to modal logics.
- ~> Algorithms and complexity results can be borrowed. Works also the other way around.

BURG

Complexity of ACC Subsumption

Power vs.

in TBoxes

Outlook

UNI FREIBURG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
 There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

B

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL⁻* vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
 - There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

UNI FREIBL

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Nebel, Wölfl, Hué – KRR

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL⁻* vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Decidability &

BUR

Undecidability & Undecidabili-

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Nebel, Wölfl, Hué - KRR

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL⁻* vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.

For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3! Decidability & Undecidability

DRG

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL⁻* vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - 2 Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

DRG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

The Complexity of Subsumption in TBoxes

UNI FREIBURG

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.

However, it is not obvious that this can be done in polynomial time ...

In the following example unfolding leads to an exponential blowup:

$$C_{1} = \forall r.C_{0} \sqcap \forall s.C_{0}$$
$$C_{2} \doteq \forall r.C_{1} \sqcap \forall s.C_{1}$$
$$\vdots$$

$$C_n \stackrel{\cdot}{=} \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid evenential proprocessing?

January 30, 2013

Nebel, Wölfl, Hué - KRR

Decidability & Undecidability

M

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.

However, it is not obvious that this can be done in polynomial time ...

In the following example unfolding leads to an exponential blowup:

$$C_1 = \forall r.C_0 \sqcap \forall s.C_0$$
$$C_2 \doteq \forall r.C_1 \sqcap \forall s.C_1$$
$$\vdots$$

$$C_n \stackrel{\cdot}{=} \forall r. C_{n-1} \sqcap \forall s. C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid exponential proprocessing?

January 30, 2013

Nebel, Wölfl, Hué - KRR

M

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

21 / 30

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_{1} = \forall r.C_{0} \sqcap \forall s.C_{0}$$
$$C_{2} = \forall r.C_{1} \sqcap \forall s.C_{1}$$
$$\vdots$$
$$C_{n} = \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid

exponential preprocessing?

January 30, 2013

Nebel, Wölfl, Hué - KRR

Decidability & Undecidability

M

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_{1} = \forall r.C_{0} \sqcap \forall s.C_{0}$$

$$C_{2} = \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$\vdots$$

$$C_{n} = \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

$$C_n \stackrel{\cdot}{=} \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n).$

January 30, 2013

Nebel, Wölfl, Hué - KRR

Decidability &

M ZW

ACC

Power vs.

The Complexity of Subsumption in TBoxes

Outlook

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

$$C_{1} = \forall r.C_{0} \sqcap \forall s.C_{0}$$

$$C_{2} = \forall r.C_{1} \sqcap \forall s.C_{1}$$

$$\vdots$$

$$C_{n} = \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid exponential preprocessing?

January 30, 2013

Nebel, Wölfl, Hué - KRR

Decidability & Undecidability

M

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability & Undecidability

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability & Undecidability

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability & Undecidability

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Question: Can we decide in polynomial time TBox subsumption for a description logic such as *FL*⁻, for which concept subsumption in the empty TBox can be decided in polynomial time?
- Let us consider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with terminological axioms.
- Subsumption without a TBox can be done easily, using a structural subsumption algorithm.
- Unfolding + strucural subsumption gives us an exponential algorithm.

Decidability & Undecidability

DRG

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0 -terminology with the mapping π as follows:

 $ext{automaton} A \mapsto ext{terminology} \mathcal{T}_A$ $ext{state} q \mapsto ext{concept} ext{ name} q$ $ext{erminal state} q_f \mapsto ext{concept} ext{ name} q_f$ $ext{input symbol} r \mapsto ext{role} ext{ name} r$

r-transition from *q* to
$$q' \mapsto q \stackrel{\cdot}{=} \dots \sqcap \forall r : q' \sqcap \dots$$

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0 -terminology with the mapping π as follows:

 $\mathsf{automaton} \ \mathsf{A} \mapsto \mathsf{terminology} \ \mathcal{T}_{\mathsf{A}}$ $\mathsf{state} \ q \mapsto \mathsf{concept} \ \mathsf{name} \ q$ $\mathsf{erminal} \ \mathsf{state} \ q_f \mapsto \mathsf{concept} \ \mathsf{name} \ q_f$ $\mathsf{input} \ \mathsf{symbol} \ r \mapsto \mathsf{role} \ \mathsf{name} \ r$

r-transition from q to $q' \mapsto q \stackrel{\cdot}{=} \dots \sqcap \forall r : q' \sqcap \dots$

January 30, 2013

Nebel, Wölfl, Hué - KRR

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automatons and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0 -terminology with the mapping π as follows:

automaton $A \mapsto$ terminology \mathcal{T}_A

state $q \mapsto$ concept name q

terminal state $q_f \mapsto$ concept name q_f

input symbol $r \mapsto$ role name r

r-transition from *q* to
$$q' \mapsto q \stackrel{\cdot}{=} \dots \sqcap \forall r : q' \sqcap \dots$$

> Decidability & Undecidability

Polynomial Cases

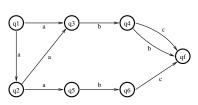
 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 \stackrel{\cdot}{=} \forall a. q_3 \sqcap \forall a. q_5$ $q_3 = \forall b. a_4$ $q_4 \stackrel{\cdot}{=} \forall b.q_f \sqcap \forall c.q_f$ $a_5 \stackrel{\cdot}{=} \forall b. a_6$ $q_6 = \forall b.q_f$ $q_1 \equiv \forall abc. q_f \sqcap \forall abb. q_f \sqcap$ $\forall aabc.q_f \sqcap \forall aabb.q_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubseteq_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$ UNI FREIBURG

> Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

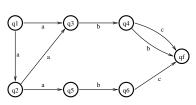
Outlook

Literature

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the correctness of the reduction and the complexity result follows.

Nebel, Wölfl, Hué - KRR

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 \stackrel{\cdot}{=} \forall a. q_3 \sqcap \forall a. q_5$ $q_3 = \forall b.q_4$ $q_4 \stackrel{\cdot}{=} \forall b.q_f \sqcap \forall c.q_f$ $a_5 \stackrel{\cdot}{=} \forall b. a_6$ $q_6 \stackrel{\cdot}{=} \forall b.q_f$ $q_1 \equiv \forall abc. q_f \sqcap \forall abb. q_f \sqcap$ $\forall aabc.q_f \sqcap \forall aabb.q_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubseteq_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$

UNI FREIBUR

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

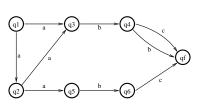
Outlook

Literature

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the correctness of the reduction and the complexity result follows.

Nebel, Wölfl, Hué – KRR

"Proof" by example



 $q_1 = \forall a.q_3 \sqcap \forall a.q_2$ $q_2 \doteq \forall a.q_3 \sqcap \forall a.q_5$ $q_3 = \forall b.q_4$ $q_4 = \forall b.q_f \sqcap \forall c.q_f$ $a_5 = \forall b.a_6$ $q_6 \stackrel{\cdot}{=} \forall b.q_f$ $q_1 \equiv \forall abc. q_f \sqcap \forall abb. q_f \sqcap$ $\forall aabc.q_f \sqcap \forall aabb.q_f$ $q_2 \equiv \forall abb.q_f \sqcap \forall abc.q_f$ $q_1 \sqsubseteq_{\mathcal{T}} q_2$ and $\mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)$ UNI FREIBURG

> Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

In general, we have: $\mathcal{L}(q) \subseteq \mathcal{L}(q')$ iff $q' \sqsubseteq_{\mathcal{T}} q$, from which the correctness of the reduction and the complexity result follows.

January 30, 2013

Nebel, Wölfl, Hué - KRR

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for *ALC* concept descriptions, one notices that they are usually very well behaved.

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for *ALC* concept descriptions, one notices that they are usually very well behaved.

Decidability & Undecidability

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for *ALC* concept descriptions, one notices that they are usually very well behaved.

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for ALC concept descriptions, one notices that they are usually very well behaved.

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for ALC concept descriptions, one notices that they are usually very well behaved.

2

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for ALC concept descriptions, one notices that they are usually very well behaved.

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

UNI FREIBURG

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature

Outlook

Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).

- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

M

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Literature I

Nebel, Wölfl, Hué - KRR

29/30

Tractable concept languages. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 458–465, Sydney, Australia, August 1991. Morgan Kaufmann.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.

In: Otthein Herzog and Claus-Rainer Rollinger, editors, Text

Attributive description formalisms ... and the rest of the world.

Understanding in LILOG, pages 439–452. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Bernhard Nebel and Gert Smolka.

Decidability &

BURG

tv

ACC

Power vs.

Complexity of in TBoxes

Outlook

Klaus Schild.

Literature II

A correspondence theory for terminological logics: Preliminary report.

In **Proceedings of the 12th International Joint Conference on Artificial Intelligence**, pages 466–471, Sydney, Australia, August 1991. Morgan Kaufmann.

I. Horrocks, U. Sattler, and S. Tobies.

Reasoning with Individuals for the Description Logic SHIQ.

In: David MacAllester, ed., **Proceedings of the 17th International Conference on Automated Deduction (CADE-17)**, Germany, 2000. Springer Verlag.

B. Nebel.

Terminological Reasoning is Inherently Intractable,

Artificial Intelligence, 43: 235-249, 1990.

Decidability & Undecidability

Polynomial Cases

 $\begin{array}{l} \text{Complexity of} \\ \mathcal{ALC} \\ \text{Subsumption} \end{array}$

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook