Principles of
 Knowledge Representation and Reasoning

Dynamics of belief

Bernhard Nebel, Stefan Wölfl, and Julien Hué
Winter Semester 2012/2013

Introduction
Link between
revision and update
Belief
revision

Introduction

Principles

Propositional logic flaws:

- The world is not always static.
- The knowledge about the world is sometimes uncertain or imprecise

Therefore:

- Need the possibility to incorporate new (possibly contradictory) beliefs;
- Need to take into account change in the world;

The Guettier argument

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of1 Justified True BeliefPlato - Theaetetus: A knowledge (a rightful opinion) is a piece of
1 Justified True Belief

Agrippa's trilemma - A problem with the justification:
Either the justification stops to some unjustified belief; The justification is infinite (Socrates' clouds);

The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

The Guettier argument

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of
1 Justified True Belief

Agrippa's trilemma - A problem with the justification:
1 Either the justification stops to some unjustified belief;
The justification is infinite (Socrates' clouds);
The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

The Guettier argument

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of
1 Justified True Belief

Agrippa's trilemma - A problem with the justification:
1 Either the justification stops to some unjustified belief;
2 The justification is infinite (Socrates' clouds);
The justification is supported by affirmations it is supposed
to justify (Baron Münchhausen's hair).

The Guettier argument

Plato - Theaetetus: A knowledge (a rightful opinion) is a piece of
1 Justified True Belief

Agrippa's trilemma - A problem with the justification:
1 Either the justification stops to some unjustified belief;
2 The justification is infinite (Socrates' clouds);
3 The justification is supported by affirmations it is supposed to justify (Baron Münchhausen's hair).

Foundationalism and coherentism

Three solutions:
Introduction
Link between
revision and update
\rightarrow Formalization issues
\rightarrow Humans don't keep track of sources
\rightarrow TMS System
Allow for infinite justification
\rightarrow Does it really make sense?
Allow for circular justifications
\rightarrow What is a solid belief?
\rightarrow Belief revision/update

- In any cases, information is exiremely important and should not be discarded carelessly.

Foundationalism and coherentism

Three solutions:

Introduction
Link between
\rightarrow Formalization issues
\rightarrow Humans don't keep track of sources
\rightarrow TMS System
"Infinitism" Allow for infinite justification
\rightarrow Does it really make sense?

Allow for circular justifications
\rightarrow What is a solid belief?
\rightarrow Belief revision/update

- In any cases, information is extremely important and should not be discarded carelessly.

Foundationalism and coherentism

Three solutions:

Introduction
Link between
revision and update

Coherentism Allow for circular justifications
\rightarrow What is a solid belief?
\rightarrow Belief revision/update

- In any cases, information is extremely important and should not be discarded carelessly.

Foundationalism and coherentism

Three solutions:

Introduction
Link between
revision and update

Coherentism Allow for circular justifications
\rightarrow What is a solid belief?
\rightarrow Belief revision/update

- In any cases, information is extremely important and should not be discarded carelessly.

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:Non-dictatorship(all voters should be taken into account);
Universality(complete and deterministic ranking);
Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
Pareto efficiency
(if all preferences states $x<y$, then so must the results).

Introduction
Link between

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);

Universality
(complete and deterministic ranking);

Introduction
Link between

Independance of irrelevant alternatives (ranking between x and y depends only on x and y);

Pareto efficiency
(if all preferences states $x<y$, then so must the results).

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship
(all voters should be taken into account);
- Universality (complete and deterministic ranking);

Independance of irrelevant alternatives
(ranking between x and y depends only on x and y);
Pareto efficiency
(if all preferences states $x<y$, then so must the results).

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality
(complete and deterministic ranking);
- Independance of irrelevant alternatives
(ranking between x and y depends only on x and y);
Pareto efficiency
(if all preferences states $x<y$, then so must the results).

Social choice theory: the Arrow theorem

Arrow's impossibility theorem - there is no voting system which respects:

- Non-dictatorship (all voters should be taken into account);
- Universality (complete and deterministic ranking);
- Independance of irrelevant alternatives (ranking between x and y depends only on x and y);
- Pareto efficiency
(if all preferences states $x<y$, then so must the results).

Revision or update

- We have a theory about the world, and the new information is meant to correct our theory accommodate the new information

We have a (supposedly) correct theory about the current state of the world, and the new information is meant to record a change in the world
belief update: incorporate the change by assuming that the world has changed minimally

Revision or update

Introduction

- We have a theory about the world, and the new information is meant to correct our theory
\rightsquigarrow belief revision: change your belief state minimally in order to accommodate the new information
- We have a (supposedly) correct theory about the current record a change in the world
\rightsquigarrow belief update: incorporate the change by assuming that the world has changed minimally

Update and revision are different

Assume the new information is consistent with our old beliefs.

```
In case of belief revision, we would like to add the new
information monotonically to our old beliefs.
For belief undate this is not necessarily the case.
Assume we know that the door is open or the window is
open.
Assume we learn that the world has changed and the door
is now closed.
    In this case, we do not want to add this information
    monotonically to our theory, since we would be forced to
    conclude that the window is open.
```


Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.

```
For belief update this is not necessarily the case.
    Assume we know that the door is open or the window is
    open
    Assume we learn that the world has changed and the door
    is now closed.
    In this case, we do not want to add this information
    monotonically to our theory, since we would be forced to
    conclude that the window is open.
```


Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.

Assume we know that the door is open or the window is open.

Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
- Assume we know that the door is open or the window is open.

Introduction
Link between
revision and update

> Assume we learn that the world has changed and the door
> is now closed.
> In this case, we do not want to add this information
> monotonically to our theory, since we would be forced to conclude that the window is open.

Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
- Assume we know that the door is open or the window is open.

Introduction
Link between
revision and update

- Assume we learn that the world has changed and the door is now closed.
In this case, we do not want to add this information
monotonically to our theory, since we would be forced to conclude that the window is open.

Update and revision are different

Assume the new information is consistent with our old beliefs.

- In case of belief revision, we would like to add the new information monotonically to our old beliefs.
- For belief update this is not necessarily the case.
- Assume we know that the door is open or the window is open.

Introduction
Link between revision and update

- Assume we learn that the world has changed and the door is now closed.
- In this case, we do not want to add this information monotonically to our theory, since we would be forced to conclude that the window is open.

Overview of an operation

What are the criteria for definition of a belief revision operation?

Gärdenfors and Rott - belief revision (1995):
1 How are beliefs represented?
2 What is the relation between beliefs represented explicitly in the belief base and beliefs which can be derived from them?
3 In the face of a contradiction, how to deal with both new and old information?

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., $K=\operatorname{Cn}(K)$ with Cn the consequence operator
$\mathcal{L}:$ logical language (propositional logic)
$\mathrm{Th}_{\mathcal{L}}$: set of deductively closed theories (or belief sets) over

Introduction
Link between revision and update

Belief change operations

Monotonic addition: $+: \mathrm{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \mathrm{Th}_{\mathcal{L}}$

$$
\text { Revision: } \dot{+}: \operatorname{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \operatorname{Th}_{\mathcal{L}}
$$

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., $K=\operatorname{Cn}(K)$ with Cn the consequence operator
- \mathcal{L} : logical language (propositional logic)

Th $\mathcal{L}_{\mathcal{L}}$: set of deductively closed theories (or belief sets) over

Introduction
Link between revision and update

Betief chenge operations

Monotonic addition: $+: \operatorname{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \mathrm{Th}_{\mathcal{L}}$

Revision: $+: \operatorname{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \mathrm{Th}_{\mathcal{L}}$

Belief base, belief set or interpretation?

General assumption:

- A belief set is a deductively closed theory, i.e., $K=\operatorname{Cn}(K)$ with Cn the consequence operator
- \mathcal{L} : logical language (propositional logic)
- $\mathrm{Th}_{\mathcal{L}}$: set of deductively closed theories (or belief sets) over \mathcal{L}

Introduction
Link between

Belief change operations

Monotonic addition: $+: \mathrm{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \mathrm{Th}_{\mathcal{L}}$

$$
\begin{array}{ll}
& K+\psi=\operatorname{Cn}(K \cup\{\psi\}) \\
\text { Revision: } & \dot{+}: \operatorname{Th}_{\mathcal{L}} \times \mathcal{L} \rightarrow \operatorname{Th}_{\mathcal{L}}
\end{array}
$$

Semantic or syntactic

Consider $K=\{a, b\}$ and $K^{\prime}=\{a \wedge b\}$. What is happening to $K \dot{+}\{\neg a\}$?

Introduction

- $X=\{b\}$ is the only maximal subset of K s.t.

a	b	\mathcal{I}
0	0	0
0	1	0
1	0	0
1	1	1

- $X^{\prime}=\emptyset$ is the only maximal subset of K^{\prime} s.t. $X^{\prime} \cup\{\neg a\}$ is consistent.

Introduction
Belief
revision
Formal properties
Standard revision operations

Belief revision

Semantic
approaches
Several
sources -
belief
merging
Bibliography

What is a good revision operator?

Belief
revision
Consistency: a revision has to produce a consistent set of beliefs;

Minimality of change: a revision has to change the fewest possible beliefs;

Priority to the new information: the 'new' information is considered more important than the 'old' one.

Formal properties Standard revision operations

Semantic
approaches
Several
sources
belief
merging
Bibliography

What is a good revision operator?

Introduction

■ Consistency: a revision has to produce a consistent set of beliefs;

- Minimality of change: a revision has to change the fewest possible beliefs;

Priority to the new information: the 'new' information is considered more important than the 'old' one.

Formal properties Standard revision operations
Semantic
approaches
Several
sources
belief

What is a good revision operator?

- Consistency: a revision has to produce a consistent set of beliefs;
- Minimality of change: a revision has to change the fewest possible beliefs;
- Priority to the new information: the 'new' information is

Formal properties Standard revision operations
Semantic
approaches
Several
sources
belief considered more important than the 'old' one.

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

$$
(\dot{+1}) K \dot{+} \varphi \in \operatorname{Th}_{\mathcal{L}}
$$

$\varphi \in K+\varphi ;$

If $\neg \varphi \notin K$, then $K+\varphi \subseteq K \dot{+} \varphi$;
\square
If $\vdash \varphi \leftrightarrow \psi$ then $K \dot{+} \varphi=K \dot{+} \psi$;

Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources -
belief
merging
Bibliography
$K \dot{+}(\varphi \wedge \psi) \subseteq(K \dot{+} \varphi)+\psi ;$
If $\neg \psi \notin K \dot{+} \varphi$,
then $(K \dot{+} \varphi)+\psi \subseteq K \dot{+}(\varphi \wedge \psi)$.

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

Introduction
Belief
revision
Formal properties Standard revision operations

Semantic
approaches
Several
sources
belief
merging
Bibliography

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

Introduction
Belief
revision
Formal properties Standard revision operations

Semantic
approaches
Several
sources
belief
merging
Bibliography

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

$$
\begin{aligned}
& \text { (+1) } K \dot{+} \varphi \in \operatorname{Th}_{\mathcal{L}} ; \\
& \text { (+2) } \varphi \in K \dot{+} \text {; } \\
& \text { (+3) } K \dot{+} \varphi \subseteq K+\varphi ; \\
& \text { (+4) If } \neg \varphi \notin K \text {, then } K+\varphi \subseteq K \dot{+} \varphi ; \\
& \text { (+5) } K \dot{+} \varphi=\operatorname{Cn}(\perp) \text { only if } \vdash \neg \varphi ; \\
& \text { (+ं6) If } \vdash \varphi \leftrightarrow \psi \text { then } K \dot{+} \varphi=K \dot{+} \psi ;
\end{aligned}
$$

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

$(\dot{+1}) K \dot{+} \varphi \in \operatorname{Th}_{\mathcal{L}}$;
$(\dot{+} 2) \varphi \in K \dot{+} \boldsymbol{\varphi}$;
$(\dot{+}) K \dot{+} \boldsymbol{\varphi} \subseteq K+\boldsymbol{\varphi}$;
(+4) If $\neg \varphi \notin K$, then $K+\varphi \subseteq K \dot{+} \varphi$;
$(\dot{+} 5) K \dot{+} \varphi=\operatorname{Cn}(\perp)$ only if $\vdash \neg \varphi$;
$(\dot{+} 6)$ If $\vdash \varphi \leftrightarrow \psi$ then $K \dot{+} \varphi=K \dot{+} \psi$;

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography
$(\dot{+} 7) K \dot{+}(\varphi \wedge \psi) \subseteq(K \dot{+} \varphi)+\psi$;
then $(K \dot{+} \varphi)+\psi \subseteq K \dot{+}(\varphi \wedge \psi)$.

The AGM postulates

Characterization for belief sets' revision

AGM postulates:

$(\dot{+1}) K \dot{+} \varphi \in \operatorname{Th}_{\mathcal{L}}$;
$(+2) \varphi \in K \dot{+} \boldsymbol{\varphi}$;
$(\dot{+}) K \dot{+} \boldsymbol{\varphi} \subseteq K+\boldsymbol{\varphi}$;
(+4) If $\neg \varphi \notin K$, then $K+\varphi \subseteq K \dot{+} \varphi$;
$(\dot{+} 5) K \dot{+} \varphi=\operatorname{Cn}(\perp)$ only if $\vdash \neg \varphi$;
$(\dot{+} 6)$ If $\vdash \varphi \leftrightarrow \psi$ then $K \dot{+} \varphi=K \dot{+} \psi$;

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography
$(\dot{+} 7) K \dot{+}(\varphi \wedge \psi) \subseteq(K \dot{+} \varphi)+\psi$;
(+8) If $\neg \psi \notin K \dot{+} \varphi$, then $(K \dot{+} \varphi)+\psi \subseteq K \dot{+}(\varphi \wedge \psi)$.

The Levi identity

Revision can be defined in terms of two suboperations.

- + (expansion) denotes the simple union of beliefs;
- - (contraction) denotes the removal of information contradicting the input.

The Levi identity

$$
K \dot{+} \varphi \equiv C n[(K-\neg \varphi)+\varphi]
$$

Belief
revision
Formal properties Standard revision operations

Semantic
approaches
Several
sources
belief
merging
Bibliography

The Levi identity

Revision can be defined in terms of two suboperations.

- + (expansion) denotes the simple union of beliefs;
- - (contraction) denotes the removal of information contradicting the input.

The Levi identity

$$
K \dot{+} \varphi \equiv C n[(K-\neg \varphi)+\varphi]
$$

Example

$$
\begin{aligned}
& K=\{a, a \rightarrow b\} \quad \varphi\{\neg b\} ? \\
& K-\neg \varphi=\{a\} \text { or }\{a \rightarrow b\} \\
& K \dot{+} \neg \varphi=\{a, \neg b\} \text { or }\{a \rightarrow b, \neg b\}
\end{aligned}
$$

Full-meet contraction

Definition

We denote by $K \perp \varphi$ the set of maximal (wrt set-theoretic inclusion) subsets J of K such that $J \nvdash \varphi$.

Definition

Is full-meet contraction reasonable?

- Nol It is far too cautious.
- It can nevertheless be used as a lower bound to any reasonable operator.
$K+\varphi=\bigcap(K \perp \varphi)+\varphi$ is referred to as the full-meet revision.

Full-meet contraction

Definition

We denote by $K \perp \varphi$ the set of maximal (wrt set-theoretic inclusion) subsets J of K such that $J \nvdash \varphi$.

Definition

Full-meet contraction is defined by $K-\varphi=\bigcap(K \perp \varphi)$.
Is full-meet contraction reasonable?

Introduction
Belief
revision
Formal properties
Standard revision operations
Semantic
approaches

- No! It is far too cautious.
- It can nevertheless be used as a lower bound to any reasonable operator.
$K \dot{+} \varphi=\bigcap(K \perp \varphi)+\varphi$ is referred to as the full-meet revision.

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

Belief
revision
Formal properties Standard revision operations

Semantic
approaches
Several
sources
belief
merging
Bibliography
$K+\varphi=\operatorname{Cn}\left(\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi\right)$. But $\forall \alpha, \alpha \cup \varphi \nvdash \perp$, therefore $\cap_{x \in(K \mid m)} \alpha \cup \varphi \nvdash \perp$ (as PL is monotonic).

Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \perp \stackrel{(\varphi \leftrightarrow \psi)}{\longrightarrow} \alpha \cup \varphi \vdash \perp$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subset \rho$ and ρ, , $\quad,(\varphi \leftrightarrow \psi) \rho, \ldots, 1$, which is not-possibie Left as exercises.

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

$(+1)$ and $(+2)$ are true by construction
(+3) Two cases: (1) If $K+\varphi$ is consistent then $K-\varphi=K$ and $K \dot{+} \varphi=K+\varphi$. (2) If $K+\varphi$ is inconsistent then $K+\varphi=\operatorname{Cn}(\perp)$ and $K \dot{+} \varphi \subseteq K+\varphi$.
Because K $K+\varphi=\operatorname{Cn}(\cap \alpha \in(K \perp \varphi) \alpha \cup \varphi)$. But $\forall \alpha, \alpha \cup \varphi \nvdash \perp$, therefore

Belief
revision
Formal properties Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

Belief
revision
Formal properties Standard revision operations
Semantic
approaches
Several
sources
belief

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

Belief

revision
Formal properties Standard revision operations $K+\varphi=\operatorname{Cn}(\perp)$ and $K \dot{+} \varphi \subseteq K+\varphi$.
(+4$)$ Because $K \nvdash \neg \varphi$ then $K \perp \varphi=\{K\}$ and thus $K \dot{+} \varphi=K+\varphi$.
$(+5) K \dot{+} \varphi=\operatorname{Cn}\left(\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi\right)$. But $\forall \alpha, \alpha \cup \varphi \nvdash \perp$, therefore $\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi \nvdash \perp$ (as PL is monotonic).
Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1)
$\alpha \cup \Psi \vdash \perp \stackrel{(\varphi \leftrightarrow \psi)}{\longrightarrow} \alpha \cup \varphi \vdash \perp$ which is not possible. (2) $\exists \beta$ s.t.
 Left as exercises.

Several
sources
belief

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Introduction

Proof

Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography
$(\dot{+} 5) K \dot{+} \varphi=\operatorname{Cn}\left(\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi\right)$. But $\forall \alpha, \alpha \cup \varphi \nvdash \perp$, therefore $\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi \nvdash \perp$ (as PL is monotonic).
(-6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \perp \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \perp$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvdash \perp \xrightarrow{(\varphi \leftrightarrow \psi)} \beta \cup \varphi \nvdash \perp$ which is not possible.

Full-meet contraction

Properties

Proposition

Full-meet revision respects all AGM postulates.

Proof

Belief
revision
Formal properties
Standard revision operations
Semantic
approaches
Several
sources
belief
merging
Bibliography
$(\dot{+} 5) K \dot{+} \varphi=\operatorname{Cn}\left(\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi\right)$. But $\forall \alpha, \alpha \cup \varphi \nvdash \perp$, therefore $\cap_{\alpha \in(K \perp \varphi)} \alpha \cup \varphi \nvdash \perp$ (as PL is monotonic).
(-6) Lets assume that $\alpha \in K \perp \varphi$ but $\alpha \notin K \perp \Psi$. Two cases: (1) $\alpha \cup \Psi \vdash \perp \xrightarrow{(\varphi \leftrightarrow \Psi)} \alpha \cup \varphi \vdash \perp$ which is not possible. (2) $\exists \beta$ s.t. $\alpha \subsetneq \beta$ and $\beta \cup \Psi \nvdash \perp \xrightarrow{(\varphi \leftrightarrow \Psi)} \beta \cup \varphi \nvdash \perp$ which is not possible.
$(\dot{+})$ and $(\dot{+})$ Left as exercises...

Maxi-choice contraction

On the other side, one can ask for the principle of minimality to be strictly respected.

Definition

A selection function for K is a function γ such that for all sentences φ :
11 If $K \perp \varphi$ is non-empty, then $\gamma(K \perp \varphi)$ is a non-empty subset of $K \perp \varphi$, and
2 If $K \perp \varphi$ is empty, then $\gamma(K \perp \varphi)=\{K\}$.

Definition

Maxichoice contraction is defined as $K-\varphi=\gamma(K \perp \varphi)$ where γ is a selection function.

Partial-meet contraction

Maxi-choice can be too bold: there is sometimes no reason to trust one piece more than one another.

Introduction
Belief
revision
Formal properties
Standard revision operations

Seems to be a good compromise between full-meet and maxi-choice

Distance-based revision operations

Definition

The Dalal revision operation, denoted by $\dot{+}_{D}$, is defined as:

$$
K \dot{+}_{D} \varphi=\min \left(\operatorname{ext} \operatorname{Mod}(\varphi), \leq_{K}\right)
$$

where d_{H} is the Hamming Distance and
$\alpha \leq_{K} \beta$ iff $\exists \omega \in \operatorname{ext} \operatorname{Mod}(K), \forall \omega^{\prime} \in \operatorname{extMod}(K), d_{H}(\alpha, \omega) \leq d_{H}\left(\beta, \omega^{\prime}\right)$
Introduction
Belief
revision
Formal properties Standard revision operations
Semantic
approaches

Example

	a	b	c
$\mathcal{I}_{\varphi_{1}}$	0	0	0
$\mathcal{I}_{\varphi_{2}}$	0	0	1
	0	1	0
$\mathcal{I}_{K_{1}}$	0	1	1
	1	0	0
$\mathcal{I}_{K_{2}}$	1	0	1
	1	1	0
$\mathcal{I}_{K_{3}}$	1	1	1

$$
\begin{aligned}
& \text { Let } \varphi=\{\neg a, \neg b\} \text { and } K=\{(a \vee b) \wedge c\}: \\
& \qquad \begin{array}{rl}
d\left(\mathcal{I}_{\varphi_{1}}, \mathcal{I}_{K_{1}}\right)=2 & d\left(\mathcal{I}_{\varphi_{2}}, \mathcal{I}_{K_{1}}\right)=1 \\
d\left(\mathcal{I}_{\varphi_{1}}, \mathcal{I}_{K_{2}}\right)=2 & d\left(\mathcal{I}_{\varphi_{2}}, \mathcal{I}_{K_{2}}\right)=1 \\
d\left(\mathcal{I}_{\varphi_{1}}, \mathcal{I}_{K_{3}}\right)=3 & d\left(\mathcal{I}_{\varphi_{2}}, \mathcal{I}_{K_{3}}\right)=2
\end{array}
\end{aligned}
$$

Some complexity result

Formula-based approaches

The question does ψ belongs to $K \dot{+} \varphi$ (if $\dot{+}$ is a full-meet revision operator) is $\Delta_{2}^{p}-\left(\Sigma_{1}^{p} \cup \Pi_{1}^{p}\right)$ provided that NP \neq co-NP.

proof

If $\dot{+}$ is a full-meet revision, $\Psi \in \mathrm{Cn}(K) \dot{+} \varphi$ can be solved by the following algorithm: if $K \not \models \neg \Psi$, then $K \cup \Psi \models \varphi$ else $\Psi \models \varphi \longrightarrow$ Membership in Δ_{2}^{p}.

Belief
revision
Formal properties
Standard revision operations
Semantic
approaches

Some complexity result

Formula-based approaches

The question does ψ belongs to $K \dot{+} \varphi$ (if $\dot{+}$ is a full-meet revision operator) is $\Delta_{2}^{p}-\left(\Sigma_{1}^{p} \cup \Pi_{1}^{p}\right)$ provided that NP \neq co-NP.

proof

If $\dot{+}$ is a full-meet revision, $\Psi \in \mathrm{Cn}(K) \dot{+} \varphi$ can be solved by the following algorithm: if $K \not \models \neg \Psi$, then $K \cup \Psi \models \varphi$ else $\Psi \models \varphi \longrightarrow$ Membership in Δ_{2}^{p}.

Belief
revision
Formal properties
Standard revision
operations
Semantic
approaches

Furthermore, SAT can be polynomially transformed to full-meet revision by solving $\Psi \in \mathrm{Cn}(\Psi) \dot{+} T$ and UNSAT can be polynomially transform to full-meet revision by solving
$\perp \in \mathrm{Cn}(\emptyset)+\Psi$. Hence, assuming that full-meet revision belongs to both NP and co-NP would lead to NP = co-NP.

Introduction

Belief
revision
Several

Several sources - belief merging

sources
belief
merging
Postulational
aspects
Distance-based
merging
Syntactic merging
Bibliography

Principles of belief merging

There is not only one source for the information:

- Voting procedure;
- Expert system;
- Distributed databases;
- multisource knowledge acquisition.

Constructing a belief base which represents the several sources
solves the contradiction;
reduces the redundancies;
is consistent.

Principles of belief merging

There is not only one source for the information:

- Voting procedure;
- Expert system;
- Distributed databases;
- multisource knowledge acquisition.

Introduction

Constructing a belief base which represents the several sources and which:

- solves the contradiction;
- reduces the redundancies;
\square is consistent.

Merging in the general case

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging
Syntactic merging
$E=\left\{K_{1}, K_{2}, \ldots, K_{n}\right\}$
Each K_{i} is consistent

Merging in the general case

Merging in the general case

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging
Syntactic merging
Bibliography

Formal framework

General assumption:

- K_{1}, \ldots, K_{n} are belief bases;
- $E=\left\{K_{1}, \ldots, K_{n}\right\}$ is a multi-set of belief bases and is called a belief profile;
- IC is a propositional formula standing for constraints;
$\square \sqcup$ stands for multi-set union.

Introduction

Operation

Belief merging operation: $\Delta: \mathcal{L}^{n} \times \mathcal{L} \rightarrow \mathcal{L}$
Sometimes also called fusion operation.

Konieczny-PinoPerez postulates

```
(KPO) }\mp@subsup{\Delta}{IC}{\prime}(E)|IC
    If IC is consistent, then }\mp@subsup{\Delta}{IC}{}(E)\mathrm{ is consistent.
    If }\E\wedgeIC\mathrm{ is consistent, then }\mp@subsup{\Delta}{IC}{}(E)=\E\wedgeIC
    If }\mp@subsup{E}{1}{}\equiv\mp@subsup{E}{2}{}\mathrm{ and IC }\mp@subsup{C}{1}{}\equivI\mp@subsup{C}{2}{}\mathrm{ , then
    \mp@subsup{|}{I\mp@subsup{C}{1}{}}{(E}(\mp@subsup{E}{1}{})\equiv\mp@subsup{\Delta}{l\mp@subsup{C}{2}{}}{(}(\mp@subsup{E}{2}{\prime}).
    If K}\mp@subsup{K}{1}{}=IC\mathrm{ and K}\mp@subsup{K}{2}{}\modelsIC\mathrm{ , then
    \DeltaIC}(\mp@subsup{K}{1}{}\sqcup\mp@subsup{K}{2}{})\wedge\mp@subsup{K}{1}{}\not\vDash\perp\mathrm{ implies
    \mp@subsup{\Delta}{lC}{C}}(\mp@subsup{K}{1}{}\sqcup\mp@subsup{K}{2}{})\wedge\mp@subsup{K}{2}{}\not\Leftarrow\perp
    \DeltaIC}(\mp@subsup{E}{1}{})\wedge\mp@subsup{\Delta}{IC}{\prime}(\mp@subsup{E}{2}{})\models\mp@subsup{\Delta}{IC}{}(\mp@subsup{E}{1}{}\sqcup\mp@subsup{E}{2}{})
    If }\mp@subsup{\Delta}{IC}{}(\mp@subsup{E}{1}{})\wedge\mp@subsup{\Delta}{IC}{}(\mp@subsup{E}{2}{})\mathrm{ is consistent, then
    \mp@subsup{\Delta}{IC}{\prime}}(\mp@subsup{E}{1}{}\sqcup\mp@subsup{E}{2}{})=\mp@subsup{\Delta}{IC}{}(\mp@subsup{E}{1}{})\wedge\mp@subsup{\Delta}{IC}{}(\mp@subsup{E}{2}{})
    \mp@subsup{\Delta}{IC}{1}
    If }\mp@subsup{\Delta}{I\mp@subsup{C}{1}{}}{}(E)\wedgeI\mp@subsup{C}{2}{}\mathrm{ is consistent, then
\mp@subsup{\Delta}{I\mp@subsup{C}{1}{}\wedgeI\mp@subsup{C}{2}{}}{}(E)=\mp@subsup{\Delta}{I\mp@subsup{C}{1}{}}{}(E)\wedgeI\mp@subsup{C}{2}{}
```

Introduction
Belief
revision
Several
sources
belief
merging
Postulational aspects
Distance-based merging
Syntactic merging
Bibliography

Konieczny-PinoPerez postulates

$(\mathrm{KPO}) \quad \Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.

Introduction
Belief
revision
Several
sources
belief
merging
Postulational aspects

Distance-based merging
Syntactic merging
Bibliography
$(\mathrm{KPO}) \quad \Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.

$(\mathrm{KPO}) \Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.

If $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$ is consistent, then
$\Delta_{I C}\left(E_{1} \sqcup E_{2}\right) \models \Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$.

If $\Delta_{I C_{1}}(E) \wedge I C_{2}$ is consistent, then
$\Delta_{I C_{1} \wedge I C_{2}}(E) \models \Delta_{I C_{1}}(E) \wedge I C_{2}$.

Konieczny-PinoPerez postulates

$(\mathrm{KPO}) \quad \Delta_{I C}(E) \models I C$.
(KP1) If IC is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.
(KP4) If $K_{1} \equiv I C$ and $K_{2} \models I C$, then
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{1} \neq \perp$ implies
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{2} \not \models \perp$.

Konieczny-PinoPerez postulates

$(\mathrm{KPO}) \quad \Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.
(KP4) If $K_{1} \models I C$ and $K_{2} \models I C$, then
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{1} \neq \perp$ implies
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{2} \not \vDash \perp$.
(KP5) $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right) \models \Delta_{I C}\left(E_{1} \sqcup E_{2}\right)$.

Konieczny-PinoPerez postulates

(KP0) $\Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.
(KP4) If $K_{1}=I C$ and $K_{2} \models I C$, then
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{1} \notin \perp$ implies
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{2} \not \vDash \perp$.
(KP5) $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right) \models \Delta_{I C}\left(E_{1} \sqcup E_{2}\right)$.
(KP6) If $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$ is consistent, then
$\Delta_{I C}\left(E_{1} \sqcup E_{2}\right) \models \Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$.

If $\Delta_{I C_{1}}(E) \wedge I C_{2}$ is consistent, then
$\Delta_{I C_{1} \wedge I C_{2}}(E) \models \Delta_{I C_{1}}(E) \wedge I C_{2}$.

Konieczny-PinoPerez postulates

(KP0) $\Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.
(KP4) If $K_{1}=I C$ and $K_{2} \models I C$, then
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{1} \notin \perp$ implies
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{2} \not \vDash \perp$.
(KP5) $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right) \models \Delta_{I C}\left(E_{1} \sqcup E_{2}\right)$.
(KP6) If $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$ is consistent, then
$\Delta_{I C}\left(E_{1} \sqcup E_{2}\right) \models \Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$.
(KP7) $\Delta_{I C_{1}}(E) \wedge I C_{2} \vDash \Delta_{I C_{1} \wedge I C_{2}}(E)$.

If $\Delta_{I C_{1}}(E) \wedge I C_{2}$ is consistent, then

Konieczny-PinoPerez postulates

(KP0) $\Delta_{I C}(E) \models I C$.
(KP1) If $I C$ is consistent, then $\Delta_{I C}(E)$ is consistent.
(KP2) If $\wedge E \wedge I C$ is consistent, then $\Delta_{I C}(E)=\wedge E \wedge I C$.
(KP3) If $E_{1} \equiv E_{2}$ and $I C_{1} \equiv I C_{2}$, then
$\Delta_{C_{1}}\left(E_{1}\right) \equiv \Delta_{C_{2}}\left(E_{2}\right)$.
(KP4) If $K_{1} \models I C$ and $K_{2} \models I C$, then
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{1} \neq \perp$ implies
$\Delta_{I C}\left(K_{1} \sqcup K_{2}\right) \wedge K_{2} \not \vDash \perp$.
(KP5) $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right) \models \Delta_{I C}\left(E_{1} \sqcup E_{2}\right)$.
(KP6) If $\Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$ is consistent, then
$\Delta_{I C}\left(E_{1} \sqcup E_{2}\right) \models \Delta_{I C}\left(E_{1}\right) \wedge \Delta_{I C}\left(E_{2}\right)$.
(KP7) $\Delta_{I C_{1}}(E) \wedge I C_{2}=\Delta_{I C_{1} \wedge I C_{2}}(E)$.
(KP8) If $\Delta_{I C_{1}}(E) \wedge I C_{2}$ is consistent, then
$\Delta_{I C_{1} \wedge I C_{2}}(E) \models \Delta_{I C_{1}}(E) \wedge I C_{2}$.

Arbitration or majority operations

Arbitration (Arb)

Introduction
Belief
revision
Several
sources
belief
merging
Postulational aspects

Distance-based
merging
Syntactic merging
Bibliography

Independence from majority (IM)

$$
\forall n, \Delta_{I C}\left(K_{1} \sqcup K_{2}^{n}\right) \leftrightarrow \Delta_{I C}\left(K_{1} \sqcup K_{2}\right)
$$

Link between (IM) the KP postulates

Theorem

There exists no merging operator satisfying all the KP postulates and (IM).

Proof

Consider $E_{1}=\{K, \neg K\}$ and $E_{2}=\{K\}$ be two belief profiles.
(IM) leads to $\Delta_{-}\left(E_{1} \sqcup E_{2}\right)=\Delta_{T}\left(E_{1}\right)$.
(KP4) allows for $\Delta_{T}\left(E_{1}\right) \nvdash K$ and $\Delta_{T}\left(E_{1}\right) \nvdash \neg K$

Belief
revision
Several
sources
belief
merging
Postulational aspects

Distance-based merging
Syntactic merging
Bibliography

From (KP2), we have that $\Delta_{T}\left(E_{2}\right) \vdash K$ and thus $\Delta_{T}\left(E_{1}\right) \wedge \Delta_{T}\left(E_{2}\right)$ is consistent and from (KP6) we obtain $\Delta_{\top}\left(E_{1} \sqcup E_{2}\right) \vdash \Delta_{\top}\left(E_{1}\right) \wedge \Delta_{-}\left(E_{2}\right)$, i.e. $\Delta_{\mathrm{T}}\left(E_{1}\right) \vdash \Delta_{\mathrm{T}}\left(E_{1}\right) \wedge K$ and thus $\Delta_{\mathrm{T}}\left(E_{1}\right) \vdash K$ contradicting $(\mathrm{KP} 4)$

Link between (IM) the KP postulates

Theorem

There exists no merging operator satisfying all the KP postulates and (IM).

Proof

Consider $E_{1}=\{K, \neg K\}$ and $E_{2}=\{K\}$ be two belief profiles.
(IM) leads to $\Delta_{\top}\left(E_{1} \sqcup E_{2}\right)=\Delta_{\top}\left(E_{1}\right)$.
(KP4) allows for $\Delta_{\top}\left(E_{1}\right) \nvdash K$ and $\Delta_{\top}\left(E_{1}\right) \nvdash \neg K$.
From (KP2), we have that $\Delta_{T}\left(E_{2}\right) \vdash K$ and thus $\Delta_{T}\left(E_{1}\right) \wedge \Delta_{T}\left(E_{2}\right)$ is consistent and from (KP6) we obtain $\Delta_{T}\left(E_{1} \sqcup E_{2}\right) \vdash \Delta_{T}\left(E_{1}\right) \wedge \Delta_{T}\left(E_{2}\right)$, i.e., $\Delta_{\mathrm{T}}\left(E_{1}\right) \vdash \Delta_{\mathrm{T}}\left(E_{1}\right) \wedge K$ and thus $\Delta_{\mathrm{T}}\left(E_{1}\right) \vdash K$ contradicting (KP4).

Link between (IM) and (Maj)

Theorem

If a merging operator satisfies (KP1) and (KP2) then it can not satisfies (IM) and (Maj) at the same time.

Link between (IM) and (Maj)

Theorem

If a merging operator satisfies (KP1) and (KP2) then it can not satisfies (IM) and (Maj) at the same time.

Proof

From (IM) and (Maj), we have for all E_{1}, K that
$\Delta_{\top}\left(E_{1} \sqcup K\right) \leftrightarrow \Delta_{\top}\left(E_{1} \sqcup K^{n}\right) \vdash \Delta_{\top}(K)$.
From (KP2), we deduce that $\forall K, \Delta_{\top}\left(E_{1} \sqcup K\right) \vdash K$.
Consider K^{\prime} such that $K \wedge K^{\prime} \vdash \perp$. Then with $E=K^{\prime}$, we have
$\Delta_{\top}\left(K^{\prime} \sqcup K\right) \vdash K$. And also that $\Delta_{\top}\left(K \sqcup K^{\prime}\right) \vdash K^{\prime}$ and thus that
$\Delta_{\mathrm{T}}\left(K^{\prime} \sqcup K\right) \vdash K \wedge K^{\prime}$. Finally, $\Delta_{\mathrm{T}}\left(K^{\prime} \sqcup K\right) \vdash \perp$ contradicting (KP1).

Syncretic assignment

Definition

A syncretic assignment is a function which associates to a belief

3 If $E_{1} \leftrightarrow E_{2}$ then $\leq_{E_{1}}=\leq_{E_{2}}$
$4 \forall \omega \models K, \exists \omega^{\prime} \models K^{\prime}, \omega^{\prime} \leq_{K \sqcup K^{\prime}} \omega$
5 If $\omega \leq_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$ then $\omega \leq_{E_{1} \sqcup E_{2}} \omega^{\prime}$
6 If $\omega<_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$ then $\omega<_{E_{1} \sqcup E_{2}} \omega^{\prime}$

Syncretic assignment - Extra conditions

Definition

Introduction
A majority syncretic assignment is a syncretic assignment which satisfies the following condition:

$$
7 \text { If } \omega<_{E_{2}} \omega^{\prime} \text {, then } \exists n, \omega<_{E_{1} \sqcup E_{2}^{n}} \omega^{\prime}
$$

Definition

A fair syncretic assignment is a syncretic assignment which satisfies the following condition:

8

$$
\left.\begin{array}{r}
\omega<_{K} \omega^{\prime} \\
\omega<_{K^{\prime}} \omega^{\prime \prime} \\
\omega^{\prime} \simeq_{K \sqcup K^{\prime}} \omega^{\prime \prime}
\end{array}\right\} \Rightarrow \omega<_{K \sqcup K^{\prime}} \omega^{\prime}
$$

Syncretic assignment and KP postulates

Theorem

We consider $\Delta_{I C}$ a merging operation. $\Delta_{I C}$ respects all (KP) postulates iff there exists a syncretic assignment which associates to every belief profile E a total pre-order \leq_{E} such that the result of the merging operation $\Delta_{I C}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_{E}.

Theorem

An operator Δ is a majority (resp. arbitration) merging operation iff there exists a majority (resp. fair) syncretic assignment which associates to every belief profile E a total pre-order \leq_{E} such that the result of the merging operation $\Delta_{I C}(E)$ as the set of minimal elements of Mod(IC) according to the pre-order \leq_{E}.

Distances and aggregation functions
 Definition

Distances

$d: \Omega \times \Omega \rightarrow \mathbb{N}$ is a distance between interpretations iff it respects

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging
Syntactic merging
Bibliography

Aggregation function

$f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is an aggregation function iff it respects
$1 f$ is non-decreasing in each argument;
$2 \forall\left(x_{1}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)=0$ iff $x_{1}=\ldots=x_{n}=0$;
(3) $\forall x_{1}, f\left(x_{1}\right)=x_{1}$

Distances and aggregation functions
 Example

Some distance functions:
drastic $d_{D}\left(\omega_{1}, \omega_{2}\right)=0$ if $\omega_{1}=\omega_{1}, 1$ otherwise
Hamming $d_{H}\left(\omega_{1}, \omega_{2}\right)=\left|\left\{x \in \mathcal{L} \mid \omega_{1}(x) \neq \omega_{2}(x)\right\}\right|$

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging
Syntactic merging s.t. $\forall i, a_{\sigma(i)} \geq a_{\sigma(i+1)}$ and $b_{\sigma^{\prime}(i)} \geq b_{\sigma^{\prime}(i+1)}$.
$\vec{a} \leq_{l e x} \vec{b}$ iff $\forall i, a_{\sigma(i)}=b_{\sigma^{\prime}(i)}$ or $\exists i \geq 1$ s.t. $a_{\sigma(i)}<b_{\sigma^{\prime}(i)}$ and $a_{\sigma(j)}=b_{\sigma^{\prime}(j)}$ for all $1 \leq j<i$.

Distance-based merging

Distance-based merging operators

d is a distance, f and g are aggregation functions, $E=\left\{K_{1}, \ldots, K_{n}\right\}$ is belief profile and C is a formula:

$$
\operatorname{Mod}\left(\Delta_{I C}^{d, f, g}(E)\right)=\{\omega \in \operatorname{Mod}(I C) \mid d(\omega, E) \text { is minimal }\}
$$

Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging
Syntactic merging
and for every $K_{i}=\left\{\varphi_{i, 1}, \ldots, \varphi_{i, n_{i}}\right\}$

$$
d\left(\omega, K_{i}\right)=f\left(d\left(\omega, \varphi_{i, 1}\right), \ldots, d\left(\omega, \varphi_{i, n_{i}}\right)\right)
$$

Distance-based merging: example

Example

$E=\left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}$ under the integrity constraint $I C=T$ where

$$
\begin{aligned}
K_{1} & =\{a \wedge b \wedge c, a \rightarrow \neg b\} \\
K_{2} & =\{a \wedge b\} \\
K_{3} & =\{\neg a \wedge \neg b, \neg b\} \\
K_{4} & =\{a, a \rightarrow b\} \\
& \quad \Delta^{d_{H}, \text { sum,lex }} \text { Operator. }
\end{aligned}
$$

	$a \wedge b \wedge c$	$a \rightarrow \neg b$	$a \vee b$	$\neg a \wedge \neg b$	$\neg b$	a	$a \rightarrow b$	$K_{1}, K_{2}, K_{3}, K_{4}$	E
000	3	0	2	0	0	1	0	$3,2,0,1$	3210
001	2	0	2	0	0	1	0	$2,2,0,1$	2210
010	2	0	1	1	1	1	0	$2,1,2,1$	2211
011	1	0	1	1	1	1	0	$1,1,2,1$	2111
100	2	0	1	1	0	0	1	$2,1,1,1$	2111
101	1	0	1	1	0	0	1	$1,1,1,1$	1111
110	1	1	0	2	1	0	0	$2,0,3,0$	3200
111	0	1	0	2	1	0	0	$1,0,3,0$	3100

Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based merging

Syntactic merging

Table of complexity

Complexity for d_{D}

f / g	\max	sum	lex
\max	$B H_{2}$	Θ_{2}^{p}	Θ_{2}^{p}
sum	Θ_{2}^{p}	Θ_{2}^{p}	Δ_{2}^{p}

Complexity for d_{H}

f / g	\max	sum	lex
\max	Θ_{2}^{ρ}	Θ_{2}^{ρ}	Δ_{2}^{p}
sum	Θ_{2}^{ρ}	Θ_{2}^{p}	Δ_{2}^{p}

Removed Sets Fusion: Principle

- subset of formulas which restore consistency: Potential Removed Sets
- minimal subset of formulas which restore consistency: Removed Sets
- profile without these formulas: Removed Sets Fusion operation

Potential Removed Set

$E=\left\{K_{1}, \ldots, K_{n}\right\}:$ a belief profile $\quad I C$: constraints

Definition (Potential Removed Set)

X is a potential Removed Set of E constrainted by IC iff $\left(\left(K_{1} \sqcup \cdots \sqcup K_{n}\right) \backslash X\right) \sqcup I C$ is consistent.

Potential Removed Sets

$$
K_{1}=\left\{\begin{array}{ll}
a & b
\end{array}\right\} \quad K_{2}=\{\neg a \vee \neg b\}
$$

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based
merging
Syntactic merging

Removed Sets according to P

$E=\left\{K_{1}, \ldots, K_{n}\right\}:$ a belief profile $\quad I C$: constraints
s.t. $K_{1} \sqcup \cdots \sqcup K_{n} \sqcup I C$ is inconsistent.
P : a merging strategy.

Definition (Removed Set)

X is a Removed Set of E constrainted by IC according to P iff :
Distance-based
merging
Syntactic merging
$\square X$ is a potential Removed Set of E constrainted by $I C$;

- $\nexists X^{\prime} \subseteq K_{1} \sqcup \cdots \sqcup K_{n}$ s.t. $X^{\prime} \subset X$;
- $\nexists X^{\prime} \subseteq K_{1} \sqcup \cdots \sqcup K_{n}$ s.t. $X^{\prime}<{ }_{p} X$.

Removed Sets

$$
K_{1}=\{a \quad b\} \quad K_{2}=\{\neg a \vee \neg b\}
$$

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based
merging
Syntactic merging
Bibliography

Definition of the merging operator

$E=\left\{K_{1}, \ldots, K_{n}\right\}$: a belief profile IC : constraints
P : a merging strategy.
$\mathcal{F}_{P, I C} \mathcal{R}(E)$: the set of Removed Sets of E constrainted by IC according to P.

Definition $\left(\triangle_{P, / C}^{R S F}(E)\right)$

$$
\Delta_{P, I C}^{R S F}(E)=\bigvee_{x \in \mathcal{F}_{P, I C} \mathcal{R}(E)}\left\{\left(\left(K_{1} \sqcup \cdots \sqcup K_{n}\right) \backslash X\right) \sqcup I C\right\}
$$

Example

$$
\begin{gathered}
K_{1}=\left\{\begin{array}{ll}
a & b
\end{array}\right\} \quad K_{2}=\{\neg a \vee \neg b\} \\
\Delta_{\Sigma, I C}^{R S F}(E)=\{\neg a \vee \neg b \quad b\} \vee\{\neg a \vee \neg b \quad a\} \vee\{a \quad b
\end{gathered}
$$

Pre-order Sum

$E=\left\{K_{1}, \ldots, K_{n}\right\}$: a belief profile. X, X^{\prime} : two potential Removed Sets of E.
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based
merging
Syntactic merging

The Sum strategy

Profile $E=\left\{K_{1}, K_{2}, K_{3}\right\}$

$$
\left.\begin{array}{c}
K_{1}=\left\{\begin{array}{lcccc}
\neg d, & s \vee o, & s
\end{array}\right\} \quad K_{2}=\{\neg s, \quad d \vee o, \quad \neg d \vee \neg 0
\end{array}\right\}
$$

Introduction
Belief
revision
Several
sources
belief
merging
Postulational
aspects
Distance-based
merging
Syntactic merging
Bibliography

Bibliography

belief
merging
Bibliography

Literature I

Peter Gärdenfors and Hans Rott, Belief revision, Handbook of Logic in AI and LP, 1995.
目
Carlos E. Alchourròn, Peter Gärdenfors, David Makinson, On the Logic of Theory Change: Partial Meet Contraction and Revision Functions, Journal of Symbolic Logic, 1985.

Bernhard Nebel
Base Revision Operations and Schemes: Semantics, Representation and Complexity ECAI, 1994.

Sébastien Konieczny, Jérôme Lang, Pierre Marquis:
DA2 merging operators
Artificial Intelligence, 2004.

Literature II

睉 Julien Hué, Eric Würbel, Odile Papini: Removed Sets Fusion: Performing Off The Shelf

