Decidability & Undecidability

L_2 is the fragment of first-order predicate logic using only two different variable names. \textit{(note: variable names can be reused!).}

L_2^\equiv: L_2 plus equality.

Theorem

L_2^\equiv is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1}.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.
Undecidability

- \(r \circ s, r \cap s, \neg r, 1 \) [Schild 88]

 ... already shown by Tarski (for relation algebras)

- \(r \circ s, r \leq s, C \cap D, \forall r.C \) [Schmidt-Schauß 89]

 ... This is, in fact, a fragment of the early description logic KL-ONE, where people had hoped to come up with a complete subsumption algorithm

Decidable, polynomial-time cases

- \(FL^- \) has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.

- Donini et al. [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time:

 \[C := A | \neg A | T | \bot | C \cap C' | \forall r.C | (\geq nr) | (\leq nr) \]

 \[r := t | r^{-1} \]

 and

 \[C := A | C \cap C' | \forall r.C | \exists r \]

 \[r := t | r^{-1} | r \cap r' | r \circ r' \]
How hard is ALC subsumption?

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

- $a_i \mapsto a_i$
- $\psi \land \psi' \mapsto \pi(\psi) \land \pi(\psi')$
- $\psi' \lor \psi \mapsto \pi(\psi) \lor \pi(\psi')$
- $\neg \varphi \mapsto \neg \pi(\varphi)$

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If φ has a model, construct a model for $\pi(\varphi)$ with just one element t standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^2$.

January 30, 2013 Nebel, Wölfl, Hué – KRR 12 / 31

How hard does it get?

- Is ALC unsatisfiability and subsumption also complete for co-NP?
- Likely – since models of a single concept description can already become exponentially large!
- We will show PSPACE-completeness, whereby hardness is proved using a complexity result for (un)satisfiability in the modal logic \mathcal{K}.
- Satisfiability and unsatisfiability in \mathcal{K} is PSPACE-complete.

January 30, 2013 Nebel, Wölfl, Hué – KRR 13 / 31

Reduction from \mathcal{K}-satisfiability

Lemma (Lower bound for ALC)

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-hard.

Proof.

Extend the reduction given in the last proof by the following two rules – assuming that b is a fixed role name:

- $\Box \varphi \mapsto \forall b. \pi(\varphi)$
- $\Diamond \varphi \mapsto \exists b. \pi(\varphi)$

Again, obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (again using structural induction). If φ has a Kripke model, interpret each world w as an object in the universe of discourse, that is, w is an instance of the primitive concept $\pi(a_i)$ iff a_i is true in w. For the converse direction use the interpretation the other way around.

January 30, 2013 Nebel, Wölfl, Hué – KRR 14 / 31

Computational complexity of ALC subsumption

Lemma (Upper Bound for ALC)

ALC subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for ALC. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of ALC)

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.
Further consequences of the reducibility of K to \mathcal{ALC}

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
 - The multi-modal logic K_n has n different Box operators \Box_i (for n different agents).
 - \mathcal{ALC} (wrt. TBox reasoning) is a notational variant of K_n.
 - [Schild, IJCAI-91]

- Are there other modal logics that correspond to other descriptions logics?
 - propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...

- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.

- Algorithms and complexity results can be borrowed. Works also the other way around.

Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \mathcal{FL}^- vs. \mathcal{ALC}.

- Does it make sense to use languages such as \mathcal{ALC} or even extensions (corresponding to PDL) with higher complexity?

- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - Use expressive description logics, but employ incomplete inference algorithms.
 - Use expressive description logics with complete inference algorithms.

- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!
Is subsumption in the empty TBox enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time . . .
- In the following example unfolding leads to an exponential blowup:

\[C_1 = \forall r.C_0 \sqcap \forall s.C_0 \]
\[C_2 = \forall r.C_1 \sqcap \forall s.C_1 \]
\[\vdots \]
\[C_n = \forall r.C_{n-1} \sqcap \forall s.C_{n-1} \]

- Unfolding \(C_n \) leads to a concept description with a size \(\Omega(2^n) \).
- Is it possible to avoid this blowup? Can we avoid exponential preprocessing?

Complexity of TBox subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \(\mathcal{FL}_0 \) is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automata and PSPACE-complete for general NDAs. We transform a cycle-free NDFA to a \(\mathcal{FL}_0 \)-terminology with the mapping \(\pi \) as follows:

- automaton \(A \) \(\mapsto \) terminology \(T_A \)
- state \(q \) \(\mapsto \) concept name \(q \)
- terminal state \(q_f \) \(\mapsto \) concept name \(q_f \)
- input symbol \(r \) \(\mapsto \) role name \(r \)
- \(r \)-transition from \(q \) to \(q' \) \(\mapsto \) \(q \sqsubseteq \ldots \sqcap \forall r : q' \sqcap \ldots \)

```
q_1 = \forall a.q_3 \sqcap \forall a.q_2
q_2 = \forall a.q_3 \sqcap \forall a.q_5
q_3 = \forall b.q_4
q_4 = \forall b.q_f \sqcap \forall c.q_f
q_5 = \forall b.q_6
q_6 = \forall b.q_f
q_1 \sqsubseteq \forall abc.q_f \sqcap \forall abb.q_f \sqcap
\forall abc.q_f \sqcap \forall abb.q_f
q_2 \sqsubseteq \forall abb.q_f \sqcap \forall abc.q_f
q_1 \sqsubseteq \forall r q_2 \quad \text{and} \quad \mathcal{L}(q_2) \subseteq \mathcal{L}(q_1)
```

In general, we have: \(\mathcal{L}(q) \subseteq \mathcal{L}(q') \) iff \(q' \sqsubseteq q \), from which the correctness of the reduction and the complexity result follows.
What does this complexity result mean?

- Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding . . .
- Similarly, also for \mathcal{ALC} concept descriptions, one notices that they are usually very well behaved.

Outlook

- Description logics have a long history (Tarski's relation algebras and Brachman's KL-ONE).
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large descriptions logics (e.g., SHIQ), e.g., in the systems FaCT++ and RACER.
- Nowadays tools can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time.
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF).

Literature I

- Bernhard Nebel and Gert Smolka.
 Attributive description formalisms . . . and the rest of the world.

- Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
 Tractable concept languages.
Klaus Schild.
A correspondence theory for terminological logics: Preliminary report.

Reasoning with Individuals for the Description Logic SHIQ.

B. Nebel.
Terminological Reasoning is Inherently Intractable,