1 Motivation

Motivation: Reasoning services

What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- However, we take a different route: we will try to simplify these problems and then we specify direct inference methods.
2 Basic Reasoning Services

- Satisfiability without a TBox
- Satisfiability in TBox

3 Eliminating the TBox

- Normalization
- Unfolding

Satisfiability of concept descriptions in a TBox

Given a TBox \mathcal{T} and a concept description C, is C satisfiable?

Test:
- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Translated into FOL: Is the formula $\exists x \, C(x)$ satisfiable?

Example

$\text{Mother-without-daughter} \sqinter \forall \text{has-child} \sqinter \text{Female}$ is unsatisfiable, given our previously specified family TBox.
Reduction: Getting rid of the TBox

We can **reduce** satisfiability problem of concept descriptions in a TBox to the satisfiability problem of concept descriptions in the empty TBox.

Idea:
- Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”.
- For a given TBox \(T \) and a given concept description \(C \), all defined concept symbols appearing in \(C \) can be **expanded** until \(C \) contains only undefined concept symbols.
- An expanded concept description is then satisfiable if and only if \(C \) is satisfiable in \(T \).
- **Problem:** What do we do with partial definitions (using \(\sqsubseteq \))?

Normalized terminologies

- A terminology is called **normalized** when it does not contain definitions of the form \(A \sqsubseteq C \).
- In order to **normalize** a terminology, replace
 \[
 A \sqsubseteq C
 \]
 by
 \[
 A = A^+ \sqcap C,
 \]
 where \(A^+ \) is a **fresh** concept symbol (not appearing elsewhere in \(T \)).
- If \(T \) is a terminology, the normalized terminology is denoted by \(\tilde{T} \).

Normalizing is reasonable

Theorem (Normalization invariance)

If \(I \) is a model of the terminology \(T \), then there exists a model \(I' \) of \(\tilde{T} \) such that for all concept symbols \(A \) occurring in \(T \), it holds \(A^I = A^I' \), and **vice versa**.

Proof.

\[\Rightarrow \]: Let \(I \) be a model of \(T \). This model should be **extended** to \(I' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in T \), i.e., we have \((A = A^+ \sqcap C) \in \tilde{T} \). Then set \(A^+ := A^\tilde{T}. \) \(I' \) obviously satisfies \(\tilde{T} \) and has the same interpretation for all symbols in \(T \).

\[\Leftarrow \]: Given a model \(I' \) of \(\tilde{T} \), its restriction to symbols of \(T \) is the interpretation we look for.
Properties of unfoldings (1): Existence

Theorem (Existence of unfolded terminology)
Each normalized terminology T can be unfolded, i.e., its unfolding \hat{T} exists.

Proof idea.
The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.

Properties of unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)
I is a model of a normalized terminology T if and only if it is a model of \hat{T}.

Proof sketch.
"\Rightarrow": Let I be a model of T. Then it is also a model of $U(T)$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \hat{T}.

"\Leftarrow": Let I be a model for $U(T)$. Clearly, this is also a model of T (with the same argument as above). This means that any model \hat{T} is also a model of T.

Generating models

- All concept and role names not occurring on the left hand side of definitions in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)
For each initial interpretation J of a normalized TBox, there exists a unique interpretation I extending J and satisfying T.

Proof idea.
Use \hat{T} and compute an interpretation for all defined symbols.

Unfolding of concept descriptions

- Similar to the unfolding of TBoxes, we can define the unfolding of a concept description.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)
An concept description C is satisfiable in a terminology T if and only if \hat{C} is satisfiable in an empty terminology.

Proof:
"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C} \models C$, it satisfies also C.

4 General TBox Reasoning Services

- Subsumption
- Subsumption vs. Satisfiability
- Classification

Subsumption in a TBox

Given a terminology T and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in T (symb. $C \sqsubseteq_T D$)?

Test:
- Is C interpreted as a subset of D in each model I of T, i.e. $C^I \subseteq D^I$?
- Is the formula $\forall x \left(C(x) \rightarrow D(x) \right)$ a logical consequence of the translation of T into FOL?

Example
Given our family TBox, it holds Grandmother \sqsubseteq_T Mother.

Subsumption (without a TBox)

Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox) (symb. $C \sqsubseteq D$)?

Test:
- Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
- Is the formula $\forall x \left(C(x) \rightarrow D(x) \right)$ logically valid?

Example
Clearly, Human \sqcap Female \sqsubseteq Human.

Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox:
 - ... normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability:
 - ... $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.
- Unsatisfiability can be reduced to subsumption:
 - ... C is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$.

Classification

Compute all subsumption relationships (and represent them using only a minimal number of relationships)!

Useful in order to:
- check the modeling
- use the precomputed relations later when subsumption queries have to be answered

Problem can be reduced to subsumption checking: then it is a generalized sorting problem!

Example

\[X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r \]

is not satisfiable.

5 General ABox Reasoning Services

- ABox Satisfiability
- Instances
- Realization and Retrieval

ABox satisfiability

Satisfiability of an ABox
Given an ABox \(A \), does this set of assertions have a model?

- Notice: ABoxes representing the real world, should always have a model.

Example

The ABox

\[X : (\forall r. \neg C), \quad Y : C, \quad (X, Y) : r \]

is not satisfiable.

ABox satisfiability in a TBox

Given an ABox \(A \) and a TBox \(T \), is \(A \) consistent with the terminology introduced in \(T \), i.e., is \(T \cup A \) satisfiable?

Example

If we extend our example with

\[\text{MARGRET: Woman} \]
\[\text{(DIANA,MARGRET): has-child} \]

then the ABox becomes unsatisfiable in the given TBox.

- Problem is reducible to satisfiability of an ABox:
 - ... normalize terminology, then unfold all concept and role descriptions in the ABox
Instance relations

Which additional ABox formulae of the form $a: C$ follow logically from a given ABox and TBox?
- Is $a^T \in C^T$ true in all models I of $T \cup A$?
- Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox: use normalization and unfolding.
- Instance relations in an ABox can be reduced to ABox unsatisfiability:
 $$a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable}$$

Realization

For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to classification
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.

Examples

Example
- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: Female?
 - yes
- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
- ELIZABETH: Grandmother?
 - no (only male, but not necessarily human!)

Retrieval

Given a concept description C, determine the set of all (specified) instances of the concept description.

Example
We ask for all instances of the concept Male.
For our TBOX/ABox we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- Reduction: Compute the set of instances by testing the instance relation for each object!
- Implementation: Realization can be used to speed this up
6 Summary and Outlook

Reasoning services – summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval

Outlook

- How to determine subsumption between two concept descriptions (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?