Motivation
Example TBox & ABox

\[
\begin{align*}
\text{Male} & \equiv \neg \text{Female} \\
\text{Human} & \sqsubseteq \text{Living_entity} \\
\text{Woman} & \equiv \text{Human} \sqcap \text{Female} \\
\text{Man} & \equiv \text{Human} \sqcap \text{Male} \\
\text{Mother} & \equiv \text{Woman} \sqcap \exists \text{has-child.Human} \\
\text{Father} & \equiv \text{Man} \sqcap \exists \text{has-child.Human} \\
\text{Parent} & \equiv \text{Father} \sqcup \text{Mother} \\
\text{Grandmother} & \equiv \text{Woman} \sqcap \exists \text{has-child.Parent} \\
\text{Mother-without-daughter} & \equiv \text{Mother} \sqcap \forall \text{has-child.Male} \\
\text{Mother-with-many-children} & \equiv \text{Mother} \sqcap (\geq 3\text{has-child})
\end{align*}
\]

<table>
<thead>
<tr>
<th>(DIANA, Charles)</th>
<th>has-child</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DIANA, Edward)</td>
<td>has-child</td>
</tr>
<tr>
<td>(DIANA, Andrew)</td>
<td>has-child</td>
</tr>
<tr>
<td>(Charles, William)</td>
<td>has-child</td>
</tr>
<tr>
<td>(Charles, William)</td>
<td>has-child</td>
</tr>
</tbody>
</table>
What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object an instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object an instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
Basic Reasoning Services
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:
- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \ C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{has-child}) \sqcap (\geq 1 \text{has-child})$ is unsatisfiable.
Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of concept descriptions

Given a concept description C in “isolation”, i.e., in an empty TBox, is C satisfiable?

Test:

- Does there exist an interpretation \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ satisfiable?

Example

$\text{Woman} \sqcap (\leq 0 \text{has-child}) \sqcap (\geq 1 \text{has-child})$ is unsatisfiable.
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:

- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Example

Mother-without-daughter $\sqcap \forall$has-child.Female is unsatisfiable, given our previously specified family TBox.
Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:

- Does there exist a model I of \mathcal{T} such that $C^I \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ together with the formulae resulting from the translation of \mathcal{T} satisfiable?

Example

Mother-without-daughter $\sqcap \forall$ has-child. Female is unsatisfiable, given our previously specified family TBox.
Satisfiability of concept descriptions in a TBox

Given a TBox T and a concept description C, is C satisfiable?

Test:

- Does there exist a model I of T such that $C^I \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x\, C(x)$ together with the formulae resulting from the translation of T satisfiable?

Example

Mother-without-daughter $\sqcap \forall$ has-child.Female is unsatisfiable, given our previously specified family TBox.
Eliminating the TBox
Reduction: Getting rid of the TBox

We can **reduce** satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are **cycle-free**, one can understand a concept definition as a kind of “macro”.
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols.
- An **expanded** concept description is then satisfiable if and only if C is satisfiable in \mathcal{T}.
- **Problem:** What do we do with partial definitions (using \sqsubseteq)?
Reduction: Getting rid of the TBox

We can reduce satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:

- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if C is satisfiable in \mathcal{T}.
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
A terminology is called **normalized** when it does not contain definitions of the form $A \sqsubseteq C$.

In order to **normalize** a terminology, replace

$$A \sqsubseteq C$$

by

$$A \sqsubseteq A^* \sqcap C,$$

where A^* is a **fresh** concept symbol (not appearing elsewhere in \mathcal{T}).

If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model $\mathcal{I'}$ of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^\mathcal{I} = A^\mathcal{I'}$, and *vice versa*.

Proof.

\Rightarrow: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to $\mathcal{I'}$ so that the freshly introduced concept symbols also get interpretations.

Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \sqsubseteq A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^*\mathcal{I'} := A^\mathcal{I}$. $\mathcal{I'}$ obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model $\mathcal{I'}$ of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If \mathcal{I} *is a model of the terminology* \mathcal{T}, *then there exists a model* \mathcal{I}' *of* $\tilde{\mathcal{T}}$ *such that for all concept symbols* A *occurring in* \mathcal{T}, *it holds* $A^\mathcal{I} = A^{\mathcal{I}'}$, *and vice versa.*

Proof.

“\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \equiv A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^* \mathcal{I}' := A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

“\Leftarrow”: Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If I is a model of the terminology \mathcal{T}, then there exists a model I' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^I = A^{I'}$, and *vice versa*.

Proof.

“⇒”: Let I be a model of \mathcal{T}. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \models A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{*I'} := A^I$. I' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

“⇐”: Given a model I' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If I is a model of the terminology \mathcal{T}, then there exists a model I' of $\tilde{\mathcal{T}}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^I = A^{I'}$, and vice versa.

Proof.

\Rightarrow: Let I be a model of \mathcal{T}. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \subseteq C) \in \mathcal{T}$, i.e., we have $(A \models A^* \cap C) \in \tilde{\mathcal{T}}$. Then set $A^{*I'} := A^I$. I' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model I' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
Normalizing is reasonable

Theorem (Normalization invariance)

If I is a model of the terminology \mathcal{T}, then there exists a model I' of $\sim \mathcal{T}$ such that for all concept symbols A occurring in \mathcal{T}, it holds $A^I = A^{I'}$, and vice versa.

Proof.

\Rightarrow: Let I be a model of \mathcal{T}. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \sqsubseteq A^* \cap C) \in \sim \mathcal{T}$. Then set $A^{I'} := A^I$. I' obviously satisfies $\sim \mathcal{T}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model I' of $\sim \mathcal{T}$, its restriction to symbols of \mathcal{T} is the interpretation we look for.
We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.

Example: Mother ⊑ Woman ⊓ ... is unfolded to Mother ⊑ (Human ⊓ Female) ⊓ ...

We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.

We say that T is unfolded if $U(T) = T$.

$U^n(T)$ is called the unfolding of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
TBox unfolding

- We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

- **Example:** Mother ⊑ Woman ⊓ ... is unfolded to Mother ⊑ (Human ⊓ Female) ⊓ ...

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an n-step unfolding.

- We say that T is **unfolded** if $U(T) = T$.

- $U^n(T)$ is called the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

Each normalized terminology \mathcal{T} can be unfolded, i.e., its unfolding $\hat{\mathcal{T}}$ exists.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \hat{T} if and only if it is a model of \hat{T}.

Proof sketch.

\Rightarrow: Let I be a model of T. Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

\Leftarrow: Let I be a model for $U(T)$. Clearly, this is also a model of \hat{T} (with the same argument as above). This means that any model \hat{T} is also a model of T.

Theorem (Model equivalence for unfolded terminologies)

\[I \text{ is a model of a normalized terminology } T \text{ if and only if it is a model of } \hat{T}. \]

Proof sketch.

“⇒”: Let \(I \) be a model of \(T \). Then it is also a model of \(U(T) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{T} \).

“⇐”: Let \(I \) be a model for \(U(T) \). Clearly, this is also a model of \(T \) (with the same argument as above). This means that any model \(\hat{T} \) is also a model of \(T \).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \hat{T} if and only if it is a model of \hat{T}.

Proof sketch.

\Rightarrow: Let I be a model of T. Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

\Leftarrow: Let I be a model for $U(T)$. Clearly, this is also a model of T (with the same argument as above). This means that any model \hat{T} is also a model of T.

January 17, 2013 Nebel, Wölfl, Hué – KRR
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} if and only if it is a model of $\hat{\mathcal{T}}$.

Proof sketch.

“\Rightarrow”: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

“\Leftarrow”: Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.

Proof of the equivalence theorem:

I is a model of \mathcal{T} if and only if it is a model of $\hat{\mathcal{T}}$.

Proof sketch:

“\Rightarrow”: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

“\Leftarrow”: Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.
Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ if and only if it is a model of } \hat{\mathcal{T}}. \]

Proof sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} if and only if it is a model of $\hat{\mathcal{T}}$.

Proof sketch.

\implies: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

\impliedby: Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}. □
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I}_{ext} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use \hat{T} and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I}_{ext} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

> For each initial interpretation \mathcal{I} of a normalized TBox, there exists a unique interpretation \mathcal{I}_{ext} extending \mathcal{I} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

> Each TBox has at least one model.
Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.

We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(T \) if and only if \(\hat{C} \) satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)”: trivial.

“\(\Leftarrow \)”: Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(T \). Then extend it to a full model \(I \) of \(T \). This satisfies \(T \) as well as \(\hat{C} \). Since \(\hat{C}^I = C^I \), it satisfies also \(C \).”
Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.

We write \(\hat{C} \) for the unfolded version of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(\mathcal{T} \) if and only if \(\hat{C} \) satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)”: trivial.

“\(\Leftarrow \)”: Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(\mathcal{T} \). Then extend it to a full model \(\mathcal{I} \) of \(\mathcal{T} \). This satisfies \(\mathcal{T} \) as well as \(\hat{C} \). Since \(\hat{C}^\mathcal{I} = C^\mathcal{I} \), it satisfies also \(C \).
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \hat{C} satisfiable in an empty terminology.

Proof.

"⇒": trivial.

"⇐": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}. This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \qed
Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}. This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \square
Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.

We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology \mathcal{T} if and only if \hat{C} satisfiable in an empty terminology.

Proof.

“\Rightarrow”: trivial.

“\Leftarrow”: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}. This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C.

\Box
General TBox Reasoning Services
Subsumption in a TBox

Given a terminology \(\mathcal{T} \) and two concept descriptions \(C \) and \(D \), is \(C \) subsumed by (or a sub-concept of) \(D \) in \(\mathcal{T} \) (symb. \(C \sqsubseteq_{\mathcal{T}} D \))? \[\]

Test:

- Is \(C \) interpreted as a subset of \(D \) in each model \(\mathcal{I} \) of \(\mathcal{T} \), i.e. \(C^\mathcal{I} \subseteq D^\mathcal{I} \)?
- Is the formula \(\forall x \left(C(x) \rightarrow D(x) \right) \) a logical consequence of the translation of \(\mathcal{T} \) into FOL?

Example

Given our family TBox, it holds Grandmother \(\sqsubseteq_{\mathcal{T}} \) Mother.
Subsumption in a TBox

Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} (symb. $C \sqsubseteq^\mathcal{T} D$)?

Test:

- Is C interpreted as a subset of D in each model \mathcal{I} of \mathcal{T}, i.e. $C^\mathcal{I} \subseteq D^\mathcal{I}$?

- Is the formula $\forall x (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} into FOL?

Example

Given our family TBox, it holds Grandmother $\sqsubseteq^\mathcal{T}$ Mother.
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, $\text{Human} \sqcap \text{Female} \sqsubseteq \text{Human}$.
Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:

- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x (C(x) \rightarrow D(x))$ logically valid?

Example

Clearly, Human \sqcap Female \sqsubseteq Human.
Subsumption in a TBox can be reduced to subsumption in the empty TBox:

... normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability:

... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.

Unsatisfiability can be reduced to subsumption:

... C is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$.
Subsumption in a TBox can be reduced to subsumption in the empty TBox:
... normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability:
... \(C \sqsubseteq D \) iff \(C \cap \neg D \) is unsatisfiable.

Unsatisfiability can be reduced to subsumption:
... \(C \) is unsatisfiable iff \(C \sqsubseteq (C \cap \neg C) \).
Subsumption in a TBox can be reduced to subsumption in the empty TBox:
\[\text{normalize and unfold TBox and concept descriptions.} \]

Subsumption in the empty TBox can be reduced to unsatisfiability:
\[C \sqsubseteq D \text{ iff } C \cap \neg D \text{ is unsatisfiable.} \]

Unsatisfiability can be reduced to subsumption:
\[C \text{ is unsatisfiable iff } C \sqsubseteq (C \cap \neg C). \]
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example

```
Living_Entity
  /   \
Female Human Male
  |     |
Woman Human Man
  |     |
Parent
  |
Mother
  |    |
Mother-wo-d Mother-w-m-c Mother-wo-c
  |
Father
  |
Grandmother
```
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!
Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:

- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example

Living_Entity
 ┌── Human
 │ ├── Male
 │ │ └── Man
 │ └── Female
 │ └── Woman
 └── Parent
 └── Parent
 ├── Mother
 │ └── Mother
 └── Father
 └── Father
 └── Grandmother
 └── Grandmother
 └── Mother-wo-d
 └── Mother-wo-d
 └── Mother-w-m-c
 └── Mother-w-m-c
General ABox Reasoning Services
ABox satisfiability

Satisfiability of an ABox

Given an ABox \(\mathcal{A} \), does this set of assertions have a model?

- Notice: ABoxes representing the real world, should always have a model.

Example

The ABox

\[X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r \]

is not satisfiable.
Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.

Example

The ABox

$$X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r$$

is not satisfiable.
ABox satisfiability

Satisfiability of an ABox

Given an ABox \mathcal{A}, does this set of assertions have a model?

- **Notice**: ABoxes representing the real world, should always have a model.

Example

The ABox

$$X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r$$

is not satisfiable.
ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

```
MARGRET: Woman
(DIANA,MARGRET): has-child,
```

then the ABox becomes unsatisfiable in the given TBox.

Problem is reducible to satisfiability of an ABox:

... normalize terminology, then unfold all concept and role descriptions in the ABox
ABox satisfiability in a TBox

Given an ABox \mathcal{A} and a TBox \mathcal{T}, is \mathcal{A} consistent with the terminology introduced in \mathcal{T}, i.e., is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example

If we extend our example with

MARGRET: Woman
(DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Problem is reducible to satisfiability of an ABox:

... normalize terminology, then unfold all concept and role descriptions in the ABox
Instance relations

Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^I \in C^I$ true in all models I of $T \cup A$?
- Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $a : C$ holds in $A \iff A \cup \{a : \neg C\}$ is unsatisfiable
Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

$$a : C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Which additional ABox formulae of the form $a : C$ follow logically from a given ABox and TBox?

- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:

- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

$$a : C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Example

ELIZABETH: Mother-with-many-children?
Examples

Example

- **ELIZABETH:** Mother-with-many-children?
 yes

- **WILLIAM:** ¬ Female?

January 17, 2013 Nebel, Wölf, Hué – KRR
Example

- ELIZABETH: Mother-with-many-children? yes
- WILLIAM: ¬ Female?
Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes

- ELIZABETH: Mother-without-daughter?
Example

- **ELIZABETH:** Mother-with-many-children?
 yes

- **WILLIAM:** ¬ Female?
 yes

- **ELIZABETH:** Mother-without-daughter?

- **ELIZABETH:** Grandmother?
 no (only male, but not necessarily human!)
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes

- ELIZABETH: Mother-without-daughter?
 no (no CWA!)

- ELIZABETH: Grandmother?
Examples

Example

- ELIZABETH: Mother-with-many-children?
 yes
- WILLIAM: ¬ Female?
 yes
- ELIZABETH: Mother-without-daughter?
 no (no CWA!)
- ELIZABETH: Grandmother?
Example

- ELIZABETH: Mother-with-many-children?
 yes

- WILLIAM: ¬ Female?
 yes

- ELIZABETH: Mother-without-daughter?
 no (no CWA!)

- ELIZABETH: Grandmother?
 no (only male, but not necessarily human!)
Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:

- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Given a concept description C, determine the set of all (specified) instances of the concept description.

Example
We ask for all instances of the concept Male.
For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- Reduction: Compute the set of instances by testing the instance relation for each object!
- Implementation: Realization can be used to speed this up
Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example

We ask for all instances of the concept Male.
For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object!
- **Implementation**: Realization can be used to speed this up
Summary and Outlook
Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?