Principles of Knowledge Representation and Reasoning Dynamics of belief

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Stefan Wölfl, and Julien Hué

Winter Semester 2012/2013

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Bibliography

Introduction

Propositional logic flaws:

- The world is not always static.
- The knowledge about the world is sometimes uncertain or imprecise

Therefore:

- Need the possibility to incorporate new (possibly contradictory) beliefs;
- Need to take into account change in the world;

UNI FREIBURG

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of Justified True Belief

Agrippa's trilemma - A problem with the justification:

- Either the justification stops to some unjustified belief;
- 2 The justification is infinite (Socrates' clouds);
- The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Introduction

> Link between revision and update

Belief revision

Several sources belief merging

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of Justified True Belief

Agrippa's trilemma - A problem with the justification:

- Either the justification stops to some unjustified belief;
- 2 The justification is infinite (Socrates' clouds);
- The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of Justified True Belief

Agrippa's trilemma - A problem with the justification:

- Either the justification stops to some unjustified belief;
- 2 The justification is infinite (Socrates' clouds);
- The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of Justified True Belief

Agrippa's trilemma - A problem with the justification:

- Either the justification stops to some unjustified belief;
- 2 The justification is infinite (Socrates' clouds);
- 3 The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Three solutions:

Foundationalism Allow for unjustified beliefs → Formalization issues → Humans don't keep track of sources → TMS System "Infinitism" Allow for infinite justification → Does it really make sense? Coherentism Allow for circular justifications → What is a solid belief? → Belief revision/update

In any cases, information is extremely important and should not be discarded carelessly.

UNI FREIBURG

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Three solutions:

- Foundationalism Allow for unjustified beliefs

 → Formalization issues
 → Humans don't keep track of sources
 → TMS System

 "Infinitism" Allow for infinite justification

 → Does it really make sense?

 Coherentism Allow for circular justifications

 → What is a solid belief?
 → Belief revision/update
 - In any cases, information is extremely important and should not be discarded carelessly.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Three solutions:

Foundational	ism Allow for unjustified beliefs
	ightarrow Formalization issues
	\rightarrow Humans don't keep track of sources
	\rightarrow TMS System
"Infinitism"	Allow for infinite justification
	ightarrow Does it really make sense?
Coherentism	Allow for circular justifications
	ightarrow What is a solid belief?
	\rightarrow Belief revision/update

In any cases, information is extremely important and should not be discarded carelessly.

UNI FREIBURG

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Three solutions:

Foundationali	sm Allow for unjustified beliefs
	\rightarrow Formalization issues
	\rightarrow TMS System
"Infinitism"	Allow for infinite justification \rightarrow Does it really make sense?
Coherentism	Allow for circular justifications \rightarrow What is a solid belief? \rightarrow Belief revision/update

In any cases, information is extremely important and should not be discarded carelessly.

UNI FREIBURG

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking)
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency

(if all preferences states x < y, then so must the results).

Link between revision and update

Belief revision

Several sources belief merging

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality

(complete and deterministic ranking);

- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency

(if all preferences states x < y, then so must the results).

Link between revision and update

Belief revision

Several sources belief merging

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking);
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency
 - (if all preferences states x < y, then so must the results).

Link between revision and update

Belief revision

Several sources belief merging

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking);
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency (if all preferences states x < y, then so must the results).</p>

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking);
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency

(if all preferences states x < y, then so must the results).

Link between revision and update

Belief revision

Several sources belief merging

Revision or update

- We have a theory about the world, and the new information is meant to correct our theory
- belief revision: change your belief state minimally in order to accommodate the new information
 - We have a (supposedly) correct theory about the current state of the world, and the new information is meant to record a change in the world
- belief update: incorporate the change by assuming that the world has changed minimally

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Revision or update

- We have a theory about the world, and the new information is meant to correct our theory
- belief revision: change your belief state minimally in order to accommodate the new information
- We have a (supposedly) correct theory about the current state of the world, and the new information is meant to record a change in the world
- belief update: incorporate the change by assuming that the world has changed minimally

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the **door is now closed**.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that **the window is open**.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the **door is now closed**.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that **the window is open**.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the **door is now closed**.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that **the window is open**.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the **door** is now closed.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that **the window is open**.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the door is now closed.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that **the window is open**.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
 - Assume we know that the door is open or the window is open.
 - Assume we learn that the world has changed and the **door** is now closed.
 - In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that the window is open.

Introduction

Link between revision and update

Belief revision

Several sources belief merging

What are the criteria for definition of a belief revision operation?

Gärdenfors and Rott - belief revision (1995):

- How are beliefs represented?
- 2 What is the relation between beliefs represented explicitly in the belief base and beliefs which can be derived from them?
- In the face of a contradiction, how to deal with both new and old information?

Introduction

Link between revision and update

Belief revision

Several sources belief merging

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., K = Cn(K) with Cn the consequence operator
- L: logical language (propositional logic)
- Th_L: set of deductively closed theories (or belief sets) over L

Belief change operations

 $\begin{array}{ll} \text{Monotonic addition:} & + \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \\ & \quad \mathcal{K} + \psi = \text{Cn}(\mathcal{K} \cup \{\psi\}) \\ & \quad \text{Revision:} & \quad \dot{+} \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \end{array}$

Introduction

BUR

Link between revision and update

Belief revision

Several sources belief merging

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., K = Cn(K) with Cn the consequence operator
- L: logical language (propositional logic)
- Th_{\mathcal{L}}: set of deductively closed theories (or belief sets) over \mathcal{L}

Belief change operations

 $\begin{array}{ll} \text{Monotonic addition:} & + \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \\ & K + \psi = \text{Cn}(K \cup \{\psi\}) \\ & \text{Revision:} & \dotplus \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \end{array}$

Introduction

2

Link between revision and update

Belief revision

Several sources belief merging

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., K = Cn(K) with Cn the consequence operator
- L: logical language (propositional logic)
- Th_L: set of deductively closed theories (or belief sets) over L

Belief change operations

 $\begin{array}{ll} \text{Monotonic addition:} & + \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \\ & \mathcal{K} + \psi = \text{Cn}(\mathcal{K} \cup \{\psi\}) \\ & \text{Revision:} & \dot{+} \colon \text{Th}_{\mathcal{L}} \times \mathcal{L} \to \text{Th}_{\mathcal{L}} \end{array}$

Introduction

Link between revision and update

Belief revision

2

Several sources belief merging

Semantic or syntactic

Consider $K = \{a, b\}$ and $K' = \{a \land b\}$. What is happening to $K \dotplus \{\neg a\}$?

Semantic

No difference between K and K'

Syntactic

- $X = \{b\}$ is the only maximal subset of K s.t. $X \cup \{\neg a\}$ is consistent.
- $X' = \emptyset$ is the only maximal subset of K' s.t. $X' \cup \{\neg a\}$ is consistent.

Introduction

DRG

2

Link between revision and update

Belief revision

Several sources belief merging

Introduction

Belief revision

Formal properties Standard revision operations Semantic

approaches

Several sources belief merging

Bibliography

Belief revision

What is a good revision operator?

UNI FREIBURG

Introduction

Belief revision

Formal properties

Standard revisi operations Semantic

approaches

Several sources belief

Diblicements

- Consistency: a revision has to produce a consistent set of beliefs;
- Minimality of change: a revision has to change the fewest possible beliefs;
- Priority to the new information: the 'new' information is considered more important than the 'old' one.

What is a good revision operator?

- Consistency: a revision has to produce a consistent set of beliefs;
- Minimality of change: a revision has to change the fewest possible beliefs;
- Priority to the new information: the 'new' information is considered more important than the 'old' one.

Introduction

Belief revision

BURG

Formal properties

Standard revision operations

approaches

Several sources belief

D.

What is a good revision operator?

- Consistency: a revision has to produce a consistent set of beliefs;
- Minimality of change: a revision has to change the fewest possible beliefs;
- Priority to the new information: the 'new' information is considered more important than the 'old' one.

Introduction

Belief revision

BURG

Formal properties

Standard revision operations

approaches

Several sources ·

belief merging

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

- $(\dot{+}1) \quad \mathbf{K} \dot{+} \boldsymbol{\varphi} \in \mathsf{Th}_{\mathcal{L}};$
- $(+2) \quad \varphi \in K \dotplus \varphi;$
- $(\dot{+}3) K \dot{+} \varphi \subseteq K + \varphi;$
- $(\dot{+}4)$ If $\neg \phi \not\in K$, then $K + \phi \subseteq K \dotplus \phi$;
- (+5) $K + \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;
- (+6) If $\vdash \phi \leftrightarrow \psi$ then $K + \phi = K + \psi$;

 $\begin{array}{ll} (\dot{+}7) & K \dotplus (\varphi \land \psi) \subseteq (K \dotplus \varphi) + \psi; \\ (\dot{+}8) & \text{If } \neg \psi \notin K \dotplus \varphi, \\ & \text{then } (K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi). \end{array}$

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

- $(\dot{+}1) \ K \dot{+} \varphi \in \mathsf{Th}_{\mathcal{L}};$
- $(\dot{+}2) \ \varphi \in \mathbf{K} \dot{+} \varphi;$
- $(\dot{+}3) \quad K \dot{+} \varphi \subseteq K + \varphi;$
- $(\dot{+}4)$ If $\neg \phi \not\in K$, then $K + \phi \subseteq K \dotplus \phi$;
- (+5) $K + \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;
- $(\dot{+}6)$ If $\vdash \phi \leftrightarrow \psi$ then $K \dotplus \phi = K \dotplus \psi$;

 $\begin{array}{ll} (\dot{+}7) & K \dotplus (\varphi \land \psi) \subseteq (K \dotplus \varphi) + \psi; \\ (\dot{+}8) & \text{If } \neg \psi \notin K \dotplus \varphi, \\ & \text{then } (K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi). \end{array}$

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources -

merging

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

- $(\dot{+}1) \ \textit{K} \dotplus \phi \in \mathsf{Th}_{\mathcal{L}};$
- $(\dot{+}2) \ \varphi \in \mathbf{K} \dot{+} \varphi;$
- $(\dot{+}3)$ $K \dot{+} \varphi \subseteq K + \varphi;$
- $(\dot{+}4)$ If $\neg \varphi \notin K$, then $K + \varphi \subseteq K + \varphi$;
- (+5) $K + \varphi = Cn(\bot)$ only if $\vdash \neg \varphi$;
- (+6) If $\vdash \phi \leftrightarrow \psi$ then $K + \phi = K + \psi$;

 $\begin{array}{ll} (\dot{+}7) & K \dotplus (\varphi \land \psi) \subseteq (K \dotplus \varphi) + \psi; \\ (\dot{+}8) & \text{If } \neg \psi \notin K \dotplus \varphi, \\ & \text{then } (K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi). \end{array}$

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging
Characterization for belief sets' revision

AGM postulates:

- $(\dot{+}1) \ \mathbf{K} \dot{+} \mathbf{\varphi} \in \mathbf{Th}_{\mathcal{L}};$
- $(\dot{+}2) \quad \varphi \in \mathcal{K} \dotplus \varphi;$
- $(\dot{+}3)$ $K \dot{+} \varphi \subseteq K + \varphi;$
- $(\dot{+}4)$ If $\neg \phi \notin K$, then $K + \phi \subseteq K \dotplus \phi$;
- (+5) $K + \varphi = Cn(\perp)$ only if $\vdash \neg \varphi$;
- (+6) If $\vdash \varphi \leftrightarrow \psi$ then $K \dotplus \varphi = K \dotplus \psi$;

 $\begin{array}{ll} (\dot{+}7) & K \dotplus (\varphi \land \psi) \subseteq (K \dotplus \varphi) + \psi; \\ (\dot{+}8) & \text{If } \neg \psi \notin K \dotplus \varphi, \\ & \text{then } (K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi) \end{array}$

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

Characterization for belief sets' revision

AGM postulates:

(+1) $K + \varphi \in Th_{\mathcal{C}};$ $(+2) \quad \varphi \in K + \varphi;$ $(\dot{+}3)$ $K \dot{+} \varphi \subset K + \varphi;$ $(\dot{+}4)$ If $\neg \phi \notin K$, then $K + \phi \subseteq K + \phi$; (+5) $K + \varphi = Cn(\perp)$ only if $\vdash \neg \varphi$;

Introduction

Belief revision

Formal properties

Standard revision operations

approaches

Several sources belief merging

Characterization for belief sets' revision

AGM postulates:

(+1) $K + \varphi \in \operatorname{Th}_{\mathcal{L}}$; (+2) $\varphi \in K + \varphi$; (+3) $K + \varphi \subseteq K + \varphi$; (+4) If $\neg \varphi \notin K$, then $K + \varphi \subseteq K + \varphi$; (+5) $K + \varphi = \operatorname{Cn}(\bot)$ only if $\vdash \neg \varphi$; (+6) If $\vdash \varphi \leftrightarrow \psi$ then $K + \varphi = K + \psi$; (+7) $K + (\varphi \land \psi) \subseteq (K + \varphi) + \psi$; (+8) If $\neg \psi \notin K + \varphi$.

then $(K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi)$.

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

Characterization for belief sets' revision

AGM postulates:

(+1) $K + \varphi \in Th_{\mathcal{C}};$ $(+2) \quad \varphi \in K + \varphi;$ (+3) $K + \varphi \subset K + \varphi;$ $(\dot{+}4)$ If $\neg \phi \notin K$, then $K + \phi \subset K + \phi$; (+5) $K + \varphi = Cn(\perp)$ only if $\vdash \neg \varphi$; (+6) If $\vdash \phi \leftrightarrow \psi$ then $K + \phi = K + \psi$; (+7) $K + (\phi \land \psi) \subset (K + \phi) + \psi;$

Introduction

Belief revision

Formal properties

Standard revision operations

approaches

Several sources belief merging

Characterization for belief sets' revision

AGM postulates:

(+1) $K + \varphi \in Th_{\mathcal{C}};$ $(+2) \quad \varphi \in K + \varphi;$ (+3) $K + \varphi \subset K + \varphi;$ $(\dot{+}4)$ If $\neg \phi \notin K$, then $K + \phi \subset K + \phi$; (+5) $K + \varphi = Cn(\perp)$ only if $\vdash \neg \varphi$; (+6) If $\vdash \phi \leftrightarrow \psi$ then $K + \phi = K + \psi$; (+7) $K + (\phi \land \psi) \subset (K + \phi) + \psi;$ (+8) If $\neg \psi \notin K \neq \phi$, then $(K \dotplus \varphi) + \psi \subseteq K \dotplus (\varphi \land \psi)$.

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

Revision can be defined in terms of two suboperations.

- \blacksquare + (expansion) denotes the simple union of beliefs;
- (contraction) denotes the removal of information contradicting the input.

The Levi identity

$$\mathcal{K} \dotplus \varphi \equiv Cn[(\mathcal{K} - \neg \varphi) + \varphi]$$

Example

$$K = \{a, a \to b\} \qquad \qquad \varphi\{\neg b\}?$$

$$K - \neg \varphi = \{a\} \text{ or } \{a \rightarrow b\}$$

$$K \dotplus
eg \phi = \{a,
eg b\}$$
 or $\{a
ightarrow b,
eg b\}$

UNI FREIBURG

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Revision can be defined in terms of two suboperations.

- \blacksquare + (expansion) denotes the simple union of beliefs;
- (contraction) denotes the removal of information contradicting the input.

The Levi identity

$$\mathcal{K} \dotplus \phi \equiv Cn[(\mathcal{K} - \neg \phi) + \phi]$$

Example

$$K = \{a, a \to b\} \qquad \qquad \varphi\{\neg b\}?$$

$$K - \neg \varphi = \{a\} \text{ or } \{a \rightarrow b\}$$

$$K \dotplus \neg \varphi = \{a, \neg b\} \text{ or } \{a \rightarrow b, \neg b\}$$

UNI FREIBURG

Introduction

Belief revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

Definition

We denote by $K \perp \varphi$ the set of maximal (wrt set-theoretic inclusion) subsets *J* of *K* such that $J \not\vdash \varphi$.

Definition

Full-meet contraction is defined by $K - \varphi = \bigcap (K \perp \varphi)$.

Is full-meet contraction reasonable?

- ▶ No! It is far too cautious.
- It can nevertheless be used as a lower bound to any reasonable operator.

 $K \dotplus \varphi = \bigcap (K \bot \varphi) + \varphi$ is referred to as the full-meet revision.

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Definition

We denote by $K \perp \varphi$ the set of maximal (wrt set-theoretic inclusion) subsets *J* of *K* such that $J \not\vdash \varphi$.

Definition

Full-meet contraction is defined by $K - \varphi = \bigcap (K \perp \varphi)$.

Is full-meet contraction reasonable?

- No! It is far too cautious.
- It can nevertheless be used as a lower bound to any reasonable operator.

 $K \dotplus \varphi = \bigcap (K \bot \varphi) + \varphi$ is referred to as the full-meet revision.

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ an $K + \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K + \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \perp \varphi = \{K\}$ and thus $K \dot{+} \varphi = K + \varphi$.

 $\begin{array}{l} (\dot{+}5) \quad K \dot{+} \varphi = \mathsf{Cn} \big(\cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \big). \text{ But } \forall \alpha, \alpha \cup \varphi \not\vdash \bot, \text{ therefore} \\ \cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$

 $\begin{array}{l} (+6) \ \text{Lets assume that } \alpha \in K \bot \varphi \text{ but } \alpha \notin K \bot \Psi. \text{ Two cases: (1)} \\ \alpha \cup \Psi \vdash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \alpha \cup \varphi \vdash \bot \text{ which is not possible. (2) } \exists \beta \text{ s.t.} \\ \alpha \subsetneq \beta \text{ and } \beta \cup \Psi \not\vdash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \beta \cup \varphi \not\vdash \bot \text{ which is not possible.} \end{array}$

(+7) and (+8) Left as exercises..

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ and $K \dotplus \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K \dotplus \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dot{+} \varphi = K + \varphi$.

 $\begin{array}{l} (\dot{+}5) \quad K \dot{+} \varphi = \operatorname{Cn} \big(\cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \big). \text{ But } \forall \alpha, \alpha \cup \varphi \not\vdash \bot, \text{ therefore} \\ \cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$

 $\begin{array}{l} (+6) \ \ \, \text{Lets assume that } \alpha \in K \bot \varphi \ \, \text{but } \alpha \not\in K \bot \Psi. \ \, \text{Two cases: (1)} \\ \alpha \cup \Psi \vdash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \bot \ \, \text{which is not possible. (2) } \exists \beta \ \, \text{s.t.} \\ \alpha \subsetneq \beta \ \, \text{and } \beta \cup \Psi \not\vdash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \beta \cup \varphi \not\vdash \bot \ \, \text{which is not possible.} \end{array}$

(+7) and (+8) Left as exercises..

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ and $K \dotplus \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K \dotplus \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dotplus \varphi = K + \varphi$.

 $\begin{array}{l} (\dot{+}5) \quad & K \dot{+} \varphi = \operatorname{Cn} \big(\cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \big). \text{ But } \forall \alpha, \alpha \cup \varphi \not\vdash \bot, \text{ therefore} \\ & \cap_{\alpha \in (K \perp \varphi)} \alpha \cup \varphi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$

(+6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \bot$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvDash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \beta \cup \varphi \nvDash \bot$ which is not possible.

(+7) and (+8) Left as exercises..

Introduction

Belief revision

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ and $K \dotplus \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K \dotplus \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dotplus \varphi = K + \varphi$.

$$\begin{array}{l} (\dot{+}5) \quad {\cal K} \dotplus \phi = {\sf Cn} \big(\cap_{\alpha \in ({\cal K} \perp \phi)} \alpha \cup \phi \big). \text{ But } \forall \alpha, \alpha \cup \phi \not\vdash \bot, \text{ therefore} \\ \cap_{\alpha \in ({\cal K} \perp \phi)} \alpha \cup \phi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$$

(+6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \bot$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvDash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \beta \cup \varphi \nvDash \bot$ which is not possible.

(+7) and (+8) Left as exercises..

Introduction

Belief revision

BURG

Z

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ and $K \dotplus \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K \dotplus \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dotplus \varphi = K + \varphi$.

$$\begin{array}{l} (\dot{+}5) \quad {\cal K} \dot{+} \varphi = {\rm Cn} \big(\cap_{\alpha \in ({\cal K} \perp \varphi)} \alpha \cup \varphi \big). \text{ But } \forall \alpha, \alpha \cup \varphi \not\vdash \bot, \text{ therefore} \\ \cap_{\alpha \in ({\cal K} \perp \varphi)} \alpha \cup \varphi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$$

(+6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \bot$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvDash \bot \xrightarrow{(\varphi \leftrightarrow \Psi)} \beta \cup \varphi \nvDash \bot$ which is not possible.

(+7) and (+8) Left as exercises..

Introduction

Belief revision

BURG

ZW

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(\dot{+}1)$ and $(\dot{+}2)$ are true by construction

(+3) Two cases: (1) If $K + \varphi$ is consistent then $K - \varphi = K$ and $K \dotplus \varphi = K + \varphi$. (2) If $K + \varphi$ is inconsistent then $K + \varphi = Cn(\bot)$ and $K \dotplus \varphi \subseteq K + \varphi$.

 $(\dot{+}4)$ Because $K \not\vdash \neg \varphi$ then $K \bot \varphi = \{K\}$ and thus $K \dotplus \varphi = K + \varphi$.

$$\begin{array}{l} (\dot{+}5) \quad {\cal K} \dotplus \phi = {\sf Cn} \big(\cap_{\alpha \in ({\cal K} \perp \phi)} \alpha \cup \phi \big). \text{ But } \forall \alpha, \alpha \cup \phi \not\vdash \bot, \text{ therefore} \\ \cap_{\alpha \in ({\cal K} \perp \phi)} \alpha \cup \phi \not\vdash \bot \text{ (as PL is monotonic).} \end{array}$$

(+6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \alpha \cup \varphi \vdash \bot$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvDash \bot \stackrel{(\varphi \leftrightarrow \Psi)}{\longrightarrow} \beta \cup \varphi \nvDash \bot$ which is not possible.

(+7) and (+8) Left as exercises...

Belief revision

BURG

ZW

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

On the other side, one can ask for the principle of minimality to be strictly respected.

Definition

A selection function for *K* is a function γ such that for all sentences φ :

- If K⊥φ is non-empty, then γ(K⊥φ) is a non-empty subset of K⊥φ, and
- 2 If $K \perp \varphi$ is empty, then $\gamma(K \perp \varphi) = \{K\}$.

Definition

Maxichoice contraction is defined as $K - \varphi = \gamma(K \perp \varphi)$ where γ is a selection function.

Belief

revision

Formal properties

Standard revision operations

Semantic approaches

Several sources belief merging

Maxi-choice can be too bold: there is sometimes no reason to trust one piece more than one another.

Definition

A partial-meet revision operation is an operation defined as:

$$K \dotplus \varphi = \bigcap \gamma(K \bot \varphi) + \varphi$$

Seems to be a good compromise between full-meet and maxi-choice

Introduction

Belief revision

DRG

Formal propertie

Standard revision operations

Semantic approaches

Several sources belief merging

Distance-based revision operations

Definition

The Dalal revision operation, denoted by $\dot{+}_D$, is defined as:

 $K \dot{+}_D \varphi = \min(extMod(\varphi), \leq_K)$

where d_H is the Hamming Distance and $\alpha \leq_K \beta$ iff $\exists \omega \in extMod(K), \forall \omega' \in extMod(K), d_H(\alpha, \omega) \leq d_H(\beta, \omega')$

Example

	а	b	С
\mathcal{I}_{φ_1}	0	0	0
\mathcal{I}_{φ_2}	0	0	1
1.2	0	1	0
\mathcal{I}_{K_1}	0	1	1
	1	0	0
\mathcal{I}_{K_2}	1	0	1
-	1	1	0
\mathcal{I}_{K_3}	1	1	1

Let
$$\varphi = \{\neg a, \neg b\}$$
 and $K = \{(a \lor b) \land c\}$:

$$\begin{array}{ll} d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_1}) = 2 & d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_1}) = 1 \\ d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_2}) = 2 & d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_2}) = 1 \\ d(\mathcal{I}_{\varphi_1}, \mathcal{I}_{K_3}) = 3 & d(\mathcal{I}_{\varphi_2}, \mathcal{I}_{K_3}) = 2 \end{array}$$

Ĩ

BURG

muoduction

Belief revision

Formal properties Standard revision operations

Semantic approaches

Several sources belief merging

Some complexity result

Formula-based approaches

The question does Ψ belongs to $K \dotplus \varphi$ (if \dotplus is a full-meet revision operator) is $\Delta_2^{\rho} - (\Sigma_1^{\rho} \cup \Pi_1^{\rho})$ provided that NP \neq co-NP.

proof

If $\dot{+}$ is a full-meet revision, $\Psi \in Cn(K) \dot{+} \varphi$ can be solved by the following algorithm: if $K \not\models \neg \Psi$, then $K \cup \Psi \models \varphi$ else $\Psi \models \varphi \longrightarrow$ Membership in Δ_2^p .

Furthermore, SAT can be polynomially transformed to full-meet revision by solving $\Psi \in Cn(\Psi) \dotplus \top$ and UNSAT can be polynomially transform to full-meet revision by solving $\bot \in Cn(\emptyset) \dotplus \Psi$. Hence, assuming that full-meet revision belongs to both NP and co-NP would lead to NP = co-NP.

Introduction

Belief revision

> Formal properties Standard revision operations

Semantic approaches

Several sources belief merging Bibliograph

Some complexity result

Formula-based approaches

The question does Ψ belongs to $K \dotplus \varphi$ (if \dotplus is a full-meet revision operator) is $\Delta_2^{\rho} - (\Sigma_1^{\rho} \cup \Pi_1^{\rho})$ provided that NP \neq co-NP.

proof

If $\dot{+}$ is a full-meet revision, $\Psi \in Cn(K) \dot{+} \varphi$ can be solved by the following algorithm: if $K \not\models \neg \Psi$, then $K \cup \Psi \models \varphi$ else $\Psi \models \varphi \longrightarrow$ Membership in Δ_2^p . Furthermore, SAT can be polynomially transformed to full-meet revision by solving $\Psi \in Cn(\Psi) \dot{+} \top$ and UNSAT can be polynomially transform to full-meet revision by solving $\bot \in Cn(\emptyset) \dot{+} \Psi$. Hence, assuming that full-meet revision belongs to both NP and co-NP would lead to NP = co-NP. **D**^RC

Belief revision

Formal properties Standard revision operations

Semantic approaches

Several sources belief merging Bibliograph

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Bibliography

Several sources - belief merging

Principles of belief merging

There is not only one source for the information:

- Voting procedure;
- Expert system;
- Distributed databases;
- multisource knowledge acquisition.

Constructing a belief base which represents the several sources and which:

- solves the contradiction;
- reduces the redundancies;
- is consistent.

Introduction

Belief revision

DRG

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Principles of belief merging

There is not only one source for the information:

- Voting procedure;
- Expert system;
- Distributed databases;
- multisource knowledge acquisition.

Constructing a belief base which represents the several sources and which:

- solves the contradiction;
- reduces the redundancies;
- is consistent.

Introduction

Belief revision

DRG

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Merging in the general case

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Bibliography

 $E = \{K_1, K_2, \dots, K_n\}$ Each K_i is consistent

Merging in the general case

Belief revision

Several sources belief merging

Merging in the general case

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Formal framework

General assumption:

- K_1, \ldots, K_n are belief bases;
- $E = \{K_1, \dots, K_n\}$ is a multi-set of belief bases and is called a belief profile;
- *IC* is a propositional formula standing for constraints;
- stands for multi-set union.

Operation

Belief merging operation: Δ : $\mathcal{L}^n \times \mathcal{L} \to \mathcal{L}$ Sometimes also called fusion operation. UNI FREIBURG

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

(KP0) $\Delta_{IC}(E) \models IC$.

Belief revision

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic merging

Introduction

Belief revision

BURG

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

$\Delta_{IC}(E) \models IC.$	25
If <i>IC</i> is consistent, then $\Delta_{IC}(E)$ is consistent.	Inti
If $\bigwedge E \land IC$ is consistent, then $\Delta_{IC}(E) = \bigwedge E \land IC$.	Be rev
If $E_1 \equiv E_2$ and $IC_1 \equiv IC_2$, then	Se
$\Delta_{IC_1}(E_1) \equiv \Delta_{IC_2}(E_2).$	sou
If $K_1 \models IC$ and $K_2 \models IC$, then	Pos
$\Delta_{IC}(K_1 \sqcup K_2) \land K_1 \not\models \bot$ implies	asr Dis
$\Delta_{IC}(K_1 \sqcup K_2) \land K_2 \not\models \bot.$	Syr
$\Delta_{IC}(E_1) \wedge \Delta_{IC}(E_2) \models \Delta_{IC}(E_1 \sqcup E_2).$	Bib
If $\Delta_{IC}(E_1) \wedge \Delta_{IC}(E_2)$ is consistent, then	
$\Delta_{IC}(E_1 \sqcup E_2) \models \Delta_{IC}(E_1) \land \Delta_{IC}(E_2).$	
$\Delta_{IC_1}(E) \wedge IC_2 \models \Delta_{IC_1 \wedge IC_2}(E).$	
If $\Delta_{IC_1}(E) \wedge IC_2$ is consistent, then	
$\Delta_{IC_1 \wedge IC_2}(E) \models \Delta_{IC_1}(E) \wedge IC_2.$	
	$\begin{split} &\Delta_{IC}(E)\models IC.\\ &\text{If }IC \text{ is consistent, then }\Delta_{IC}(E) \text{ is consistent.}\\ &\text{If }A \in \land IC \text{ is consistent, then }\Delta_{IC}(E)=\land E\land IC.\\ &\text{If }E_1\equiv E_2 \text{ and }IC_1\equiv IC_2, \text{ then }\\ &\Delta_{IC_1}(E_1)\equiv \Delta_{IC_2}(E_2).\\ &\text{If }K_1\models IC \text{ and }K_2\models IC, \text{ then }\\ &\Delta_{IC}(K_1\sqcup K_2)\land K_1\not\models \bot \text{ implies }\\ &\Delta_{IC}(K_1\sqcup K_2)\land K_2\not\models \bot.\\ &\Delta_{IC}(E_1)\land \Delta_{IC}(E_2)\models \Delta_{IC}(E_1\sqcup E_2).\\ &\text{If }\Delta_{IC}(E_1)\land \Delta_{IC}(E_2) \text{ is consistent, then }\\ &\Delta_{IC}(E_1\sqcup E_2)\models \Delta_{IC}(E_1)\land \Delta_{IC}(E_2).\\ &\text{If }\Delta_{IC}(E)\land IC_2\models \Delta_{IC_1\land IC_2}(E).\\ &\text{If }\Delta_{IC_1}(E)\land IC_2 \text{ is consistent, then }\\ &\Delta_{IC_1\land IC_2}(E)\models \Delta_{IC_1}(E)\land IC_2. \end{split}$

Belief revision

BURG

╤ᇳ

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Arbitration or majority operations

Arbitration (Arb)

$$\left. \begin{array}{c} \Delta_{IC_{1}}(K_{1}) \leftrightarrow \Delta_{IC_{2}}(K_{2}) \\ \Delta_{IC_{1} \leftrightarrow \neg IC_{2}}(K_{1} \sqcup K_{2}) \leftrightarrow (IC_{1} \leftrightarrow \neg IC_{2}) \\ IC_{1} \neg \vdash IC_{2} \\ IC_{2} \neg \vdash IC_{1} \end{array} \right\} \Rightarrow \Delta_{IC_{1} \lor IC_{2}}(K_{1} \sqcup K_{2}) \leftrightarrow \Delta_{IC_{1}}(K_{1})$$

Majority (Maj)

 $\exists n, \Delta_{IC}(K_1 \sqcup K_2^n) \vdash \Delta_{IC}(K_2)$

Independence from majority (IM)

 $\forall n, \Delta_{IC}(K_1 \sqcup K_2^n) \leftrightarrow \Delta_{IC}(K_1 \sqcup K_2)$

Q

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Link between (IM) the KP postulates

Theorem

There exists no merging operator satisfying all the KP postulates and (IM).

Proof

Consider $E_1 = \{K, \neg K\}$ and $E_2 = \{K\}$ be two belief profiles. (IM) leads to $\Delta_{\top}(E_1 \sqcup E_2) = \Delta_{\top}(E_1)$. (KP4) allows for $\Delta_{\top}(E_1) \not\vdash K$ and $\Delta_{\top}(E_1) \not\vdash \neg K$. From (KP2), we have that $\Delta_{\top}(E_2) \vdash K$ and thus $\Delta_{\top}(E_1) \land \Delta_{\top}(E_2)$ is consistent and from (KP6) we obtain $\Delta_{\top}(E_1 \sqcup E_2) \vdash \Delta_{\top}(E_1) \land \Delta_{\top}(E_2)$, i $\Delta_{\top}(E_1) \vdash \Delta_{\top}(E_1) \land K$ and thus $\Delta_{\top}(E_1) \vdash K$ contradicting (KP4).

Introduction

Belief revision

BUR

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic merging

Link between (IM) the KP postulates

Theorem

There exists no merging operator satisfying all the KP postulates and (IM).

Proof

Consider $E_1 = \{K, \neg K\}$ and $E_2 = \{K\}$ be two belief profiles. (IM) leads to $\Delta_{\top}(E_1 \sqcup E_2) = \Delta_{\top}(E_1)$. (KP4) allows for $\Delta_{\top}(E_1) \not\vdash K$ and $\Delta_{\top}(E_1) \not\vdash \neg K$. From (KP2), we have that $\Delta_{\top}(E_2) \vdash K$ and thus $\Delta_{\top}(E_1) \land \Delta_{\top}(E_2)$ is consistent and from (KP6) we obtain $\Delta_{\top}(E_1 \sqcup E_2) \vdash \Delta_{\top}(E_1) \land \Delta_{\top}(E_2)$, i.e., $\Delta_{\top}(E_1) \vdash \Delta_{\top}(E_1) \land K$ and thus $\Delta_{\top}(E_1) \vdash K$ contradicting (KP4).

Introduction

Belief revision

BUR

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic merging

Link between (IM) and (Maj)

Theorem

If a merging operator satisfies (KP1) and (KP2) then it can not satisfies (IM) and (Maj) at the same time.

Proof

From (IM) and (Maj), we have for all E_1, K that $\Delta_{\top}(E_1 \sqcup K) \leftrightarrow \Delta_{\top}(E_1 \sqcup K^n) \vdash \Delta_{\top}(K)$. From (KP2), we deduce that $\forall K, \Delta_{\top}(E_1 \sqcup K) \vdash K$. Consider K' such that $K \land K' \vdash \bot$. Then with E = K', we have $\Delta_{\top}(K' \sqcup K) \vdash K$. And also that $\Delta_{\top}(K \sqcup K') \vdash K'$ and thus that $\Delta_{\top}(K' \sqcup K) \vdash K \land K'$. Finally, $\Delta_{\top}(K' \sqcup K) \vdash \bot$ contradicting (KP1)

Introduction

Belief revision

8

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic merging

Link between (IM) and (Maj)

Theorem

If a merging operator satisfies (KP1) and (KP2) then it can not satisfies (IM) and (Maj) at the same time.

Proof

From (IM) and (Maj), we have for all E_1, K that $\Delta_{\top}(E_1 \sqcup K) \leftrightarrow \Delta_{\top}(E_1 \sqcup K'') \vdash \Delta_{\top}(K)$. From (KP2), we deduce that $\forall K, \Delta_{\top}(E_1 \sqcup K) \vdash K$. Consider K' such that $K \land K' \vdash \bot$. Then with E = K', we have $\Delta_{\top}(K' \sqcup K) \vdash K$. And also that $\Delta_{\top}(K \sqcup K') \vdash K'$ and thus that $\Delta_{\top}(K' \sqcup K) \vdash K \land K'$. Finally, $\Delta_{\top}(K' \sqcup K) \vdash \bot$ contradicting (KP1).

Introduction

Belief revision

> Several sources belief merging

> > Postulational aspects

Distance-based merging

Syntactic merging

Syncretic assignment

Definition

A syncretic assignment is a function which associates to a belief profile *E* a pre-order \leq_E over the interpretations such that for every belief profile *E*, *E*₁, *E*₂ and every belief base *K*, *K'* the following conditions hold:

1 If
$$\omega \models E$$
 and $\omega' \models E$ then $\omega \simeq_E \omega'$
2 If $\omega \models E$ and $\omega' \not\models E$ then $\omega <_E \omega'$
3 If $E_1 \leftrightarrow E_2$ then $\leq_{E_1} = \leq_{E_2}$
4 $\forall \omega \models K, \exists \omega' \models K', \omega' \leq_{K \sqcup K'} \omega$
5 If $\omega \leq_{E_1} \omega'$ and $\omega \leq_{E_2} \omega'$ then $\omega \leq_{E_1 \sqcup E_2} \omega'$
6 If $\omega <_{E_1} \omega'$ and $\omega \leq_{E_2} \omega'$ then $\omega <_{E_1 \sqcup E_2} \omega'$

Introduction

Belief revision

DRG

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Syncretic assignment - Extra conditions

Definition

A majority syncretic assignment is a syncretic assignment which satisfies the following condition:

7 If $\omega <_{E_2} \omega'$, then $\exists n, \omega <_{E_1 \sqcup E_2^n} \omega'$

Definition

A fair syncretic assignment is a syncretic assignment which satisfies the following condition:

$$\left.\begin{array}{c} \omega <_{K} \omega' \\ \omega <_{K'} \omega'' \\ \omega' \simeq_{K \sqcup K'} \omega'' \end{array}\right\} \Rightarrow \omega <_{K \sqcup K'} \omega'$$

Introduction

Belief revision

2

Several sources belief merging

> Postulational aspects

Distance-based merging

Syntactic merging

Syncretic assignment and KP postulates

Theorem

We consider Δ_{IC} a merging operation. Δ_{IC} respects all (KP) postulates iff there exists a syncretic assignment which associates to every belief profile E a total pre-order \leq_E such that the result of the merging operation $\Delta_{IC}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_E .

Theorem

An operator Δ is a majority (resp. arbitration) merging operation iff there exists a majority (resp. fair) syncretic assignment which associates to every belief profile E a total pre-order \leq_E such that the result of the merging operation $\Delta_{IC}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_E .

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Distances and aggregation functions

Distances

 $d: \Omega imes \Omega o \mathbb{N}$ is a distance between interpretations iff it respects

$$\forall \omega_1, \omega_2 \in \Omega, d(\omega_1, \omega_2) = d(\omega_2, \omega_1)$$

2
$$d(\omega_1,\omega_2)=$$
 0 iff $\omega_1=\omega_2$

It induces the distance between an interpretation and a formula: $d(\omega, \varphi) = \min_{\omega' \models \varphi} d(\omega, \omega')$

Aggregation function

- $f: \mathbb{N}^n \to \mathbb{N}$ is an aggregation function iff it respects
 - f is non-decreasing in each argument;

2
$$\forall (x_1, \ldots, x_n), f(x_1, \ldots, x_n) = 0$$
 iff $x_1 = \ldots = x_n = 0$;

$$\forall x_1, f(x_1) = x_1$$

Belief revision

BURG

ZW

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Distances and aggregation functions Example

Some distance functions:

drastic
$$d_D(\omega_1, \omega_2) = 0$$
 if $\omega_1 = \omega_1$, 1 otherwise
Hamming $d_H(\omega_1, \omega_2) = |\{x \in \mathcal{L} \mid \omega_1(x) \neq \omega_2(x)\}|$

Some aggregation functions: max, sum and lex.

Lexicographic aggregation

Given two vectors of numbers $\vec{a} = (a_1, \ldots, a_n)$ and $\vec{b} = (b_1, \ldots, b_n)$. Let σ and σ' be two permutations on $\{1, \ldots, n\}$ s.t. $\forall i, a_{\sigma(i)} \ge a_{\sigma(i+1)}$ and $b_{\sigma'(i)} \ge b_{\sigma'(i+1)}$. $\vec{a} \le_{lex} \vec{b}$ iff $\forall i, a_{\sigma(i)} = b_{\sigma'(i)}$ or $\exists i \ge 1$ s.t. $a_{\sigma(i)} < b_{\sigma'(i)}$ and $a_{\sigma(j)} = b_{\sigma'(j)}$ for all $1 \le j < i$.

UNI FREIBURG

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Distance-based merging

Distance-based merging operators

d is a distance, *f* and *g* are aggregation functions, $E = \{K_1, \ldots, K_n\}$ is belief profile and *C* is a formula:

$$\mathsf{Mod}(\Delta^{d,f,g}_{IC}(E)) = \{\omega \in \mathsf{Mod}(IC) \mid d(\omega,E) \text{ is minimal } \}$$

where

 $d(\omega, E) = g(d(\omega, K_1), \ldots, d(\omega, K_n))$

and for every $K_i = \{\varphi_{i,1}, \ldots, \varphi_{i,n_i}\}$

 $d(\omega, K_i) = f(d(\omega, \varphi_{i,1}), \ldots, d(\omega, \varphi_{i,n_i}))$

Introduction

Belief revision

> Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Distance-based merging: example

Example

$E = \{K_1, K_2, K_3, K_4\}$ under the integrity constraint $IC = \top$ where										
$\mathcal{K}_1 = \{a \wedge b \wedge c, a ightarrow eg b\}$										
$K_2 = \{a \land b\}$										
$K_3 = \{\neg a \land \neg b, \neg b\}$										
$K_4 = \{a, a \rightarrow b\}$										
$\Delta^{u_H, outlinex}$ Operator.										
	a∧b∧c	a ightarrow eg b	a∨b	$\neg a \land \neg b$	$\neg b$	а	$a \rightarrow b$	K_1, K_2, K_3, K_4	Е	
000	3	0	2	0	0	1	0	3,2,0,1	3210	
001	2	0	2	0	0	1	0	2,2,0,1	2210	
010	2	0	1	1	1	1	0	2, 1, 2, 1	2211	
011	1	0	1	1	1	1	0	1, 1, 2, 1	2111	
100	2	0	1	1	0	0	1	2, 1, 1, 1	2111	
101	1	0	1	1	0	0	1	1, 1, 1, 1	1111	
110	1	1	0	2	1	0	0	2,0,3,0	3200	
111	0	1	0	2	1	0	0	1,0,3,0	3100	

Introduction

Belief revision

UNI FREIBURG

> Several sources belief merging

Postulational aspects

> Distance-based merging

Syntactic merging

Table of complexity

UNI FREIBURG

Complexity for d_D

f/g	max	sum	lex
max	BH_2	Θ_2^p	Θ_2^p
sum	Θ_2^p	Θ_2^p	Δ_2^p

Complexity for d_H

f/g	max	sum	lex
max	Θ_2^p	Θ_2^p	Δ_2^p
sum	Θ_2^p	Θ_2^p	Δ_2^p

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Removed Sets Fusion: Principle

UNI FREIBURG

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Bibliography

3 steps :

- subset of formulas which restore consistency: Potential Removed Sets
- minimal subset of formulas which restore consistency: Removed Sets
- profile without these formulas: Removed Sets Fusion operation

Potential Removed Set

 $E = \{K_1, \dots, K_n\} : \text{ a belief profile } IC : \text{ constraints }$ s.t. $K_1 \sqcup \cdots \sqcup K_n \sqcup IC$ is inconsistent. X : a subset of formulas from $K_1 \sqcup \cdots \sqcup K_n$.

Definition (Potential Removed Set)

X is a potential Removed Set of *E* constrainted by *IC* iff $((K_1 \sqcup \cdots \sqcup K_n) \setminus X) \sqcup IC$ is consistent.

Introduction

Belief revision

2

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Potential Removed Sets

$$K_1 = \{a \quad b\} \quad K_2 = \{\neg a \lor \neg b\}$$

Example

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Removed Sets according to P

 $E = \{K_1, \dots, K_n\}$: a belief profile IC: constraints s.t. $K_1 \sqcup \cdots \sqcup K_n \sqcup IC$ is inconsistent. P: a merging strategy.

Definition (Removed Set)

X is a Removed Set of E constrainted by IC according to P iff :

X is a potential Removed Set of E constrainted by IC;

Nebel, Wölfl, Hué - KRR

$$\exists X' \subseteq K_1 \sqcup \cdots \sqcup K_n \text{ s.t. } X' \subset X;$$

$$\exists X' \subseteq K_1 \sqcup \cdots \sqcup K_n \text{ s.t. } X' <_P X.$$

Introduction

Belief revision

> Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Removed Sets

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Bibliography

$$K_1 = \{a \quad b\} \quad K_2 = \{\neg a \lor \neg b\}$$

Example

Definition of the merging operator

$$E = \{K_1, \dots, K_n\}$$
: a belief profile *IC*: constraints
 P : a merging strategy.
 $\mathcal{F}_{P,IC}\mathcal{R}(E)$: the set of Removed Sets of *E* constrainted by *IC*
according to *P*.

Definition
$$(\Delta_{P,IC}^{RSF}(E))$$

$$\Delta_{P,IC}^{RSF}(E) = \bigvee_{X \in \mathcal{F}_{P,IC} \mathcal{R}(E)} \{ ((K_1 \sqcup \cdots \sqcup K_n) \backslash X) \sqcup IC \}$$

Example

$$\begin{aligned} & \mathcal{K}_1 = \{a \ b\} \ \mathcal{K}_2 = \{\neg a \lor \neg b\} \\ & \Delta_{\Sigma, \mathcal{IC}}^{RSF}(E) = \{\neg a \lor \neg b \ b\} \lor \{\neg a \lor \neg b \ a\} \lor \{a \ b\} \end{aligned}$$

. . . .

INI

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Pre-order Sum

Introduction

Belief revision

Several sources belief

merging

Postulational aspects

Distance-based merging

Syntactic merging

Bibliography

 $E = \{K_1, \dots, K_n\}$: a belief profile. X, X': two potential Removed Sets of E.

Definition (\leq_{Σ})

$$X \leq_{\Sigma} X' ext{ iff } \sum_{1 \leq i \leq n} |X \cap K_i| \leq \sum_{1 \leq i \leq n} |X' \cap K_i|$$

The Sum strategy

Profile $E = \{K_1, K_2, K_3\}$

$$\begin{split} \mathcal{K}_1 = \{\neg d, \quad s \lor o, \quad s\} & \mathcal{K}_2 = \{\neg s, \quad d \lor o, \quad \neg d \lor \neg o\} \\ & \mathcal{K}_3 = \{s, \quad d, \quad o\} \end{split}$$

UNI FREIBURG

Introduction

Belief revision

Several sources belief merging

Postulational aspects

Distance-based merging

Syntactic merging

Introduction

Belief revision

Several sources belief merging

Bibliography

Literature I

Artificial Intelligence, 2004.

BURG

Literature II

Introduction

Belief revision

Several sources belief merging

Bibliography

Julien Hué, Eric Würbel, Odile Papini: Removed Sets Fusion: Performing Off The Shelf ECAI, 2008.