Principles of Knowledge Representation and Reasoning

Semantic Networks and Description Logics IV: Description Logics – Algorithms

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué January 25, 2013

1 Motivation

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Literature

Description Logics – Algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption

> Method Literature

- 1 Motivation
- 2 Structural Subsumption Algorithms
- 3 Tableau Subsumption Method

January 25, 2013

Nebel, Wölfl, Hué - KRR

2 / 34

Reasoning problems & algorithms

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Solving techniques presented in this chapter:

- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Often the methhod of choice

Motivation

Structural Subsumptio Algorithms

> Tableau Subsumption Method

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 4 / 34 January 25, 2013 Nebel, Wölfl, Hué – KRR

2 Structural Subsumption Algorithms

FREI

BURG

- Idea
- Example
- Algorithm
- Soundness
- Completeness
- Generalizations
- ABox Reasoning

Motivation

Structural Subsumption Algorithms

Example

Algorithm

ABox Reasonin

Tableau Subsumption Method

Literature

January 25, 2013

Nebel, Wölfl, Hué - KRR

7/34

Structural subsumption algorithms

8/34

BURG NE NE

In what follows we consider the rather small logic \mathcal{FL}^- :

- \square $C \sqcap D$
- $\forall r.C$
- \blacksquare $\exists r$ (simple existential quantification)

To solve the subsumption problem for this logic we apply the following idea:

In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

2 Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one.

Motivation

Algorithms

Example Algorithm

ABox Reason

Tableau Subsumption Method

Literature

Example

Example

 $D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child}. \text{Human} \sqcap$

∀has-child.∃has-child

 $C = \operatorname{Human} \sqcap \operatorname{Female} \sqcap \exists \operatorname{has-child} \sqcap$

 \forall has-child.(Human \sqcap Female $\sqcap \exists$ has-child)

Check: $C \sqsubseteq D$

Collect value restrictions in *D*:

 $\dots \forall has-child.(Human \sqcap \exists has-child)$

2 Compare:

January 25, 2013

- For Human in D, we have Human in C.
- \supseteq For \exists has-child in D, we have \exists has-child in C.

Nebel, Wölfl, Hué - KRR

- For \forall has-child.(...) in D, we have Human and \exists has-child in C.
- \sim C is subsumed by D!

UNI FREIBURG

9/34

Motivation

Algorithms

Example Algorithm

Generalizations ABox Reasonin

Tableau Subsumption Method

Literature

Subsumption algorithm

SUB(C, D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

$$C = \prod A_i \sqcap \prod \exists r_j \sqcap \prod \forall r_k : C_k$$

$$D = \bigcap B_l \cap \bigcap \exists s_m \cap \bigcap \forall s_n : D_n$$

- For each B_i in D, is there an A_i in C with $A_i = B_i$?
- For each $\exists s_m$ in D, is there an $\exists r_i$ in C with $s_m = r_i$?
- For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $s_n = r_k$ and $C_k \sqsubseteq D_n$ (i.e., check $SUB(C_k, D_n)$)?
- \rightarrow $C \sqsubseteq D$ iff all questions are answered positively.

January 25, 2013 Nebel, Wölfl, Hué - KRR UNI FREIBURG Motivation

Algorithms

Algorithm

Subsumpti Method

Literature

Soundness

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

- Commutativity and associativity are trivial
- Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$ Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$. If there is no $e \in \mathcal{D}$ with $(d,e) \in r^{\mathcal{I}}$ it follows trivially that $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$. If there is an $e \in \mathcal{D}$ with $(d,e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$.

If there is an $e \in \mathcal{D}$ with $(d,e) \in r^{\mathcal{D}}$ if follows $e \in (C \sqcap D)^{\mathcal{D}} = C^{\mathcal{D}} \cap D^{\mathcal{D}}$. Since e is arbitrary, we have $d \in (\forall r.C)^{\mathcal{D}}$ and $d \in (\forall r.D)^{\mathcal{D}}$, i.e., $(\forall r.(C \sqcap D))^{\mathcal{D}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{D}}$. The other direction is similar.

Steps (2+3+4): Induction on the nesting depth of \forall -expressions.

January 25, 2013

Nebel, Wölfl, Hué - KRR

501

Algorithms

Generalizations

ABox Reasonin

Subsumption

Method

Literature

13 / 34

Example

Algorithm

11/34

NE NE

Motivation

Algorithms

Example

Algorithm

Subsumption

Method

Literature

Generalizing the algorithm

Extensions of $\mathcal{F}\mathcal{L}^-$ by

- $\blacksquare \neg A$ (atomic negation),
- \blacksquare ($\le nr$), ($\ge nr$) (cardinality restrictions),
- $r \circ s$ (role composition)

do not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

January 25, 2013 Nebel, Wölfl, Hué - KRR

Completeness

N REIBL

Theorem (Completeness)

 $C \sqsubseteq D \Rightarrow SUB(C, D).$

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element d such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$.

January 25, 2013 Nebel, Wölfl, Hué - KRR

12 / 34

Motivation

Structural Subsumption Algorithms

Example

Algorithm

Soundness

Generalizations

Tableau Subsumption Method

Literature

ABox reasoning

Idea: Abstraction + classification

- Complete ABox by propagating value restrictions to role fillers.
- $\hfill \blacksquare$ Compute for each object its most specialized concepts.
- These can then be handled using the ordinary subsumption algorithm.

Motivation

Subsumption Algorithms

Idea

Algorithm Soundness

ABox Reasoning

Subsumption Method

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 1

3 Tableau Subsumption Method

- (CATALON OF THE PARTY OF THE PA
 - UNI FREIBURG

- Example
- Reductions: Unfolding & Unsatisfiability
- Model Construction
- Equivalences & NNF
- Constraint Systems
- Transforming Constraint Systems
- Invariances
- Soundness and Completeness
- Space Complexity
- ABox Reasoning

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Reductions: Unfolding &

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint System

Invariances Soundness and

Completeness

Space Complexity

ABox Resenting

Literature

January 25, 2013

Nebel, Wölfl, Hué - KRR

16 / 34

Tableau method

NI REIBURG

Logic ALC:

- \square $C \sqcap D$
- \square $C \sqcup D$
- $\neg C$
- $\forall r.C$
- $\exists r.C$

Idea: Decide (un-)satisfiability of a concept description C by trying to systematically construct a model for C. If that is successful, C is satisfiable. Otherwise, C is unsatisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions: Unfolding &

Model Construction
Equivalences &

NNF
Constraint Systems
Transforming

Invariances
Soundness and
Completeness
Space Complexity
ABox Reasoning

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 17 / 34

Example: Subsumption in a TBox

Example

TBox:

 $\texttt{Hermaphrodite} \stackrel{\cdot}{=} \texttt{Male} \sqcap \texttt{Female}$

 ${\tt Parents-of-sons-and-daughters \stackrel{.}{=} }$

 \exists has-child.Male $\sqcap \exists$ has-child.Female

 ${\tt Parents-of-hermaphrodite} \stackrel{\cdot}{=} \exists {\tt has-child.Hermaphrodite}$

Query:

Parents-of-sons-and-daughters $\sqsubseteq_{\mathcal{T}}$ Parents-of-hermaphrodites

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions:

Heductions: Jnfolding & Jnsatisfiability

Model Construct Equivalences & NNF

Constraint System
Transforming
Constraint System

Soundness and Completeness Space Complexity

ABox Reasonin

Literature

Reductions

Unfolding:

 \exists has-child.Male $\sqcap \exists$ has-child.Female $\sqsubseteq \exists$ has-child.(Male $\sqcap \exists$ Female)

Reduction to unsatisfiability: Is the concept
∃has-child.Male □∃has-child.Female □

 $\neg \exists \mathtt{has-child}(\mathtt{Male} \, \sqcap \, \mathtt{Female})$

unsatisfiable?

 \exists has-child.Male $\sqcap \exists$ has-child.Female $\sqcap \forall$ has-child.(\neg Male $\sqcup \neg$ Female)

4 Try to construct a model

Motivation

Structural Subsumptior Algorithms

Tableau Subsumptio Method

Example
Reductions:
Unfolding &

Model Construc Equivalences &

Constraint Systems
Transforming
Constraint Systems

Soundness and Completeness Space Complexity

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 18 / 34 January 25, 2013 Nebel, Wölfl, Hué – KRR 19

Model construction (1)

20 / 34

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists ...)^{\mathcal{I}}$$

 \square This implies that x is in the interpretation of all conjuncts:

$$extit{x} \in (\exists \mathtt{has-child.Male})^{\mathcal{I}}$$

$$x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$$

$$extit{x} \in ig(orall ext{has-child.} ig(
extit{¬Male} \sqcup
extit{¬Female} ig)^{\mathcal{I}}$$

This implies that there should be objects *y* and *z* such that $(x,y) \in \text{has-child}^{\mathcal{I}}, (x,z) \in \text{has-child}^{\mathcal{I}}, y \in \text{Male}^{\mathcal{I}} \text{ and }$ $z \in \text{Female}^{\mathcal{I}}$, and ...

January 25, 2013

Motivation

Algorithms

Tableau

Method

Reductions

Model Constructi

Soundness and

Space Complexit

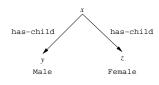
Literature

Nebel, Wölfl, Hué - KRR

Model construction (2)

 $x: \exists has-child.Male$

 $x: \exists \text{has-child.Female}$



January 25, 2013 Nebel, Wölfl, Hué - KRR

Motivation

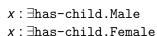
Structural Algorithms

Tableau

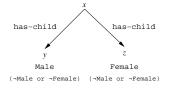
Literature

21 / 34

Model construction (3)



 $x: \forall \text{has-child.}(\neg \text{Male} \sqcup \neg \text{Female})$



Motivation

UNI FREIBURG

Structural Algorithms

Tableau Method

Model Construct

Soundness and Space Complexit

Literature

22 / 34

January 25, 2013 Nebel, Wölfl, Hué - KRR

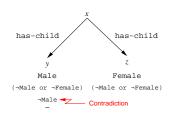
Model construction (4)

 $x: \exists has-child.Male$

 $x: \exists \text{has-child.Female}$

 $x: \forall \text{has-child.}(\neg \text{Male} \sqcup \neg \text{Female})$

y:¬Male



Literature

January 25, 2013 Nebel, Wölfl, Hué - KRR UNI FREIBURG

Motivation

Algorithms

Tableau Method

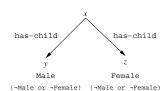
Space Complexit

Model construction (5)

 $x: \exists has-child.Male$ $x: \exists \text{has-child.Female}$

 $x: \forall \text{has-child.}(\neg \text{Male} \sqcup \neg \text{Female})$

 $y: \neg Female$ $z: \neg Male$



→ Model constructed!

January 25, 2013

Nebel, Wölfl, Hué - KRR

¬Male

Motivation

FREI

Structural Algorithms

Tableau

Method

Model Construct

Space Complexit

Literature

Tableau method (1): NNF

Motivation

Structural Algorithms

Tableau

Model Constr Equivalences &

Soundness and

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

> $\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg (C \sqcup D) \equiv \neg C \sqcap \neg D$ $\neg(\forall r.C) \equiv \exists r.\neg C \qquad \neg(\exists r.C) \equiv \forall r.\neg C$ $\neg \neg C \equiv C$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

January 25, 2013

Nebel, Wölfl, Hué - KRR

25 / 34

Tableau method (2): Constraint systems

¬Female

24 / 34

A constraint is a syntactical object of the form:

x: C or xrv,

where C is a concept description in NNF, r is a role name, and xand y are variable names.

Let \mathcal{I} be an interpretation with universe \mathcal{D} . An \mathcal{I} -assignment α is a function that maps each variable symbol to an object of the universe \mathcal{D} .

A constraint x: C(xry) is satisfied by an \mathcal{I} -assignment α if $\alpha(x) \in C^{\mathcal{I}}$ (resp. $(\alpha(x), \alpha(y)) \in r^{\mathcal{I}}$).

Algorithms

Tableau Method

Reductions

Model Constru

Constraint System

Soundness and Space Complexit

Literature

Tableau method (3): Constraint systems

Definition

A constraint system *S* is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is satisfiable if there exist \mathcal{I} and α such that α satisfies S.

Theorem

An ALC concept C in NNF is satisfiable if and only if the system $\{x: C\}$ is satisfiable.

Motivation

Algorithms

Tableau

Example

Constraint Syster

Soundness and Space Complexit

January 25, 2013 Nebel, Wölfl, Hué - KRR

January 25, 2013 Nebel, Wölfl, Hué - KRR

26 / 34

Tableau method (4): Transforming constraint systems

BURG

Motivation

Method

Literature

Transformation rules:

 $S \rightarrow_{\square} \{x: C_1, x: C_2\} \cup S$ if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in S.

 $S \rightarrow \cup \{x : D\} \cup S$ if $(x: C_1 \sqcup C_2) \in S$ and neither $(x: C_1) \in S$ nor $(x: C_2) \in S$ and $D = C_1$ or $D = C_2$.

 $S \rightarrow_\exists \{xry,y: C\} \cup S$ if $(x: \exists r.C) \in S$, y is a fresh variable, and there is no z s.t. $(xrz) \in S$ and $(z: C) \in S$.

 $\{S \rightarrow_{\forall} \{y : C\} \cup S\}$ if $(x: \forall r.C), (xry) \in S$ and $(y: C) \notin S$.

Notice: Deterministic rules (1,3,4) vs. non-deterministic (2).

Generating rules (3) vs. non-generating (1,2,4).

January 25, 2013

28 / 34

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

- If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only of T is satisfiable.
- 2 If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Theorem (Termination)

Let C be an \mathcal{ALC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x: C\}$.

January 25, 2013 Nebel, Wölfl, Hué - KRR

Motivation

Literature

Tableau method (6): Soundness and completeness

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Proof idea.

⇒: obvious. ←: Construct a model by using the concept labels.

Algorithms

Method

Soundness and

Literature

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\square} rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Example

$$\exists r.A \sqcap \exists r.B \sqcap$$

 $\forall r. (\exists r.A \sqcap \exists r.B \sqcap$
 $\forall r. (\exists r.A \sqcap \exists r.B \sqcap$
 $\forall r. (...)))$

However: One can modify the algorithm so that it needs only polynomial space.

Idea: Generate a y only for one $\exists r.C$ and then proceed into the depth.

January 25, 2013 Nebel, Wölfl, Hué - KRR 31 / 34

BURG

29 / 34

Motivation

Algorithms

Space Complexit

January 25, 2013

Nebel, Wölfl, Hué - KRR

30 / 34

ABox reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- \blacksquare Strictly speaking, in \mathcal{ALC} we do not need this because we are never forced to identify two objects.

Motivation

Algorithms

Tableau

Method Example

Reductions Unfolding &

Model Construc

Equivalences & NNF

Invariances

Soundness and Space Complexity

ABox Reasoning

Literature

January 25, 2013 Nebel, Wölfl, Hué - KRR

32 / 34

Motivation

Structural Algorithms

Tableau Method

Literature

Literature II

F. Baader and U. Sattler.

An Overview of Tableau Algorithms for Description Logics. Studia Logica, 69:5-40, 2001.

I. Horrocks, U. Sattler, and S. Tobies.

Practical Reasoning for Very Expressive Description Logics. Logic Journal of the IGPL, 8(3):239-264, May 2000.

January 25, 2013 Nebel, Wölfl, Hué - KRR 34 / 34

Literature I

33 / 34

UNI FREIBURG

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.

The Description Logic Handbook: Theory, Implementation, Applications,

Cambridge University Press, Cambridge, UK, 2003.

Hector J. Levesque and Ronald J. Brachman.

Expressiveness and tractability in knowledge representation and reasoning.

Computational Intelligence, 3:78-93, 1987.

Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1-26, 1991.

Bernhard Hollunder and Werner Nutt.

Subsumption Algorithms for Concept Languages.

DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.

January 25, 2013 Nebel, Wölfl, Hué - KRR Motivation

Structural Algorithms

Tableau

Method

Literature