Principles of Knowledge Representation and Reasoning

Semantic Networks and Description Logics IV: Description Logics – Algorithms

N REIBURG

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué January 25, 2013

Description Logics - Algorithms

UNI FREIBURG

- Motivation
- Structural Subsumption Algorithms
- Tableau Subsumption Method
- Literature
- Literature

3 Tableau Subsumption Method

2 Structural Subsumption Algorithms

1 Motivation

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reasoning problems & algorithms

Reasoning problems:

- Satisfiability or subsumption of concept descriptions
- Satisfiability or instance relation in ABoxes

Solving techniques presented in this chapter:

- Structural subsumption algorithms
 - Normalization of concept descriptions and structural comparison
 - very fast, but can only be used for small DLs
- Tableau algorithms
 - Similar to modal tableau methods
 - Often the methhod of choice

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

2 Structural Subsumption Algorithms

FREB

- Idea
- Example
- Algorithm
- Soundness
- Completeness
- Generalizations
- ABox Reasoning

Motivation

Structural Subsumption Algorithms

Evamnla

Algorithm

Soundness

Completeness

Generalizations

ABox Reasoning

Tableau Subsumption Method

Structural subsumption algorithms

UNI

In what follows we consider the rather small logic \mathcal{FL}^- :

- \square $C \sqcap D$
- $\blacksquare \forall r.C$
- \blacksquare $\exists r$ (simple existential quantification)

To solve the subsumption problem for this logic we apply the following idea:

In the conjunction, collect all universally quantified expressions (also called value restrictions) with the same role and build complex value restriction:

$$\forall r.C \sqcap \forall r.D \rightarrow \forall r.(C \sqcap D).$$

Compare all conjuncts with each other.
For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one.

Motivation

Structural Subsumption

Idea

Example

Soundness

Generalizations
ABox Reasoning

Tableau Subsumption

Example

Example

 $D = \operatorname{Human} \sqcap \exists \operatorname{has-child} \sqcap \forall \operatorname{has-child}. \operatorname{Human} \sqcap \forall \operatorname{has-child}. \exists \operatorname{has-child}$

 $C = \mathtt{Human} \, \sqcap \, \mathtt{Female} \, \sqcap \, \exists \mathtt{has-child} \, \sqcap$

 \forall has-child.(Human \sqcap Female \sqcap \exists has-child)

Check: $C \sqsubseteq D$

Collect value restrictions in *D*:

 $\dots \forall \mathtt{has-child.}(\mathtt{Human} \sqcap \exists \mathtt{has-child})$

Compare:

For Human in D, we have Human in C.

o For \exists has-child in D, we have \exists has-child in C.

For \forall has-child.(...) in D, we have Human and \exists has-child in C.

 \sim C is subsumed by D!

Motivation

Structural
Subsumption

Example

Soundness

Completeness

Generalizations
ABox Reasoning

Tableau Subsumption Method

SUB(C, D) algorithm:

Reorder terms (using commutativity, associativity and value restriction law):

$$C = \bigcap A_i \cap \bigcap \exists r_j \cap \bigcap \forall r_k : C_k$$

 $D = \prod B_l \sqcap \prod \exists s_m \sqcap \prod \forall s_n : D_n$

- For each B_l in D, is there an A_i in C with $A_i = B_l$?
- \exists For each $\exists s_m$ in D, is there an $\exists r_i$ in C with $s_m = r_i$?
- For each $\forall s_n : D_n$ in D, is there a $\forall r_k : C_k$ in C such that $s_n = r_k$ and $C_k \sqsubseteq D_n$ (i.e., check $SUB(C_k, D_n)$)?
- \rightarrow C \sqsubseteq D iff all questions are answered positively.

Motivation

Structural Subsumption Algorithms

Example

Algorithm

Soundness

Generalizations
ABox Reasoning

Tableau Subsumption

Soundness

JN ...

Theorem (Soundness)

 $SUB(C,D) \Rightarrow C \sqsubseteq D$

Proof sketch.

Reordering of terms step (1):

- Commutativity and associativity are trivial
- 2 Value restriction law. We show: $(\forall r.(C \sqcap D))^{\mathcal{I}} = (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$

Assume $d \in (\forall r.(C \sqcap D))^{\mathcal{I}}$.

If there is no $e \in \mathcal{D}$ with $(d,e) \in r^{\mathcal{I}}$ it follows trivially that

 $d \in (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}.$

If there is an $e \in \mathcal{D}$ with $(d,e) \in r^{\mathcal{I}}$ it follows $e \in (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$. Since e is arbitrary, we have $d \in (\forall r.C)^{\mathcal{I}}$ and $d \in (\forall r.D)^{\mathcal{I}}$,

i.e., $(\forall r.(C \sqcap D))^{\mathcal{I}} \subseteq (\forall r.C \sqcap \forall r.D)^{\mathcal{I}}$.

The other direction is similar.

Steps (2+3+4): Induction on the nesting depth of \forall -expressions.

Motivation

Structural Subsumption

Idea Example

Algorithm

Soundness

Completeness

Generalizations
ABox Reasoning

Tableau Subsumption Method

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 11 / 34

Completeness

5**E**

Theorem (Completeness)

$$C \sqsubseteq D \Rightarrow SUB(C,D)$$
.

Proof idea.

One shows the contrapositive:

$$\neg \mathsf{SUB}(C,D) \Rightarrow C \not\sqsubseteq D$$

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element *d* such that

$$d \in C^{\mathcal{I}}$$
, but $d \notin D^{\mathcal{I}}$.

Motivation

Structural Subsumption Algorithms

> Idea Example

Algorithm

Journaliess

Completeness

Generalizations
ABox Reasoning

Tableau Subsumptio Method

Generalizing the algorithm

JNI

Extensions of \mathcal{FL}^- by

- $\blacksquare \neg A$ (atomic negation),
- \blacksquare ($\le nr$), ($\ge nr$) (cardinality restrictions),
- \blacksquare $r \circ s$ (role composition)

do not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

Motivation

Structural Subsumption

> ldea Example

Jgorithm

Soundness Completeness

Generalizations
ABox Reasoning

Tableau Subsumption Method

Literature

January 25, 2013 Nebel, Wölfl, Hué – KRR 13 / 34

Idea: Abstraction + classification

- Complete ABox by propagating value restrictions to role fillers.
- Compute for each object its most specialized concepts.
- These can then be handled using the ordinary subsumption algorithm.

Motivation

Structural Algorithms

ABox Reasoning

Method

3 Tableau Subsumption Method

- Example
- Reductions: Unfolding & Unsatisfiability
- Model Construction
- Equivalences & NNF
- Constraint Systems
- Transforming Constraint Systems
- Invariances
- Soundness and Completeness
- Space Complexity
- **ABox Reasoning**

Motivation

Algorithms

Tableau Subsumption Method

Model Construction Equivalences &

Constraint Systems

ABox Reasoning

Tableau method

UNI FREIBUR

Logic ALC:

- \square $C \sqcap D$
- \square $C \sqcup D$
- $\neg C$
- $\forall r.C$
- **■** ∃*r*.*C*

Idea: Decide (un-)satisfiability of a concept description C by trying to systematically construct a model for C. If that is successful, C is satisfiable. Otherwise, C is unsatisfiable.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Unfolding &

Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint System

Invariances

Soundness and

Space Complexity

ABox Reasoning

Example: Subsumption in a TBox

UNI

Example

TBox:

 $\texttt{Hermaphrodite} \stackrel{\cdot}{=} \texttt{Male} \sqcap \texttt{Female}$

 ${\tt Parents-of-sons-and-daughters \stackrel{.}{=} }$

 \exists has-child.Male $\sqcap \exists$ has-child.Female

 ${\tt Parents-of-hermaphrodite} \stackrel{.}{=} \exists {\tt has-child.Hermaphrodite}$

Query:

```
Parents-of-sons-and-daughters \sqsubseteq_{\mathcal{T}}
Parents-of-hermaphrodites
```

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example

Unfolding & Unsatisfiability

Model Construction

Equivalences & NNF

Constraint Systems

Transforming

Constraint System Invariances

Invariances Soundness an

Space Complexi

Reductions

FREIBU

Unfolding:

```
\existshas-child.Male \sqcap \existshas-child.Female \sqsubseteq \existshas-child.(Male \sqcapFemale)
```

- Provided the Reduction to unsatisfiability: Is the concept

 ∃has-child.Male□∃has-child.Female□

 ¬∃has-child(Male□Female)

 unsatisfiable?
- Negation normal form (move negations inside):
 ∃has-child.Male□∃has-child.Female□
 ∀has-child.(¬Male□¬Female)
- Try to construct a model

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example
Reductions:
Unfolding &
Unsatisfiability

Model Construction Equivalences &

NNF Constraint Systems

Transforming Constraint System

Invariances

Completeness
Space Complexity

ABox Reasoning

Model construction (1)

20/34

Assumption: There exists an object x in the interpretation of our concept:

$$x \in (\exists ...)^{\mathcal{I}}$$

o This implies that x is in the interpretation of all conjuncts:

$$x \in (\exists \mathtt{has-child.Male})^{\mathcal{I}}$$

$$x \in (\exists \mathtt{has-child.Female})^{\mathcal{I}}$$

$$extit{X} \in ig(orall ext{has-child.} ig(
extit{¬Male} \sqcup
extit{¬Female} ig) ig)^{\mathcal{I}}$$

This implies that there should be objects y and z such that $(x,y) \in \texttt{has-child}^{\mathcal{I}}, (x,z) \in \texttt{has-child}^{\mathcal{I}}, y \in \texttt{Male}^{\mathcal{I}}$ and $z \in \texttt{Female}^{\mathcal{I}}$, and ...

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

> Example Reductions: Unfolding &

Model Construction

NNF

Constraint Systems Transforming

Invariances

Completeness

Space Complexity

1.54----

Model construction (2)

FREIBU

 $x: \exists has-child.Male$

 $x: \exists \mathtt{has-child.Female}$

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions:

Unfolding & Unsatisfiability Model Construction

Equivalences & NNF

Constraint Systems

Constraint Syster

Completeness Space Complexity ABox Reasoning

Model construction (3)

FREIBU

 $x: \exists has-child.Male$

 $x: \exists \mathtt{has-child.Female}$

 $X: \forall \text{has-child.} (\neg \text{Male} \sqcup \neg \text{Female})$

Motivation

Structural Subsumption Algorithms

Tableau Subsumptio Method

Example
Reductions:

Model Construction

Equivalences & NNF

Constraint Systems Transforming

Constraint System Invariances

Space Complexity

ABox Reasoning

Model construction (4)

UNI FREIBU

 $x: \exists has-child.Male$

 $x: \exists \mathtt{has-child.Female}$

 $x: \forall \text{has-child.}(\neg \text{Male} \sqcup \neg \text{Female})$

y: ¬Male

Motivation

Structural Subsumption Algorithms

Tableau Subsumptio Method

Example Reductions:

Unsatisfiability Model Construction

Equivalences & NNF

Constraint Systems

Constraint Syste

Soundness a Completenes

Space Complexity ABox Reasoning

Model construction (5)

UNI FREIBUR

 $x: \exists has-child.Male$

 $x: \exists \mathtt{has-child.Female}$

 $X: \forall \text{has-child.} (\neg \text{Male} \sqcup \neg \text{Female})$

 $y: \neg Female$

 $z: \neg \mathsf{Male}$

Motivation

Structural Subsumption Algorithms

Tableau Subsumptio Method

Example Reductions:

Unfolding & Unsatisfiability Model Construction

Equivalences & NNF

Constraint Systems

Transforming Constraint Systems

Invariances

Space Complexity

ABox Reasoning

Tableau method (1): NNF

25/34

NI REIBURG

We write: $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$. Now we have the following equivalences:

$$\neg (C \sqcap D) \equiv \neg C \sqcup \neg D$$
$$\neg (\forall r.C) \equiv \exists r. \neg C$$

 $\neg \neg C \equiv C$

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D$$
$$\neg(\exists r.C) \equiv \forall r.\neg C$$

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: negation normal form (NNF).

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

> Reductions: Unfolding & Unsatisfiability

Model Constructio

NNF Constraint System

Constraint Systems

Constraint Syster nvariances

Invariances Soundness and

Space Complexi

Tableau method (2): Constraint systems

FREIBU

A constraint is a syntactical object of the form:

$$x: C$$
 or xry ,

where C is a concept description in NNF, r is a role name, and x and y are variable names.

Let $\mathcal I$ be an interpretation with universe $\mathcal D$. An $\mathcal I$ -assignment α is a function that maps each variable symbol to an object of the universe $\mathcal D$.

A constraint x : C(xry) is satisfied by an \mathcal{I} -assignment α if $\alpha(x) \in C^{\mathcal{I}}$ (resp. $(\alpha(x), \alpha(y)) \in r^{\mathcal{I}}$).

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Reductions: Infolding &

Model Constructio

Equivalences &

Constraint Systems

Constraint Syster

Invariances

Space Complexity

ABox Reasoning

Tableau method (3): Constraint systems

Definition

A constraint system S is a finite, non-empty set of constraints. An \mathcal{I} -assignment α satisfies S if α satisfies each constraint in S. S is satisfiable if there exist \mathcal{I} and α such that α satisfies S.

Theorem

An ALC concept C in NNF is satisfiable if and only if the system $\{x: C\}$ is satisfiable.

Algorithms

Equivalences &

Constraint Systems

Transformation rules:

- **1** S →_{\square} { $x: C_1, x: C_2$ } ∪ S if $(x: C_1 \sqcap C_2) \in S$ and either $(x: C_1)$ or $(x: C_2)$ or both are not in S.
- 2 $S \rightarrow_{\sqcup} \{x \colon D\} \cup S$ if $(x \colon C_1 \sqcup C_2) \in S$ and neither $(x \colon C_1) \in S$ nor $(x \colon C_2) \in S$ and $D = C_1$ or $D = C_2$.
- **3** S → $_{\exists}$ {xry,y: C} ∪ S if $(x: \exists r.C) \in S$, y is a fresh variable, and there is no z s.t. $(xrz) \in S$ and $(z: C) \in S$.

Notice: Deterministic rules (1,3,4) vs. non-deterministic (2). Generating rules (3) vs. non-generating (1,2,4).

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Example Reductions:

Unsatisfiability

Model Construction

NNF Constraint Systems

Constraint Systems Transforming

Constraint Systems Invariances

Completeness Space Complexit

ABox Reasoning

Tableau method (5): Invariances

Theorem (Invariance)

Let S and T be constraint systems.

- If T has been generated by applying a deterministic rule to S, then S is satisfiable if and only of T is satisfiable.
- If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable if and only if the resulting system T is satisfiable.

Theorem (Termination)

Let C be an ALC concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x: C\}$.

Algorithms

Constraint Systems

Invariances

Tableau method (6): Soundness and completeness

REIBUR

A constraint system is called **closed** if no transformation rule can be applied.

A clash is a pair of constraints of the form x : A and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A closed constraint system is satisfiable if and only it does not contain a clash.

Proof idea.

⇒: obvious. ⇐: Construct a model by using the concept labels.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method

Method Example

Unfolding & Unsatisfiability

Model Constructio

NNF Constraint Systems

onstraint System

Constraint System

Invariances
Soundness and

Completeness
Space Complexity

ADUX Heasoning

Space requirements

Because the tableau method is non-deterministic (\rightarrow_{\square} rule), there could be exponentially many closed constraint systems in the end.

Interestingly, applying the rules on a single constraint system can lead to constraint systems of exponential size.

Example

$$\exists r.A \sqcap \exists r.B \sqcap$$

 $\forall r. (\exists r.A \sqcap \exists r.B \sqcap$
 $\forall r. (\exists r.A \sqcap \exists r.B \sqcap$
 $\forall r. (...)))$

However: One can modify the algorithm so that it needs only polynomial space.

Idea: Generate a y only for one $\exists r.C$ and then proceed into the depth.

Algorithms

Constraint Systems

Space Complexity

ABox reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- Normalize and unfold and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in ALC we do not need this because we are never forced to identify two objects.

Algorithms

Equivalences &

Constraint Systems

ABox Reasoning

Literature I

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.

The Description Logic Handbook: Theory, Implementation, Applications,

Cambridge University Press, Cambridge, UK, 2003.

Hector J. Levesque and Ronald J. Brachman.

Expressiveness and tractability in knowledge representation and reasoning.

Computational Intelligence, 3:78-93, 1987.

Manfred Schmidt-Schauß and Gert Smolka.

Attributive concept descriptions with complements.

Artificial Intelligence, 48:1-26, 1991.

Bernhard Hollunder and Werner Nutt.

Subsumption Algorithms for Concept Languages.

DFKI Research Report RR-90-04. DFKI, Saarbrücken, 1990. Revised version of paper that was published at ECAI-90.

Motivation

Structural Subsumption Algorithms

Tableau Subsumption

Literature II

Motivation

Structural Algorithms

Tableau Method

Literature

F. Baader and U. Sattler.

An Overview of Tableau Algorithms for Description Logics. Studia Logica, 69:5-40, 2001.

I. Horrocks, U. Sattler, and S. Tobies.

Practical Reasoning for Very Expressive Description Logics. Logic Journal of the IGPL, 8(3):239-264, May 2000.