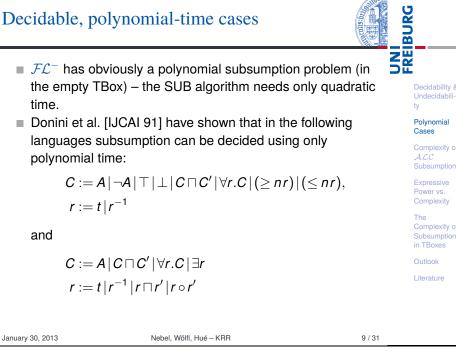
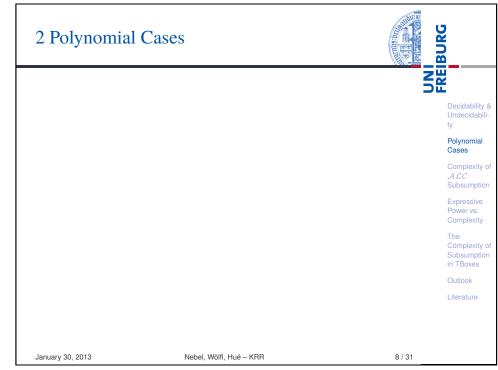
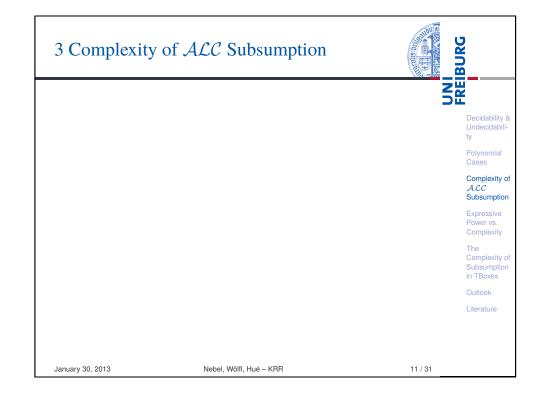

Description Logics Complexity	– Decidability and		פטאט
		Z	L KE
1 Decidability & Ur	ndecidability		Decidability & Undecidabili- ty
2 Polynomial Case	S		Polynomial Cases
3 Complexity of $\mathcal{A}_{\mathcal{A}}$	CC Subsumption		Complexity of \mathcal{ALC} Subsumption
			Expressive Power vs. Complexity
4 Expressive Powe	er vs. Complexity		The Complexity of
5 The Complexity of	of Subsumption in TBoxes		Subsumption in TBoxes
6 Outlook			Outlook Literature
0 Outlook			
January 30, 2013	Nebel, Wölfl, Hué – KRR	2/31	

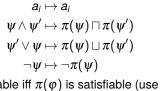
Decidability	BURG
L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!). $L_2^{=}$: L_2 plus equality.	Decidability & Undecidabili- ty
Theorem	Polynomial Cases
$L_2^=$ is decidable.	Complexity c \mathcal{ALC} Subsumption
Corollary	Expressive Power vs.
Subsumption and satisfiability of concept descriptions is	Complexity
decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$,	The Complexity of Subsumption in TBoxes
$r \sqcap s, r \sqcup s, \neg r, r^{-1}$.	Outlook
Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.	Literature


Nebel, Wölfl, Hué - KRR


January 30, 2013


5/31

Decidable, polynomial-time cases


How hard is *ALC* subsumption?

Proposition

ALC subsumption and unsatisfiability are co-NP-hard.

Proof.

Unsatisfiability and subsumption are reducible to each other. We give a reduction from UNSAT. A propositional formula φ over the atoms a_i is mapped to $\pi(\varphi)$:

UNI FREIBURG

Decidability

Undecidabili

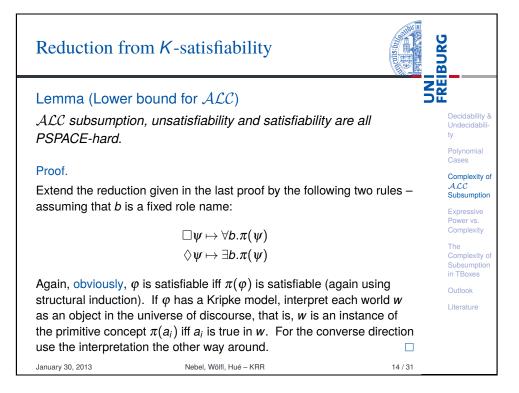
Polynomial

Complexity of

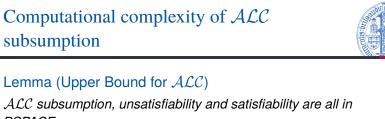
ALC Subsumption

Power vs.

in TBoxes


Outlook

Literature


The Subsumption

Complexity

Obviously, φ is satisfiable iff $\pi(\varphi)$ is satisfiable (use structural induction). If ϕ has a model, construct a model for $\pi(\phi)$ with just one element *t* standing for the truth of the atoms and the formula. Conversely, if $\pi(\varphi)$ satisfiable, pick one element $d \in \pi(\varphi)^{\mathcal{I}}$ and set the truth value of atom a_i according to the fact that $d \in \pi(a_i)^{\mathcal{I}}$. January 30, 2013 Nebel, Wölfl, Hué – KRR 12/31

How hard does	s it get?	BURG
		Decidabili
Is ALC unsati co-NP?	sfiability and subsumption also	Undecida tv
Unlikely – since	e models of a single concept on exponentially large!	description can
	PSPACE-completeness, where a complexity result for (un)satis	Complexi
 Satisifiability a 	and unsatisfiability in K is PSP/	ACE-complete.
		Literature
January 30, 2013	Nebel, Wölfl, Hué – KRR	13 / 31

PSPACE.

Proof.

This follows from the tableau algorithm for ALC. Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time - resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE. \square

Theorem (Complexity of \mathcal{ALC})

ALC subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

January 30, 2013

Nebel, Wölfl, Hué - KRR

15/31

UNI FREIBURG

Undecidabili

Polynomia

Complexity of ALC

Subsumption

Power vs.

Subsumption

in TBoxes

Literature

The

Further consequences of the reducibility of K to ALC

In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol? BURG

FREI

Decidability a

Polynomial

Complexity of

Subsumption

Expressive Power vs.

Complexity

Subsumption in TBoxes

Literature

16/31

UNI FREIBURG

Decidability Undecidabili

Polynomial

Cases

ALC

Expressive

Power vs.

The

Complexity

Subsumption

in TBoxes

Outlook

Literature

19/31

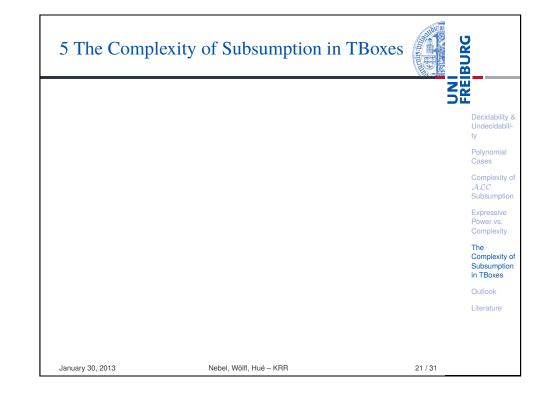
tv

The

ALC

tv

- The multi-modal logic K_n has *n* different Box operators \Box_i (for *n* different agents).
- $\rightsquigarrow \mathcal{ALC}$ (wrt. TBox reasoning) is a notational variant of K_n . [Schild, IJCAI-91]
- Are there other modal logics that correspond to other descriptions logics?
 - → propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- → DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics.
- Algorithms and complexity results can be borrowed. Works also the other way around.


January 30, 2013

Nebel, Wölfl, Hué – KRR

Expressive power vs. complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., *FL*⁻ vs. *ALC*.
- Does it make sense to use languages such as ALC or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 - Use only small description logics with complete inference algorithms.
 - Use expressive description logics, but employ incomplete inference algorithms.
 - 3 Use expressive description logics with complete inference algorithms.
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

4 Expressive	Power vs. Complexity	BURG
		N N N N N N N N N N N N N N N N N N N
		Decidability Undecidabil ty
		Polynomial Cases
		Complexity <i>人上C</i> Subsumptio
		Expressive Power vs. Complexity
		The Complexity Subsumptic in TBoxes
		Outlook
		Literature
January 30, 2013	Nebel, Wölfl, Hué – KRR	18 / 31

Is subsumption in the empty TBox enough?

FREIBURG

Decidability a

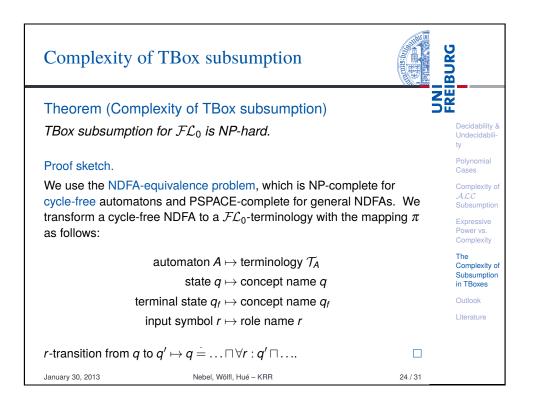
ty Polynomial

ALC

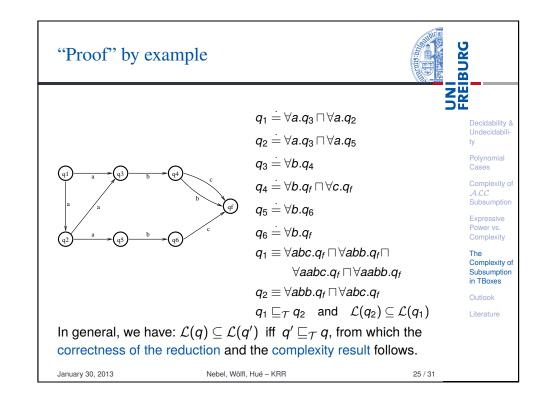
Power vs.

in TBoxes

Literature


22/31

Complexity The Complexity of Subsumption


- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time ...
- In the following example unfolding leads to an exponential blowup:

 $C_{1} \doteq \forall r.C_{0} \sqcap \forall s.C_{0}$ $C_{2} \doteq \forall r.C_{1} \sqcap \forall s.C_{1}$ \vdots $C_{n} \doteq \forall r.C_{n-1} \sqcap \forall s.C_{n-1}$

- Unfolding C_n leads to a concept description with a size $\Omega(2^n)$.
- Is it possible to avoid this blowup? Can we avoid exponential preprocessing? January 30, 2013 Nebel, Wölfl, Hué – KRR

TBox subsur	nption for small language	es Burg
 subsumption concept sub polynomial to Let us consist axioms. Subsumption structural subsumption 	an we decide in polynomial time in for a description logic such as boumption in the empty TBox car time? ider \mathcal{FL}_0 : $C \sqcap D$, $\forall r.C$ with term in without a TBox can be done e ubsumption algorithm. • strucural subsumption gives us	$ \mathcal{FL}^{-}, \text{ for which} $ h be decided in $ \begin{array}{c} \mathcal{FL}^{-} \\ \text{observed} \\ \text{inological} \\ \text{asily, using a} \\ \end{array} \begin{array}{c} \mathcal{FL}^{-} \\ FL$
January 30, 2013	Nebel, Wölfl, Hué – KRR	23 / 31

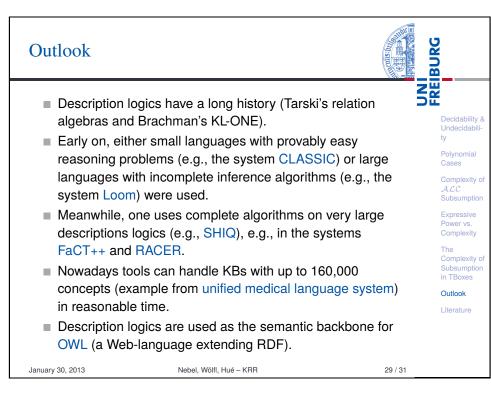
What does this complexity result mean?

ALC

Power vs. Complexity

Subsumption in TBoxes

Literature


26 / 31

The Complexity of

- Note that for expressive languages such as ALC, we do not notice any difference!
- The TBox subsumption complexity result for less expressive languages does not play a large role in practice
- Pathological situations do not happen very often.
- In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.
- However, in order to protect oneself against such problems, one often uses lazy unfolding ...
- Similarly, also for ALC concept descriptions, one notices that they are usually very well behaved.

January 30, 2013

Nebel, Wölfl, Hué – KRR

6 Outlook		BURG
		Decidability Undecidability
		Polynomial Cases
		Complexity \mathcal{ALC} Subsumptic
		Expressive Power vs. Complexity
		The Complexity Subsumptic in TBoxes
		Outlook
		Literature
January 30, 2013	Nebel, Wölfl, Hué – KRR	28 / 31

BURG Literature I **FREI** Bernhard Nebel and Gert Smolka. Undecidabili Attributive description formalisms ... and the rest of the world. Polynomia Cases In: Otthein Herzog and Claus-Rainer Rollinger, editors, Text Understanding in LILOG, pages 439-452. Springer-Verlag, Berlin, ALC Heidelberg, New York, 1991. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Power vs. Complexity Nutt. The Tractable concept languages. Subsumption In: Proceedings of the 12th International Joint Conference on in TBoxes Artificial Intelligence, pages 458-465, Sydney, Australia, August 1991. Outlook Morgan Kaufmann. Literature January 30, 2013 Nebel, Wölfl, Hué - KRR 30 / 31

Literature II		BURG
Klaus Schild.		Decidability &
In Proceedings of t	eory for terminological logics: Prel ne 12th International Joint Confe e, pages 466–471, Sydney, Austra	erence on Polynomial
Morgan Kaufmann.	r, and S. Tobies.	Complexity of <i>A.C.C</i> Subsumption
5	iduals for the Description Logic SF r, ed., Proceedings of the 17th In	ternational
Conference on Auto Springer Verlag.	omated Deduction (CADE-17), G	ermany, 2000. Complexity of Subsumption in TBoxes
B. Nebel.		Outlook
-	oning is Inherently Intractable, e, 43 : 235-249, 1990.	Literature
January 30, 2013	Nebel, Wölfl, Hué – KRR	31 / 31